
Qiu et al. Cybersecurity _#####################_ 
https://doi.org/10.1186/s42400-025-00363-8

RESEARCH Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Cybersecurity

Understanding security risks in mobile-to-PC 
screen mirroring: an empirical study
Zhaoyu Qiu1,2, Shishuai Yang2*, Yifan Yu2, Yujia Luo2 and Wenrui Diao2* 

Abstract 

To facilitate collaboration across multiple devices and benefit from larger screens and better user experiences, 
many users choose to mirror their screen content of smartphones to personal computers. The implementation 
of the Android screen mirroring feature varies across different manufacturers, resulting in significant security differ-
ences among screen mirroring apps. Moreover, actual incidents of screen content leakage have exacerbated users’ 
concerns about the security of the Android screen mirroring feature. In this work, we systematically analyzed the sys-
tem architecture of the Android screen mirroring feature and the security risks it faces. Specifically, we identified four 
critical security risks in the communication process between the mobile and PC sides of screen mirroring apps, includ-
ing arbitrary access to screen content, MITM (Man-in-the-Middle) attacks, malicious commands injection, and data 
sniffing attacks. Attackers can exploit these identified security risks to arbitrarily access screen content or manipulate 
user’s phone to perform malicious operations. To evaluate the security risks of the Android mirroring feature in real-
world deployments, we conducted a security evaluation on over 20 popular screen mirroring apps from multiple 
sources. The results indicate that all of these apps are facing at least one of the aforementioned security risks. Finally, 
we provide the corresponding recommendations to mitigate the identified security risks.

Keywords Screen mirroring feature, Android app security, Security analysis

Introduction
In the field of mobile operating systems, Android has 
gained a large number of users and developers because 
of its openness, rich apps, and extensive device support. 
As of February 2024, Android held a 71.43% market share 
in the global mobile operating system market, firmly sit-
ting at the top of the industry  (Mobile Operating Sys-
tem Market Share Worldwide 2024). As the smartphone 
plays an increasingly important role in people’s daily 
lives, it has become an indispensable digital assistant. To 

collaborate across multiple devices, more and more peo-
ple are choosing to mirror screens of their smartphones 
to PCs (Personal Computers) in real-time, as shown in 
Figure 1. The screen mirroring apps allow users to use a 
larger screen, making it more efficient to handle informa-
tion and tasks on their PCs. At the same time, they can 
receive real-time information from their smartphones, 
such as instant messaging, social media updates, and 
enjoy a more immersive and seamless user experience.

Although the screen mirroring feature provides con-
venience to users, it also presents numerous security 
risks in the real world, leading to many security inci-
dents. For instance, attackers could exploit this fea-
ture to obtain passwords and account information 
from smartphones, allowing them to steal user’s prop-
erty (Don’t Become the Victim of Screen Sharing Scams 
2024). Moreover, the lack of a standardized approach 
to screen mirroring implementation, with different 
software vendors offering various solutions, further 

*Correspondence:
Shishuai Yang
shishuai@mail.sdu.edu.cn
Wenrui Diao
diaowenrui@link.cuhk.edu.hk
1 Faculty of Electronic and Information Engineering, Xi’an Jiaotong 
University, Xi’an, China
2 School of Cyber Science and Technology, Shandong University, 
Qingdao, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-025-00363-8&domain=pdf


Page 2 of 16Qiu et al. Cybersecurity _#####################_

heightens the potential for security risks. To mitigate 
the security threats posed by the screen mirroring fea-
ture, starting from Android 10, Google has prohibited 
privileged apps from being granted video capture per-
missions  (Restricted Screen Reading 2024), such as 
READ_FRAME_BUFFER and CAPTURE_VIDEO_OUT-
PUT. In addition, screen content cannot be captured 
without user’s consent. However, due to weak security 
awareness among users, they may inadvertently grant 
screen capture permissions, leading to the leakage of 
sensitive data. Furthermore, some screen mirroring 
apps also support users to control their smartphones 
from PCs, which could result in security risks such as 
malicious commands injection.

To the best of our knowledge, there have been very 
few studies focusing on the security of the Android 
screen mirroring features. The most relevant work 
was conducted by Tian et  al. (2022), who systemati-
cally evaluated the security of casting multimedia files 
from phones to smart TVs based on the DLNA protocol, 
identifying a series of critical security issues. Unlike 
this study, we systematically analyzed the security risks 
associated with the Android screen mirroring feature, 
including the underlying communication protocols, 
authentication mechanisms, and the functionality of 
the PC remote control of the smartphone.

Our Work In this study, we systematically analyze 
the architectural design of the Android screen mirror-
ing feature and the security risks it faces. In general, 
we identified four significant security risks (SR for 
short): (1) SR1: arbitrary access to screen content. (2) 
SR2: MITM attack for screen content theft. (3) SR3: 
malicious commands injection attack. (4) SR4: data 

sniffing attack. By exploiting these security vulner-
abilities, attackers can easily steal sensitive informa-
tion from user’s screen or remotely inject commands to 
control user’s smartphone for malicious purposes.

To measure the impact of the identified security risks, 
we collected over 20 popular screen mirroring apps and 
conducted a multi-dimensional security analysis using 
both static and dynamic methods. By statically analyz-
ing APK files, hooking key functions, monitoring com-
munication traffic, and dynamically tracking resource 
usage, we identified security risks and generated exploit 
scripts to validate these vulnerabilities. The results 
show that all apps are exposed to one of the above secu-
rity risks, especially for SR2, where 71.43% of the apps 
are at risk of MITM attacks.

Responsible Disclosure We have reported discov-
ered vulnerabilities to corresponding software ven-
dors and CNVD. Six reports have been confirmed 
until now, one vulnerability has been confirmed by 
vivoSRC (vivoSRC 2024) (rated as high severity), and 
the other five vulnerabilities have been confirmed by 
CNVD: CNVD-2024–25211 (rated as medium sever-
ity), CNVD-2024–25640 (rated as medium sever-
ity), CNVD-2024–26729 (rated as medium severity), 
CNVD-2024–25639 (rated as low severity), and 
CNVD-2024–25676 (rated as low severity).

Contributions The main contributions of this paper 
are:

• Systematic Analysis. We systematically ana-
lyzed and explored the architecture design of the 
Android screen mirroring feature, as well as the 
actual security risks during deployment. This study 

Fig. 1 Screen mirroring



Page 3 of 16Qiu et al. Cybersecurity _#####################_ 

can enhance the security of the Android screen 
mirroring feature.

• New Security Risks. By exploiting the four identi-
fied security risks, attackers can capture the cur-
rent screen contents of users’ smartphones and steal 
private and confidential data. More seriously, the 
attacker can inject commands to control the user’s 
smartphone.

• Real-World Measurements and Discussions. We 
conducted a real-world measurement study on over 
20 popular screen mirroring apps, and the results 
show that all apps have at least one security risk. Fur-
thermore, we proposed mitigation measures for the 
identified security risks.

Background
This section will provide the necessary background 
knowledge about the Android screen mirroring feature.

Screen capture & remote control
Screen Capture Android offers various features for cap-
turing screen content, such as screenshots and screen 
recording. For example, users can take a screenshot of 
the current screen by simultaneously pressing the power 
button and volume down button. If other devices want 
to capture the current screen content in real-time, they 
need to use APIs provided by the Android OS. For exam-
ple, APIs in the android.media.projection pack-
age  (Media Projection 2024) can be used to capture the 
current screen content and transmit the data to other 
devices. In this study, almost all screen mirroring apps 
use this method to capture the screen content.

Remote Control The Android mirroring feature often 
provides the ability to remotely control the phone from 
PC, and it is mainly implemented in the following two 
ways:

• Using Java reflection to access the non-SDK 
APIs  (Yang et  al. 2022) and execute remote control 
commands issued from the PC side, such as simu-
lating clicks which require methods provided by the 
InputManager class. Implementing remote con-
trol through non-SDK APIs requires higher privileges 
and is only applicable in the following two scenarios: 
(1) using adb (Androd Debug Bridge) connection, 
and (2) the screen mirroring apps are system apps.

• Accessibility service is a special feature designed 
to assist users with disabilities or those temporar-
ily unable to fully interact with their devices (Create 
Your Own Accessibility Service 2024). If users enable 
accessibility permission for screen mirroring apps, 

they can perform actions on behalf of users using 
accessibility service APIs.

Classification and workflow of screen mirroring
We categorize the existing implementations of the 
Android mirroring feature into the following four archi-
tectures (C1 to C4, short for Category 1 to Category 4) 
based on their availability on mobile and PC sides, as well 
as their connection methods. In addition, some screen 
mirroring apps may support one or more of the following 
architectures.

C1: Single-side HTTP Scheme The screen mirroring app 
is only available on the mobile side. It generates an HTTP 
URL on the smartphone via the screen mirroring app. 
Users can access this URL through the browser on the PC 
within the same LAN to view the phone’s screen content.

When users launch the screen mirroring app on their 
smartphones, the embedded server within the app will 
start. Upon granting permission to read the screen con-
tent, the app will generate an HTTP URL for users to 
access. By entering this URL in the PC browser, users 
can view the phone’s current screen content. Depending 
on the screen mirroring app, users may need to enter a 
PIN code or password during the URL access. If authen-
tication succeeds, the connection proceeds. Otherwise, it 
will be terminated. Once these steps are completed, the 
screen mirroring app on the smartphone transmits the 
screen content to the PC browser, allowing user to view 
the screen on the PC.

C2: Single-side USB Scheme The screen mirroring app 
is only available for the PC side. Users need to connect 
the smartphone to the PC using a USB data cable and 
enable the USB debugging option on the smartphone. 
Afterward, users can view the phone’s screen content 
through the screen mirroring app on the PC.

Screen mirroring apps using the Single-side USB 
Scheme are typically built based on the  Scrcpy (Scrcpy 
2024; Scrcpy - Best Android Screen Mirroring App 
2024). When the PC side of the screen mirroring app is 
launched, it will push scrcpy-server.jar to the 
smartphone and execute it through adb commands. The 
scrcpy-server.jar provides functions such as cap-
turing the smartphone’s screen content and injecting 
touch events. It creates a UNIX abstract socket based on 
the command-line arguments and communicates with 
the PC app through TCP connections.

C3: Dual-side LAN Scheme For these screen mirroring 
apps, users have to install both the mobile and PC ver-
sions, and ensure they are connected to the same LAN. 
After launching both of them, the apps will automatically 
discover each other. After confirmation, the screen con-
tent can be mirrored to the PC.



Page 4 of 16Qiu et al. Cybersecurity _#####################_

The workflow of such screen mirroring apps is as 
follows:

• Device Discovery. The primary purpose of device 
discovery is to obtain the device name of the smart-
phone/PC and the port number for subsequent com-
munications. Screen mirroring apps primarily use 
the following two methods for device discovery: 

(1) mDNS broadcasting. The mobile app or PC app 
sends a broadcast message from source port 
5353 to destination port 5353, with the des-
tination address 224.0.0.251 or ff02::fb. This 
message contains a string formatted as Devi-
ceName._ServiceType._Protocol.
local. The DeviceName field represents the 
device’s name, the ServiceType field rep-
resents the service type name, which is used 
by apps to identify each other, and the Pro-
tocol field is usually set to tcp. When the 
screen mirroring app in the LAN receives the 
broadcasting message, it will send a response 
message containing the service port number if 
it provides the matching service. Subsequent 
communication will take place on this port.

(2) UDP broadcasting. The mobile app sends a 
broadcast with a fixed destination UDP port in 
the LAN, with the destination address being 
either local broadcast 255.255.255.255 or 
directed broadcast (e.g., 192.168.1.255). After 
receiving the broadcast, the PC side replies 
with a UDP message containing the device 
name. The reverse process also applies.

• Connection Confirmation. Once the device discov-
ery phase is completed, the user can select the device 
and send a connection request from either the smart-
phone or PC, and the other one needs to confirm the 
connection. In addition, the user needs to grant per-
mission to capture the screen on the smartphone. If 
authorization is successful, the mobile app will pre-
pare to capture the screen content.

• Connection Establishment. The protocols used dur-
ing the connection establishment phase may vary 
depending on whether the mobile app or the PC app 
serves as the server. 

(1) Mobile app as the server. This typically involves 
communication via the WebSocket proto-
col. During the device discovery phase, the PC 
app obtains the WebSocket address and port 
of the mobile app and it can access the cor-

responding URL to retrieve screen and audio 
data.

(2) PC app as the server. The PC app can also serve 
as one server. The ports of the PC app used 
for transmitting video and audio can be either 
fixed or dynamically assigned. If the ports are 
dynamically assigned, the mobile and PC app 
typically use the TCP protocol for data trans-
mission. Otherwise, if the ports are fixed, the 
mobile and PC app will transmit data using 
either TCP protocol or WebSocket protocol.

C4: Dual-side Internet Scheme This scheme also needs 
a mobile app as well as a PC app, but they only need 
to be connected to the internet. After launching the 
apps, a connection request can be initiated from either 
the mobile or the PC side. Once the user confirms, the 
phone’s screen content can be mirrored to the PC. Screen 
mirroring apps based on this scheme typically involve 
communication between the smartphone, the PC, and 
the software vendor’s server. In addition, these apps usu-
ally offer remote control functionality.

To get started, the user must connect both the mobile 
and the PC app to the internet and log in to the same 
account. Once logged in, the app will query and display 
the current account’s online devices. Then, the user can 
select the mobile device on the PC and send a request to 
the server, which forwards the request to the target. After 
the user confirms on the mobile device, a connection is 
established. Upon confirmation, the mobile device will 
transmit its screen and audio data to the PC through the 
server. For remote control features, control commands 
from the PC are also transmitted to the mobile device 
through the server. All communication processes use 
encrypted channels, ensuring secure data transmission.

Threat model
In this study, we assume that the attacker and the target 
device are on the same LAN. Unlike traditional threat 
models in LAN security research (Alrawi et al. 2019), this 
study not only considers attackers with strong capabili-
ties, such as independent network devices on the same 
LAN, but also focuses on less capable attackers, such as 
Android or PC malware with only network access per-
missions. Depending on the actual attack scenarios, this 
study categorizes adversaries with different capabilities 
into the following types:

• Android Malware For malware installed on user’s 
Android smartphone, it only needs network access 
permissions without declaring other sensitive per-
missions. Some existing security research has 



Page 5 of 16Qiu et al. Cybersecurity _#####################_ 

adopted similar assumptions (Alrawi et al. 2019; Lee 
et al. 2017). Without additional permissions, the mal-
ware cannot directly steal the user’s screen content or 
control the user’s smartphone. Furthermore, due to 
the sandbox mechanism of the Android OS, the mal-
ware also cannot access screen mirroring apps’ data.

• PC Malware Similarly, malware installed on user’s PC 
only needs network access capability. In real attack 
scenarios, we do not consider stealing data from 
specific PC screen mirroring app because it usually 
doesn’t store user’s private data. Instead, we consider 
exploiting vulnerabilities in mobile apps to launch 
attacks.

• Network Device For the network device, the attacker 
can not only send network requests but also sniff 
traffic on the same LAN. This means the attacker 
can obtain the Wi-Fi access point password or com-
promise the related authentication mechanisms. In 
this scenario, the attacker’s capabilities are relatively 
strong.

Flaws and attacks of screen mirroring
Security risks We collect popular Android screen mir-
roring apps from multiple sources and categorize them 
based on their features to systematically analyze the secu-
rity of the Android mirror app feature. The most exposed 
aspect of the screen mirroring feature is the screen con-
tent of users’ smartphone, which may include sensitive 
data such as accounts, passwords, and verification codes. 
In addition, some apps allow PC to control the smart-
phone remotely, which is also vulnerable. If attackers 
can perform actions on behalf of users, they could install 
malicious apps, grant permissions, and transfer funds to 
target accounts. Both of these security risks pose signifi-
cant threats to users.

Security Guarantees The interaction of screen mir-
roring apps between smartphone and PC is very impor-
tant, and the establishment of a secure channel requires 
several key mechanisms, such as authentication, data 
encryption, and the constraints and checks of connec-
tion channel. The lack of such mechanisms during chan-
nel establishment will lead to the security risks listed in 
Table 1.

• Authentication. Two communicating entities must 
securely and efficiently authenticate each other 
before exchanging data. However, most mirror apps 
either do not have authentication mechanisms or lack 
robust authentication mechanisms. Weak or missing 
authentication can lead to SR1, SR2, and SR3.

• Data Encryption. Once both communicating entities 
have been authenticated, the subsequent communi-
cation data should be encrypted before transmission. 
The lack of encryption measures could result in SR4.

• Constraints and Checks of Connection Channel. The 
typical design of a screen mirroring app is to mir-
ror the screen of a smartphone onto a computer. If 
screen mirroring apps support one-to-many commu-
nication, they must ensure that users can sense and 
cancel connections. In this study, we found that some 
screen mirroring apps allow one smartphone to con-
nect to multiple PCs without verifying the identity of 
connected devices. This provides an attack vector for 
attackers to steal screen content or remotely inject 
commands to maliciously operate the device. Lack of 
constraints and checks of connection channels could 
result in SR1 and SR3.

Workflow To identify security risks in the commu-
nication process of the Android mirroring feature, we 
primarily followed the steps outlined below, as shown 
in Fig. 2.

• Application Collection. Firstly, we try to collect screen 
mirroring apps from Github, Google Play and third-
party markets (Vivo, Xiaomi, and APKPure), due 
to the limited number of screen mirroring apps and 
significant overlap among different sources, we finally 
selected 21 of the most widely used screen mirroring 
apps for our analysis. We need to specifically analyze 
the functions that implement the screen mirroring 
functionality within the apps to reconstruct the com-
munication process, but these functions are hidden 
in packed apps. Therefore, we excluded the majority 
of packed apps to facilitate the subsequent security 
analysis.

Table 1 Security risks of screen mirroring

No. Security Risk Possible Threats and Consequences

SR1 Arbitrary access to screen content Screen content leakage

SR2 MITM attack for screen content theft Screen content leakage

SR3 Malicious commands injection attack Attacker operates user’s smartphone maliciously

SR4 Data sniffing attack Screen content leakage, authentication bypassed



Page 6 of 16Qiu et al. Cybersecurity _#####################_

• Multi-dimension Analysis. To identify security risks 
in screen mirroring apps, we conducted a multi-
dimensional security analysis using both static and 
dynamic methods. 

(1) Key Functions Analysis. After obtaining the 
mobile screen mirroring apps, we first used 
JADX  (JADX 2024) for static analysis. Due to 
the variety of screen mirroring schemes and 
different implementation of software vendors, 
we analyzed the decompiled code manually. 
We used clues such as keywords on the app’s 
UI, the use of key resource files, and network 
related APIs to locate the communication logic 
of the app. Then, we extracted the connection 
establishment functions, payload construc-
tion functions, and data transmission func-
tions as the key functions for further analysis. 
We focused on these functions to obtain details 
such as the format of the data transmission in 
the communication process, the meaning of 
different packets, and details of the communi-
cation process.

(2) Key Information Extraction. To obtain more 
details about the communication process, we 
used Frida (Frida 2024) to hook the extracted 
key functions to obtain the runtime parameters 
of these functions and the complete details of 
the data transmission in the communication 
process. This step can facilitate the subsequent 
communication simulation at the automated 
attack verification phase. In addition, we use 
traffic analysis tools (Wireshark  (Wireshark 
2024) for PC, Tcpdump  (TCPDUMP & LIB-
PCAP 2024) and Mitmproxy  (mitmproxy 
2024) for Android OS) to assist in construct-
ing the communication process. The previously 
mentioned approaches focused on mobile apps, 
and we used traffic information to analyze PC 
apps and record their requests or replies, which 

provides references for subsequent exploit 
script construction. Another purpose for traf-
fic analysis is to obtain the IP address and TCP/
UDP port numbers during the communication 
process. Combining the key functions analy-
sis and traffic analysis, we can also get more 
information on software vendors’ customized 
implementation, e.g., whether the port number 
of the video channel is hard-coded or transmit-
ted in communication. During the key informa-
tion extraction phase, due to the different UI 
implementations of mobile apps, we manually 
triggered the relevant functionalities before 
analyzing them.

• Automated Verification. Based on the previous analy-
sis results, we obtained the entire workflow and data 
transmission details during the communication. We 
reconstructed the communication process using 
this knowledge, and carefully analyzed whether the 
screen mirroring apps adopt complete authentica-
tion mechanisms and data protection measures. 
For mobile apps that lack protection and checking 
mechanisms during the communication process, we 
constructed exploit scripts to simulate the complete 
communication and try to intercept the screen con-
tent data or inject malicious control commands. We 
used these scripts to automate the verification of 
security risks in screen mirroring apps.

SR1: arbitrary access to screen content
Some screen mirroring apps provide the functionality to 
mirror the screen of one smartphone to multiple PCs. 
However, such apps often lack authentication for the con-
necting parties and do not impose constraints or checks 
on the number of connections. This means that any con-
nection requests will be accepted, and users cannot sense 
the established connections. Moreover, users cannot 

Fig. 2 Workflow of security analysis



Page 7 of 16Qiu et al. Cybersecurity _#####################_ 

cancel potential malicious connections, easily leading to 
screen content leakage.

Attacker’s Capabilities In this scenario, attackers only 
need to have network access to the LAN, such as Android 
Malware, or PC Malware.

Most screen mirroring apps based on the Single-side 
HTTP Scheme architecture allow one smartphone to 
connect with multiple PCs. As we mentioned in Sec-
tion  "Classification and workflow of screen mirror-
ing", this scheme regards the mobile app as server, and 
other devices can access it via the URL like http://
{ip}:{port}. However, since the IP of user’s smart-
phone is fixed, and most apps use the default port 8080, 
so the attacker can easily obtain the IP and port of the 
screen mirroring apps in the LAN. Even if the screen 
mirroring apps use a custom port, attackers can deter-
mine the correct port number by enumerating all ports. 

Therefore, attackers can directly access the target URL to 
get the current screen content of user’s smartphone. As 
shown in Fig. 3, attackers can obtain the screen content of 
two mobile phones in the LAN. When other PCs access 
the target URL, the established connection remains unin-
terrupted. This allows attackers to silently capture the 
screen content of the user’s smartphone without affecting 
its normal usage.

Some screen mirroring apps using the Single-side 
HTTP Scheme, like ScreenStream  (ScreenStream 
2024), update the number of connected clients in real-
time. However, the information about connected num-
ber can only be viewed on the main interface of the 
screen mirroring apps, which users typically do not 
notice. Additionally, some apps display a toast notifica-
tion upon successful client connection but do not show 
the device name or the number of connected devices. 

Fig. 3 Arbitrary access to screen content



Page 8 of 16Qiu et al. Cybersecurity _#####################_

Furthermore, some apps generate a QR code on the PC 
browser or display a URL on the mobile app in the for-
mat of https://{AppDomain}/{RandomStr}, 
which ultimately redirects to http://{ip}:{port}. 
This encoding method does not effectively mitigate the 
vulnerability.

SR2: MITM attack for screen content theft
Authentication is essential for ensuring that communica-
tion entities are genuine and trustworthy, and protect the 
screen content from being accessed by disguised attack-
ers. However, we found that most software vendors using 
Dual-side LAN Scheme and Single-side USB Scheme 
have not implemented mutual authentication between 
the mobile and PC sides. This means that attackers can 
impersonate a legitimate PC to communicate with the 
smartphone, further intercept the phone’s screen content 
transmission, and forward the data to the benign PC app, 
namely MITM attack.

Attacker’s Capabilities For screen mirroring apps 
using Dual-side LAN Scheme, attackers can be either 
Android malware or PC malware. However, for those 

using Single-side USB Scheme, attackers can only be PC 
malware, since the wired connection uses the adb com-
mand for communication and the mobile app uses rand-
omized sockets, making it difficult for Android malware 
to attack.

Attack against Dual-side LAN Scheme During the 
device discovery phase of such apps, attackers can send 
broadcast or response messages to the mobile phones 
within the same LAN. Depending on specific device dis-
covery protocol, attackers can choose different attack 
methods. For the mDNS protocol, attackers can obtain the 
DeviceName._ServiceType._Protocol.local 
string broadcast from the mobile app and extract the 
ServiceType field to construct a forged broadcast. For 
the UDP protocol, since the ports on both sides are fixed, 
attackers can directly send response messages.

In the connection confirmation phase, the user selects 
the target PC listed by the mobile app and grants permis-
sion. The attacker only needs to wait for user’s confirma-
tion. After the connection is established, the malware needs 
to send specific requests to obtain the screen content. Once 
the connection is established, the malware can access the 

Fig. 4 Malware is identified as legitimate app



Page 9 of 16Qiu et al. Cybersecurity _#####################_ 

phone’s screen content and forward the data to the benign 
PC app. The user can use the functions normally, but the 
screen content will be completely leaked. Through the 
methods mentioned above, almost all mobile apps will rec-
ognize the fake PC as legitimate PC, as shown in Fig. 4.

Attack against Single-side USB Scheme As we men-
tioned in Section "Classification and workflow of screen 
mirroring", the communication of these screen mir-
roring apps is established between the PC app and the 
scrcpy-server. However, attackers can intercept the 
communication to obtain the screen content. The opti-
mal time for the attack is when scrcpy-server has 
been pushed to the smartphone and executed, but the 
PC app has not yet established the connections with it. 
Within this vulnerability window, PC malware can estab-
lish TCP connections with scrcpy-server, and once 
the connections are established, the attacker can access 
the screen content.

The core idea of this attack is to repeatedly attempt 
and make the PC malware establish connections with 
scrcpy-server before the benign PC app. Once the 
connections are established, the PC malware will forward 
the received data to the benign PC app, allowing the user 
to continue using the screen mirroring function. How-
ever, attackers can access the screen content in real-time, 
ultimately leading to screen content leakage.

SR3: malicious commands injection attack
For screen mirroring apps that provide remote control 
features, some of these apps lack sufficient authentication 
mechanisms as well as constraints and checks on the con-
nection channels. The mobile side of the apps does not 
verify the identity of the requesting parties and directly 
execute remote commands issued by them. In addition, 
some apps allow connections with multiple PCs.

Attacker’s Capabilities For apps using Dual-side LAN 
Scheme, the attacker only needs network access to the 
LAN, such as Android malware or PC malware. For apps 
using Single-side USB Scheme, the attacker can only be 
PC malware, which is the same as we assumed in Sec-
tion "SR2: MITM attack for screen content theft".

Screen mirroring apps built on Single-side USB Scheme 
use plaintext transmission for remote control commands. 
Additionally, these apps do not verify the identity of the con-
nected PC, posing a risk of MITM attacks. Therefore, when 
scrcpy-server connects to the PC malware, attackers 
can send commands to manipulate the user’s smartphone.

For some system apps using the Dual-side LAN 
Scheme, the mobile and PC apps communicate via 
IP addresses and fixed port. However, these mobile 
apps allow connections from multiple PCs and pro-
cess commands from them. Some of the commands are 
constructed in JSON format, and malware can easily 

construct and send malicious remote commands to con-
trol user’s smartphone.

For apps using the Dual-side Internet Scheme, more 
comprehensive authentication mechanisms and encryp-
tion measures are usually implemented. We did not find 
related security risks.

SR4: data sniffing attack
Except for screen mirroring apps using Dual-side Inter-
net Scheme, other schemes rarely use encryption to pro-
tect communication data. They usually transmit data in 
plaintext, including encoded byte streams of screen con-
tent and credentials related to authentication.

Attacker’s Capabilities Attackers are network devices 
within the LAN, possessing strong capabilities. They can 
not only access the LAN but also sniff and analyze the 
traffic within the LAN.

Sniffing and Decoding Screen Content Data Since com-
munication data is transmitted in plaintext, attackers 
can easily obtain relevant data from the network traf-
fic. Although the data is usually encoded, such as video 
streams encoded using H.264  (Advanced Video Cod-
ing 2024) or H.265 (High Efficiency Video Coding 2024) 
algorithm, these decoding algorithms are publicly avail-
able. Attackers can decode the data and ultimately obtain 
the smartphone’s screen content.

Bypassing Authentication Mechanisms Some screen 
mirroring apps using Single-side HTTP Scheme have 
added authentication mechanisms that require users 
to enter a PIN code for verification. If the verification 
is successful, users are redirected to a URL with a ran-
dom string parameter. However, they still use plaintext 
for communication, allowing attackers to obtain the final 
URL from the network traffic, therefore they can bypass 
the authentication mechanism and ultimately gain access 
to the screen content.

Practical attack cases
This section will detail a few cases of practical attacks 
against the Android screen mirroring feature.

Case study 1: PC device forgery and screen content 
stealing attack
Screen mirroring apps based on the Dual-side LAN 
Scheme typically do not authenticate the identity of the 
PC. Therefore, attackers can create a fake PC app and 
trick the user to connect with it, thereby conducting a 
MITM attack to steal the user’s screen content.

Attack Setup We selected JinZhou app1 as the tar-
get of this attack. Assume the attacker is a PC malware 

1 package name: com.jx.jzscreenx



Page 10 of 16Qiu et al. Cybersecurity _#####################_

installed on the victim’s PC with network access, running 
in the background. This PC malware is built using the 
Zeroconf (Zeroconf 2024) framework.

Attack Process The main process of this attack is shown 
in Figure  5. When the user launches the JinZhou app 
on both the mobile and PC to mirror the screen content, 
the PC malware will detect the related broadcast. PC 
malware can forge the broadcast to make it appear in the 
device list on the mobile app. The mobile side of Jin-
Zhou app will use the broadcasted port for subsequent 
communication, so we set the broadcasted port to a fixed 
value of 1234. We set the forged hostname to FORGED-
PC, but in practice, a more deceptive hostname, such as 
the real device name, can be used to trick the user into 
connecting.

After the mobile app connects to the PC malware, the 
PC malware will also establish a connection with the 
benign PC app using the IP address and port number 
from the broadcast. Once both connections are estab-
lished, the PC malware will transfer the relevant data to 
the benign PC app to ensure normal usage for the user. In 
addition, the PC malware can also steal sensitive screen 
data for subsequent attack, such as verification codes and 
passwords.

Impact Such security vulnerabilities have been con-
firmed by CNVD, and four IDs have been assigned: 
CNVD-2024–25211 (rated as medium severity), 
CNVD-2024–25640 (rated as medium severity), CNVD-
2024–26729 (rated as medium severity), and CNVD-
2024–25639 (rated as low severity).

Case study 2: command injection attack
Some screen mirroring apps that support wireless con-
nections and PC remote control features lack authen-
tication mechanisms and checks on the number of 
connections. Some apps allow a single phone to connect 
with multiple PCs, enabling attackers to exploit this vul-
nerability to arbitrarily control the user’s phone.

Attack Setup We selected the Easyshare app2 as the 
target of this attack. This app is based on the Dual-side 
LAN Scheme and has over 500 million downloads on 
Google Play. It also allows users to control their phones 
from PCs, including mouse clicks and keyboard inputs. 
We assume that the attacker is PC malware installed on 
the victim’s PC, which only has network access permis-
sion and runs in the background.

Fig. 5 PC device forgery and screen content stealing attack

2 Package name: com.vivo.easyshare



Page 11 of 16Qiu et al. Cybersecurity _#####################_ 

Attack Process The main process of this attack is shown 
in Figure 6. The Easyshare app uses the mobile app as 
the server and receives connection requests from the PC 
side via the WebSocket protocol, with the server using a 
fixed port number 10178. Due to the lack of authentication 
mechanisms and restrictions on the number of connected 
PCs, once the user launches the Easyshare app on the 
smartphone, both the PC malware and the benign PC app 
can establish connections with the mobile app. After the 
PC malware establishes connections with the mobile app, 
it can send remote commands to the mobile app, such as 
clicks and text inputs. These commands are typically trans-
mitted in JSON format, allowing the attacker to easily con-
struct malicious commands to make the victim’s phone 
perform dangerous actions or retrieve sensitive data.

Impact Such security vulnerability has been confirmed 
by vivoSRC, rated as high severity.

Case study 3: race condition attack
Scrcpy-based apps usually adopt the Single-side USB 
Scheme, typically featuring screen mirroring and PC 
remote control capabilities. However, these apps lack 
authentication measures, resulting in a race condition 
vulnerability. Attackers can masquerade as a PC app and 
exploit the race condition to establish connections with 

the scrcpy-server, thereby intercepting screen con-
tent or injecting malicious control commands.

Attack Setup We have chosen the Scrcpy app (Scrcpy 
2024; Scrcpy - Best Android Screen Mirroring App 2024) 
as the target of this attack, which is only available on the 
PC side. The attacker is the PC malware, which does not 
need access to the LAN.

Attack Process The main process of this attack is shown 
in Figure  7. The PC malware runs in the background 
and listens on port 27183, which is the default port for 
Scrcpy app. Additionally, the Scrcpy app also listens on 
this port after launching. Therefore, the PC malware needs 
to enable the port reuse option for the sockets. Moreover, 
launching the PC malware first and Scrcpy app afterward 
will significantly increase the success rate of this attack.

When the user connects the smartphone to the PC via 
a USB cable at a certain moment and launches Scrcpy 
app, the Scrcpy app pushes scrcpy-server to the 
phone and executes it. Afterward, scrcpy-server 
attempts to establish connections with the Scrcpy app. 
At this point, besides the Scrcpy app, the PC malware 
is also listening on port 27183. Due to the race condition 
and the lack of necessary authentication mechanisms, the 
connection request from scrcpy-server is likely to be 
accepted by the PC malware. Once the connections are 

Fig. 6 Command injection attack



Page 12 of 16Qiu et al. Cybersecurity _#####################_

established, the PC malware will also establish connec-
tions with the Scrcpy app, intercepting and forwarding 
the communication data between scrcpy-server and 
the Scrcpy app. The user can use the app as usual, but 
the PC malware obtains the data transmitted during the 
communication, including the screen content and con-
trol commands. In addition, the PC malware can also 
inject remote control commands, allowing the attacker to 
manipulate the victim’s phone arbitrarily.

Impact The vulnerability about race condition attack to 
obtain screen content has been confirmed by CNVD and 
CNVD-2024–25676 (rated as low severity) has been 
assigned.

Case study 4: data sniffing attack
Screen mirroring apps built on Single-side HTTP 
Scheme, Single-side USB Scheme, and Dual-side LAN 
Scheme do not encrypt communication data, which 
could lead to data sniffing attacks.

Attack Setup We selected the LetsView app3 as the 
target of this attack, which is based on the Dual-side LAN 
Scheme and has over 1 million downloads on Google 

Play. The attacker is one network device connected to the 
LAN, and we assume it to be an independent PC.

Attack Process The attacker’s goal is to obtain the 
screen content data of the smartphone from network 
traffic, and there are various ways to achieve this, such 
as implementing ARP spoofing (Moon et al. 2016) to for-
ward the smartphone’s traffic. When the user launches 
the LetsView app to mirror the screen content to a PC, 
the attacker can sniff the network traffic related to the 
screen content on the LAN. The LetsView app uses 
the H.264 algorithm to encode video streams, and the 
attacker can decode the video streams to obtain some 
sensitive data, such as passwords and verification codes.

Results and discussion
In this section, we will describe the security analysis 
results of this work, and discuss about some mitigation 
measures as well as the limitations of this study.

Measurement in the Wild
We categorized the collected 21 mainstream screen 
mirroring apps according to the architectures men-
tioned in Section "Classification and workflow of 
screen mirroring" and conducted in-depth research 
about the security risks. As shown in Table 2, all screen 

Fig. 7 Race condition attack

3 package name: com.apowersoft.letsview



Page 13 of 16Qiu et al. Cybersecurity _#####################_ 

mirroring apps have at least one security risk. SR2 and 
SR3 are relatively common in popular screen mirror-
ing apps, particularly SR2, where 71.43% of the apps 
are vulnerable to MITM attacks. Additionally, 83.33% 
of screen mirroring apps built on the Single-side HTTP 
Scheme suffer from SR1. An attacker can exploit spe-
cific security risks to access the screen content of 
users’ smartphone or control them. In addition, some 
of these apps use packer protection techniques to hide 
the source code. For those apps with packers, we only 
performed dynamic analysis, which involves examining 
user interactions at startup, monitoring device resource 
consumption and network traffic during execution, etc. 
Through this analysis, we uncovered their security risks 
based on the identified results.

Accuracy We combined static code analysis with mul-
tiple rounds of dynamic analysis. Then, we captured 
relevant communication traffic repeatedly to perform 
cross-verification, so the communication process anal-
ysis yielded results with essentially no false positives. 
However, due to the complexity of code implementa-
tion and the diversity of communication under specific 

conditions, the process may result in some false nega-
tives. For our security analysis, the impact of these false 
negatives is negligible.

Mitigation measures
To mitigate the identified security risks, we propose the 
following recommendations for software vendors and 
users, respectively.

Recommendations for software vendors
Robust Authentication Mechanisms Software vendors 
need to adopt robust authentication mechanisms and 
ensure that these mechanisms cannot be circumvented.

• For screen mirroring apps built on the Single-side 
HTTP Scheme and Dual-side LAN Scheme, com-
municating entities need reliable credentials to 
identify each other. For example, a QR code con-
taining a random token can be displayed on the PC 
app, and if the mobile app wants to establish con-
nections with the PC app, it needs to scan this QR 

Table 2 Security analysis results of screen mirroring apps

§ : For screen mirroring apps that have the mobile side, we use the package name as the App ID. For apps that only have the PC side, we use the app name as the App 
ID.

‡ : The popularity of each screen mirroring app, including downloads in mobile app stores, stars in GitHub, and rating in Microsoft Store.

∗ : The mobile side app is packed

App ID§ Architecture SR1 SR2 SR3 SR4 Popularity‡

info.dvkr.screenstream C1 � ✗ ✗ � 5M+

com.livescreenapp.free C1 � ✗ ✗ ✗ 500K+

com.screenmirrorapp C1 � ✗ ✗ ✗ 10M+

com.nero.swiftlink.mirror C1, C3 � ✗ ✗ ✗ 1M+

com.koushikdutta.vysor C1, C2 ✗ � � � 5M+

com.wujie.connect C4 � ✗ ✗ ✗ 750K+

com.vivo.easyshare C3 ✗ � � � 500M+

com.tensorshare.phonemirror C2 ✗ � � ✗ 50K+

com.apowersoft.letsview C2, C3 ✗ � � � 1M+

com.jx.jzscreenx C2, C3 ✗ � � � 1M+

com.sigma_rt.projector_source C3 ✗ � ✗ � 5K+

cn.i4.mobile* C2, C3 ✗ � ✗ � 200K+

com.apowersoft.mirror C2, C3 ✗ � � � 10M+

com.screencast C1 � ✗ ✗ ✗ 1M+

com.easywork.easycast C3 ✗ � ✗ � 500K+

com.imyfone.mirrorto C2 ✗ � � ✗ 100K+

cn.ieway.evmirror* C2, C3 ✗ � � � 200K+

Scrcpy C2 ✗ � � � 103K+ Stars

AnLink C2 ✗ � � ✗ rating: 4.8/5.0

Scrcpy GUI C2 ✗ � � � 3.4K+ Stars

QtScrcpy C2 ✗ � � � 17.2K+ Stars



Page 14 of 16Qiu et al. Cybersecurity _#####################_

code to obtain the token, with subsequent connec-
tions and communications requiring this token.

• For screen mirroring apps built on the Single-side 
USB Scheme, the PC app can generate a random 
string before startup and pass it to scrcpy-
server via argument before launching. When 
establishing the connection, both of them need to 
validate the string first, rather than establish the 
connection immediately.

Adopting robust authentication mechanisms will effec-
tively mitigate SR1, SR2, and SR3, particularly the race 
condition risk in apps like Scrcpy.

Data Encryption Authentication and data encryption 
mechanisms are inseparable. Using only authentication 
mechanisms without data encryption mechanisms can 
easily lead to authentication being bypassed. For screen 
mirroring apps using the Single-side HTTP Scheme, they 
can change to use the HTTPS protocol for secure data 
transmission. For screen mirroring apps using the Dual-
side LAN Scheme and Single-side USB Scheme, sensitive 
data should be encrypted during communication. Data 
encryption can effectively mitigate the threat of SR4.

Constraining and Checking of Connection Channels 
Screen mirroring apps are typically used to mirror a 
smartphone’s screen onto one PC. If the app supports 
connecting one smartphone to multiple PCs, users 
should be prompted with the current host name and the 
number of connected devices when connecting to a new 
PC. In addition, screen mirroring apps should provide an 
interface for managing all connected devices. If the app 
is designed for one-to-one connection, the connection 
channels need to be restricted and verified to ensure that 
multiple video or control connections are not allowed. 
These restrictions and verifications will further mitigate 
SR1 and SR3.

Defense in Depth If the screen mirroring apps support 
controlling the smartphone from the PC, it is better to 
prompt explicit authorization before executing remote 
commands. For example, when the smartphone executes 
one remote command for the first time, the user should 
be explicitly asked for consent, and the remote command 
should only be executed after authorization. Once an 
unusual connection is detected, such as a large number 
of connection attempts, all connections should be imme-
diately disconnected to protect the user’s privacy and 
security.

Recommendations for users
From the user’s perspective, they can take the following 
recommendations to mitigate the security risks associ-
ated with screen mirroring apps:

• Potential attackers on the same LAN may exploit 
vulnerabilities in screen mirroring apps to steal 
the phone’s screen content or send malicious con-
trol commands to the phone arbitrarily. Therefore, 
users should avoid using screen mirroring apps on 
untrusted LANs.

• When users use screen mirroring apps based on the 
Dual-side LAN Scheme, they need to carefully check 
the information of the selected target device (such as 
device name) to avoid establishing connections with 
unknown devices.

• When the screen mirroring feature is no longer 
needed, the user should promptly close the estab-
lished connections to reduce the potential attack sur-
face.

Limitations
Challenges of Automated Analysis Due to the diverse 
implementation approaches of the Android screen mir-
roring feature, automated analysis poses challenges. 
This diversity limits the efficiency of our current analy-
sis. Future work could involve designing specialized 
automated analysis solutions tailored to specific imple-
mentations, allowing for more efficient and accurate 
identification of security risks.

Limited Analysis Scope This study mainly focuses on 
the security risks of screen content leakage and malicious 
control of smartphones. Since the PC apps are primar-
ily responsible for rendering and sending user’s control 
commands, the security risks posed by them are rela-
tively low. Therefore, this study do not perform security 
analysis on PC apps. Besides, some screen mirroring 
apps provide the functionality to mirror PC screen con-
tent to smartphones. This functionality deviates from the 
main topic of this research, so it has been left as a task for 
future studies.

Related work
Screen Casting Security There are several studies that 
focus on the security of user’s screen content and the 
security of control functionality. Tian et  al. (2022) con-
ducted a detailed security analysis of the DLNA screen 
casting protocol used in smart TVs and discovered 
several security vulnerabilities, including inadequate 
protection measures and insufficient authentication 
mechanisms. Zhang et al. (2023) proposed the EvilScreen 
attack to bypass deployed authentication and isolation 
policies of smart TVs, and attackers can access or con-
trol smart TV resources remotely. Tekeoglu and Tosun 
(2015) conducted a study on the security of Chromecast 
screen casting and found possible security issues in its 
communication process. Tian et al. (2014) found security 



Page 15 of 16Qiu et al. Cybersecurity _#####################_ 

implications in the screen sharing API of HTML5, and 
attackers can capture sensitive information from the 
user’s screen without consensus.

The remote control feature is offered by certain screen 
casting apps, enabling the controlled app to project the 
phone’s screen content to the controller app and allowing 
the controller to operate the phone remotely. To the best 
of our knowledge, few studies have specifically examined 
the security of this feature. Feal et al. (2020) analyzed data 
privacy and sharing security in Android parental control 
apps, identifying significant non-compliant private data 
sharing practices and widespread use of dangerous per-
missions. Wang et al. (2024) investigated the security of 
Android remote assistance apps, focusing on the insecure 
use of communication protocols and permission usage.

Unlike these studies, our research systematically ana-
lyzes the security risks associated with the custom imple-
mentation and deployment of Android screen mirroring 
functionality.

Android Customization The security issues introduced 
by Android customization have been widely investi-
gated in numerous studies. Li et  al. (2021) analyzed the 
security of Android custom permissions and designed 
CuperFuzzer to automatically detect related vulnerabili-
ties. Yang et al. (2022) conducted a large-scale measure-
ment to understand non-SDK APIs used in Android apps 
and their malicious usage. Zheng et  al. (2014) designed 
DroidRay to detect malware that may be preinstalled in 
the firmware. Wu et al. (2013) investigated the problem 
of preinstalled apps with elevated privileges and privacy 
leakage. Gamba et  al. (2020) conducted a large-scale 
security analysis of preinstalled apps on Android devices. 
Elsabagh et al. (2020) analyzed privilege elevation vulner-
abilities in preinstalled apps on Android devices. In this 
study, we explored the security of customized screen 
mirroring apps.

Communication Security of Smart Devices Research on 
the security of smart devices and their communications 
is a popular topic. Fernandes et al. (2016) conducted an 
in-depth empirical security analysis and found overprivi-
leged issues of SmartApps as well as no sufficient protec-
tion measures for sensitive information transmitted in 
the communication. Cui et al. (2013) found attackers may 
inject firmware modifications to the smart device while 
it is updated. Zhang et  al. (2018) designed HoMonit to 
validate the working logic of SmartApps and detect their 
misbehaviors from encrypted wireless traffic. Wang et al. 
(2019) conducted a large-scale security analysis of smart 
devices from their companion apps. Recently, Nan et al. 
(2023) conducted a large-scale analysis of SmartApps 
and found lots of smart devices expose user data without 
proper disclosure.

Conclusion
In this paper, we systematically analyzed the architectural 
design of the Android mirroring feature and identified 
the security risks they face in real-world deployments. 
This study focuses on the communication and interaction 
process between the mobile and PC sides of screen mir-
roring apps, identifying four potential security risks. For 
these security risks, we proposed specific attack meth-
ods and demonstrated actual attack results in practical 
attack cases. Besides, we investigated and analyzed over 
20 popular screen mirroring apps, and the results showed 
that almost all screen mirroring apps have security risks. 
Finally, corresponding mitigation measures were pro-
posed for these identified security risks.

Acknowledgements
We would like to thank the anonymous reviewers for their detailed comments 
and useful feedback.

Author contributions
ZQ: Conducted the experiments and wrote the manuscript. SY: Supervised the 
experimental work and revised the manuscript. YY: Performed data analysis. 
YL: Assisted in conducting experiments. WD: Conceived the idea and led the 
overall project.

Funding
This work was supported by Taishan Young Scholar Program of Shandong 
Province, China (Grant No. tsqn202211001) and Shandong Provincial Natural 
Science Foundation (Grant No. ZR2023MF043).

Data availability
Not applicable.

Declarations

Competing interests
The authors declared that they have no conflict of interest.

Received: 3 August 2024   Accepted: 8 January 2025

References
Advanced Video Coding. 2024. https:// www. itu. int/ ITU-T/ recom menda tions/ 

rec. aspx? rec= 14659. Accessed 8 May 2024
Alrawi O, Lever C, Antonakakis M, Monrose F (2019) SoK: Security Evalua-

tion of Home-Based IoT Deployments. In: Proceedings of the 40th IEEE 
Symposium on Security and Privacy (IEEE S &P), San Francisco, CA, USA, 
May 19-23, 2019

Create Your Own Accessibility Service. 2024. https:// devel oper. andro id. com/ 
guide/ topics/ ui/ acces sibil ity/ servi ce. Accessed 4 May 2024

Cui A, Costello M, Stolfo S (2013) When Firmware Modifications Attack: A Case 
Study of Embedded Exploitation. In: Proceedings of the 20th Annual 
Network and Distributed System Security Symposium (NDSS), San Diego, 
California, USA, February 24-27, 2013

Don’t Become the Victim of Screen Sharing Scams. 2024. https:// www. uccu. 
com/ secur ity- alert- screen- shari ng- fraud/. Accessed 29 May 2024

Elsabagh M, Johnson R, Stavrou A, Zuo C, Zhao Q, Lin Z (2020) FIRMSCOPE: 
Automatic Uncovering of Privilege-Escalation Vulnerabilities in Pre-
Installed Apps in Android Firmware. In: Proceedings of the 29th USENIX 
Security Symposium (USENIX Security), Boston, MA, USA, August 12-14, 
2020

https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=14659
https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=14659
https://developer.android.com/guide/topics/ui/accessibility/service
https://developer.android.com/guide/topics/ui/accessibility/service
https://www.uccu.com/security-alert-screen-sharing-fraud/
https://www.uccu.com/security-alert-screen-sharing-fraud/


Page 16 of 16Qiu et al. Cybersecurity _#####################_

Feal Á, Calciati P, Vallina-Rodriguez N, Troncoso C, Gorla A (2020) Angel or 
devil? a privacy study of mobile parental control apps. In: 20th Proceed-
ings on Privacy Enhancing Technologies (PoPETs), Montreal, Canada, July 
15-19, 2020

Fernandes E, Jung J, Prakash A (2016) Security Analysis of Emerging Smart 
Home Applications. In: Proceedings of the 37th IEEE Symposium on 
Security and Privacy (IEEE S &P), San Jose, CA, USA, May 22-26, 2016

Frida. 2024. https:// frida. re/. Accessed 6 May 2024
Gamba J, Rashed M, Razaghpanah A, Tapiador J, Vallina-Rodriguez N (2020) 

An Analysis of Pre-installed Android Software. In: Proceedings of the 41st 
IEEE Symposium on Security and Privacy (IEEE S &P), San Francisco, CA, 
USA, May 18-21, 2020

High Efficiency Video Coding. 2024. https:// www. itu. int/ ITU-T/ recom menda 
tions/ rec. aspx? rec= 15647. Accessed 8 May 2024

JADX. 2024. https:// github. com/ skylot/ jadx. Accessed 6 May 2024
Lee Y, Li T, Zhang N, Demetriou S, Zha M, Wang X, Chen K, Zhou X, Han X, 

Grace M (2017) Ghost Installer in the Shadow: Security Analysis of App 
Installation on Android. In: Proceedings of the 47th Annual IEEE/IFIP 
International Conference on Dependable Systems and Networks (DSN), 
Denver, CO, USA, June 26-29, 2017

Li R, Diao W, Li Z, Du J, Guo S (2021) Android Custom Permissions Demystified: 
From Privilege Escalation to Design Shortcomings. In: Proceedings of the 
42nd IEEE Symposium on Security and Privacy (IEEE S &P), San Francisco, 
CA, USA, May 24-27, 2021

Media Projection. 2024. https:// devel oper. andro id. com/ media/ grow/ media- 
proje ction. Accessed 4 May 2024

mitmproxy. 2024. https:// github. com/ mitmp roxy/ mitmp roxy. Accessed 6 May 
2024

Mobile Operating System Market Share Worldwide. 2024. https:// gs. statc 
ounter. com/ os- market- share/ mobile/ world wide. Accessed 26 April 2024

Moon D, Lee JD, Jeong Y-S, Park JH (2016) RTNSS: A Routing Trace-based Net-
work Security System for Preventing ARP Spoofing Attacks. The Journal of 
Supercomputing

Nan Y, Wang X, Xing L, Liao X, Wu R, Wu J, Zhang Y, Wang X (2023) Are you spy-
ing on me? large-scale analysis on iot data exposure through companion 
apps. In: Proceedings of the 32nd USENIX Security Symposium (USENIX 
Security), Anaheim, CA, USA, August 9-11, 2023

Restricted Screen Reading. 2024. https:// source. andro id. com/ docs/ core/ permi 
ssions/ restr icted- screen- readi ng. Accessed 26 April 2024

Scrcpy. 2024. https:// github. com/ Genym obile/ scrcpy. Accessed 4 May 2024
Scrcpy - Best Android Screen Mirroring App. 2024. https:// scrcpy. app/. 

Accessed 4 May 2024
ScreenStream. 2024. https:// github. com/ dkriv oruch ko/ Scree nStre am. 

Accessed 4 May 2024
TCPDUMP & LIBPCAP. 2024. https:// www. tcpdu mp. org/. Accessed 6 May 2024
Tekeoglu A, Tosun A.Ş (2015) A Closer Look into Privacy and Security of 

Chromecast Multimedia Cloud Communications. In: Proceedings of the 
34th IEEE Conference on Computer Communications Workshops (INFO-
COM Workshops), Hong Kong, China, April 26 - May 1, 2015

Tian Y, Liu YC, Bhosale A, Huang LS, Tague P, Jackson C (2014) All Your Screens 
are Belong to Us: Attacks Exploiting the HTML5 Screen Sharing API. In: 
Proceedings of the 35th IEEE Symposium on Security and Privacy (IEEE S 
&P), San Francisco, CA, USA, May 18-21, 2020

Tian G, Chen J, Yan K, Yang S, Diao W (2022) Cast Away: On the Security of 
DLNA Deployments in the SmartTV Ecosystem. In: Proceedings of the 
22nd International Conference on Software Quality, Reliability and Secu-
rity (QRS), Guangzhou, China, December 5-9, 2022

vivoSRC. 2024. https:// secur ity. vivo. com. cn/#/ home. Accessed 6 May 2024
Wang L, Liu X, Lei T, Song W, Guo S, Ren P (2024) Security research for android 

remote assistance apps. In: 29th Australasian Conference on Information 
Security and Privacy (ACISP), Sydney, NSW, Australia, July 15-17, 2024

Wang X, Sun Y, Nanda S, Wang X (2019) Looking from the Mirror: Evaluating IoT 
Device Security through Mobile Companion Apps. In: Proceedings of the 
28th USENIX Security Symposium (USENIX Security), Santa Clara, CA, USA, 
August 14-16, 2019

Wireshark. 2024. https:// www. wires hark. org/. Accessed 6 May 2024
Wu L, Grace M, Zhou Y, Wu C, Jiang X (2013) The Impact of Vendor Customi-

zations on Android Security. In: Proceedings of the 20th ACM SIGSAC 
Conference on Computer and Communications Security (CCS), Berlin, 
Germany, November 4-8, 2013

Yang S, Li R, Chen J, Diao W, Guo S (2022) Demystifying Android Non-SDK APIs: 
Measurement and Understanding. In: Proceedings of the 44th IEEE/ACM 
International Conference on Software Engineering (ICSE), Pittsburgh, PA, 
USA, May 21-29, 2022

Zeroconf. 2024. https:// pypi. org/ proje ct/ zeroc onf/. Accessed 8 May 2024
Zhang Y, Ma S, Chen T, Li J, Deng RH, Bertino E (2023) EvilScreen Attack: Smart 

TV Hijacking via Multi-channel Remote Control Mimicry. IEEE Transactions 
on Dependable and Secure Computing (TDSC)

Zhang W, Meng Y, Liu Y, Zhang X, Zhang Y, Zhu H (2018) HoMonit: Monitoring 
Smart Home Apps from Encrypted Traffic. In: Proceedings of the 25th 
ACM SIGSAC Conference on Computer and Communications Security 
(CCS), Toronto, ON, Canada, October 15-19, 2018

Zheng M, Sun M, Lui JCS (2014) DroidRay: A Security Evaluation System for 
Customized Android Firmwares. In: Proceedings of the 9th ACM Sym-
posium on Information, Computer and Communications Security (Asia 
CCS), Kyoto, Japan, June 3-6, 2014

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://frida.re/
https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=15647
https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=15647
https://github.com/skylot/jadx
https://developer.android.com/media/grow/media-projection
https://developer.android.com/media/grow/media-projection
https://github.com/mitmproxy/mitmproxy
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://source.android.com/docs/core/permissions/restricted-screen-reading
https://source.android.com/docs/core/permissions/restricted-screen-reading
https://github.com/Genymobile/scrcpy
https://scrcpy.app/
https://github.com/dkrivoruchko/ScreenStream
https://www.tcpdump.org/
https://security.vivo.com.cn/#/home
https://www.wireshark.org/
https://pypi.org/project/zeroconf/

	Understanding security risks in mobile-to-PC screen mirroring: an empirical study
	Abstract 
	Introduction
	Background
	Screen capture & remote control
	Classification and workflow of screen mirroring

	Threat model
	Flaws and attacks of screen mirroring
	SR1: arbitrary access to screen content
	SR2: MITM attack for screen content theft
	SR3: malicious commands injection attack
	SR4: data sniffing attack

	Practical attack cases
	Case study 1: PC device forgery and screen content stealing attack
	Case study 2: command injection attack
	Case study 3: race condition attack
	Case study 4: data sniffing attack

	Results and discussion
	Measurement in the Wild
	Mitigation measures
	Recommendations for software vendors
	Recommendations for users

	Limitations

	Related work
	Conclusion
	Acknowledgements
	References


