
MiniCAT: Understanding and Detecting Cross-Page Request
Forgery Vulnerabilities in Mini-Programs

Zidong Zhang

School of Cyber Science and

Technology, Shandong University

Qingdao, China

kee1ongz@mail.sdu.edu.cn

Qinsheng Hou

Shandong University; QI-ANXIN

Technology Research Institute

Qingdao, China

houqinsheng@mail.sdu.edu.cn

Lingyun Ying
∗

QI-ANXIN Technology Research

Institute

Beijing, China

yinglingyun@qianxin.com

Wenrui Diao
∗

School of Cyber Science and

Technology, Shandong University

Qingdao, China

diaowenrui@link.cuhk.edu.hk

Yacong Gu

Tsinghua University; Tsinghua

University-QI-ANXIN Group JCNS

Beijing, China

guyacong@tsinghua.edu.cn

Rui Li

School of Cyber Science and

Technology, Shandong University

Qingdao, China

leiry@mail.sdu.edu.cn

Shanqing Guo

School of Cyber Science and

Technology, Shandong University

Qingdao, China

guoshanqing@sdu.edu.cn

Haixin Duan

Tsinghua University; Quancheng

Laboratory

Beijing, China

duanhx@tsinghua.edu.cn

ABSTRACT
Mini-programs are lightweight apps running in super apps (such

as WeChat, Baidu, Alipay, and TikTok), an emerging paradigm

in the era of mobile computing. With the growing popularity of

mini-programs, there is an increasing concern for their security

and privacy. In essence, mini-programs are WebView-based apps.

This means that they may be vulnerable to the same security

risks associated with web apps. In this work, we discovered a

new mini-program vulnerability called MiniCPRF (Cross-Page Re-

quest Forgery in Mini-Programs). The exploit of this vulnerability

is easy, and the attack consequences are severe, leading to unau-

thorized operations, such as free shopping, and the exposure of

confidential information, such as credit card numbers. The root

causes of MiniCPRF can be attributed to multiple design flaws in

both mini-programs and their super apps, including the insecure

routing mechanism, lack of message integrity check, and plain-text

storage. To evaluate the impacts of MiniCPRF, we designed an au-

tomated analysis framework called MiniCAT. It can automatically

crawl mini-programs, perform static analysis on them, and gen-

erate detection reports. In large-scale real-world evaluations with

MiniCAT, we identified that 32.0% (13,349/41,726) of analyzable

mini-programs are potentially vulnerable to MiniCPRF, including

∗
Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0636-3/24/10

https://doi.org/10.1145/3658644.3670294

some famous ones with millions of users, such as Sohu and Wen-

juanxing. Following the responsible disclosure principle, we have

reported verified vulnerable mini-programs to the corresponding

vendors and developers, and three real-world cases have been con-

firmed by CNVD. Additionally, we suggest mitigation strategies to

resolve the security issue related to MiniCPRF.

CCS CONCEPTS
• Security and privacy→ Software and application security.

KEYWORDS
Mini-program Security; Program Analysis; Vulnerability Detection

ACM Reference Format:
Zidong Zhang, Qinsheng Hou, Lingyun Ying, Wenrui Diao, Yacong Gu, Rui

Li, Shanqing Guo, and Haixin Duan. 2024. MiniCAT: Understanding and

Detecting Cross-Page Request Forgery Vulnerabilities in Mini-Programs.

In Proceedings of the 2024 ACM SIGSAC Conference on Computer and Com-
munications Security (CCS ’24), October 14–18, 2024, Salt Lake City, UT, USA.
ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/365864
4.3670294

1 INTRODUCTION
Mini-programs, lightweight apps within a super or host app, have

played an important role in mobile computing due to their conve-

nience and functionality. The global popularity of mini-programs

(hosted by WeChat [22], Baidu [6], Alipay [2], TikTok [26], and oth-

ers) underscores the growing concerns about security and privacy.

Mini-programs have features of both mobile and web apps and

operate within a super app. For example, page navigation and com-

munications are managed via routing, similar to many web apps,

and they can manage user states. This allows user-specific data to

be stored and retrieved in future interactions. However, the routing

mechanism in mini-programs can become susceptible to attacks,

https://doi.org/10.1145/3658644.3670294
https://doi.org/10.1145/3658644.3670294
https://doi.org/10.1145/3658644.3670294

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Zidong Zhang, et al.

resulting in issues like broken authentication, request forging, and

sensitive data leaks.

Existing research has predominantly assessed the security of

mini-programs from the perspective of mobile apps, such as ex-

ploring permissions, common development bugs, and cross-mini-

program communications [68, 70, 72]. Nevertheless, a noticeable

gap persists in studying mini-program security from a web app

standpoint.

Our Work. We have discovered a new vulnerability that results

from the flawed design of page routing and user state management

in mini-programs, including dependence on URL schema for nav-

igation and transmission of parameters, unencrypted parameter

communication, and inconsistent preservation of user state.

In particular, utilizing the sharing & forwarding features of mini-

programs and the insecure local storage, an attacker can manipu-

late the URLs designated for page routing within mini-programs.

This manipulation allows controlling the targeted routing page

and the transmitted parameters. This specific vulnerability, termed

MiniCPRF (Cross-Page Request Forgery in Mini-Programs), can

result in the following consequences:

• Consequence I: Inducing victims to accessmodifiedmini-program

page routes, thus executing sensitive operations (e.g., free shop-

ping and unauthorized device control).

• Consequence II: Stealing sensitive information from the mini-

program routes (e.g., the credit card number).

After further investigation into the root causes of MiniCPRF,

we found they were linked to several design flaws in both mini-

programs and their super apps, including plain-text routing param-

eter transmission, a lack of integrity check for chat messages, and

modifiable local storage of the super app. Thus, due to the simplic-

ity of implementing MiniCPRF and the potential for attackers to

expand the attack surface by exploiting the sharing mechanism of

mini-programs, it is imperative to measure the impact of MiniCPRF

on the current mini-program ecosystem and their corresponding

platforms comprehensively.

To conduct such a large-scale measurement, we designed an

automated detection framework called MiniCAT (MiniCPRF Anal-

ysis Tool). It consists of a mini-program crawler and a MiniCPRF

automatic detector based on reverse taint analysis. With Mini-

CAT, we crawled mini-programs on a large scale and detected the

corresponding potential MiniCPRF issues. In the experiments, we

collected 44,273 WeChat mini-programs, and 41,726 (94.2%) can be

successfully unpacked for further analysis. The final results show

that 32.0% (13,349/41,726) of them are risky to MiniCPRF, includ-

ing some famous ones with millions of users, such as Sohu [21], a

leading Chinese Internet and media mini-program, and Wenjuanx-

ing, a leading online survey service mini-program. Moreover, we

also propose measures to mitigate MiniCPRF, such as deploying

encryption methods and performing message integrity checks.

Our research primarily concentrates on WeChat mini-programs

due to their prevalence, as WeChat has over 900M daily active users

worldwide [40]. Nevertheless, our findings on MiniCPRF inWeChat

mini-programs led us to extend our analysis to other mini-program

platforms, such as Baidu and Alipay, where we discovered similar

vulnerabilities. This indicates that MiniCPRF is not an isolated

issue but a widespread security concern across the mini-program

ecosystem.

Responsible Disclosure. Every attack experiment described in

this paper that involves real-world mini-programs was performed

in a controlled environment. Moreover, we have reported all our

discovered vulnerabilities to the corresponding vendors and de-

velopers. Currently, three of them have been confirmed and as-

signed vulnerability IDs: CNVD-2024-05527 (high-severity), CNVD-

2023-75836 (moderate-severity), and CNVD-2023-75837 (moderate-

severity).

Contributions. The main contributions of this paper are:

• New Vulnerability. We identified a new type of mini-program

vulnerability named MiniCPRF. This vulnerability enables at-

tackers to forge mini-program routing and parameters, leading

to various security consequences, such as controlling sensitive

operations and information leakage.

• New Tool. We developed an automated analysis framework called

MiniCAT, specifically designed for MiniCPRF. This framework

can automatically crawl WeChat mini-programs and perform

MiniCPRF detection based on static analysis.

• Large-scale Evaluations. We measured 41,726 out of the 44,273

crawled WeChat mini-programs and found that 13,349 (32.0%)

could be identified as potentially vulnerable to MiniCPRF.

Open Source. Our analysis framework,MiniCAT [49], has been

released on GitHub.

Demo Site. The anonymized PoC attack demos of the above vul-

nerabilities can be found at https://sites.google.com/view/minicprf.

Roadmap. The rest of this paper is organized as follows. Section 2

provides the necessary background of the WeChat mini-program

framework and introduces the threat model used in this paper.

Section 3 discusses the motivation case and summarizes MiniCPRF.

The detailed design of MiniCAT is illustrated in Section 4, and

Section 5 gives its prototype implementation. Section 6 analyzes

the evaluation results. Section 7 discusses the limitations of our

work and the lessons learned. Section 8 reviews the existing related

work, and Section 9 concludes this paper.

2 BACKGROUND AND THREAT MODEL
2.1 Mini-Program

WeChatMini-Program Framework.WeChat is a killer app devel-

oped by Tencent for messaging, social media, and mobile payment.

Besides, WeChat is also a super app that provides a runtime en-

vironment for WeChat mini-programs [35]. These mini-programs

are lightweight without installation and provide users with various

services, such as e-commerce, games, and tools. The architecture

of a WeChat mini-program has two parts, as illustrated in Figure 1:

1) a front-end running on the super app to interact with the user

and access system services; 2) a back-end providing the running

environment (super apps) and performing server-side operations.

According to the official documentation [9], the mini-program

front-end can be further divided into a render layer and a logic

layer [30]. WXML (Wechat Markup Language) templates andWXSS

https://sites.google.com/view/minicprf

MiniCAT: Understanding and Detecting Cross-Page Request Forgery Vulnerabilities in Mini-Programs CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Super App (Host App): WeChat

F
r
o
n
t
-
e
n
d

B
a
c
k
-
e
n
d

The Render Layer

WXSS+WXML

Event Tigger

Components

Event

Data

Developers Server / WeChat Server

...

Page Routing

Event
Handler

 API

The Logic Layer

...

Figure 1: WeChat mini-program architecture.

(Wechat Style Sheets) are used in the render layer, while JavaScript

is used in the logic layer.

Figure 1 shows how WeChat mini-programs enable communi-

cation between the render and logic layers using Events [13]. User
actions are transferred from the render layer to the logic layer via

events for further processing by the super app, similar to JavaScript

DOMEvents [15]. When an event is triggered by the render layer ac-

tivity (e.g., user tap), the logic layer will execute the corresponding

function named Event-Handling Function. Events drive the function-
ality and interactivity of the WeChat mini-program framework.

Routing Implementation. Routing [20] is a common concept

in web apps, referring to determining the network scope for the

end-to-end path when packets are transmitted from a source to a

destination. Similarly, WeChat mini-programs require interactions

and communications between different pages. In this paper, we

define these processes asmini-program page routing. In detail,

mini-program page routing is the rule for navigating from one

page to another based on routing rules (i.e., the path) [37]. The

URL schema controls it and can pass parameters in the page URL.

For example, a completed mini-program routing path may look

like /page/index?param=1 (similar to the GET method in HTTP).

WeChat officially provides three APIs for navigation between mini-

program pages: wx.navigateTo [45], wx.redirectTo [46], and

wx.reLaunch [47].

Figure 2 shows an example of event communication and page

routing implementation. The loginBtn button component in in
dex.wxml is bound to the event-handling function formSubmit.
When the user enters the username and password and presses the

login button (①), this action will trigger bindtap and then trigger

formBubmit (②) of index.js, resulting in sending the user’s user-

name and password to the developer’s server for verification. If the

verification is successful, the username will be a routing parameter

of /page/user/index/index, and the mini-program will jump to

index page via wx.navigateTo (③).

User State. The user state refers to the user’s authenticated status

in a system or app, meaning that a user has successfully authenti-

cated and can durable access the protected resources or function-

alities. It serves as the foundation for maintaining user sessions

and enforcing security measures throughout the user’s interaction

page/index/index

Trigger the event

page/user/index/index

wx.navigateTo

①

②

③

Login

/page/user/index/index?username=Alice

Figure 2: Example of event communication and routing.

with the system. In HTTP-based web apps, cookies and session

mechanisms typically manage the user state. However, WeChat

mini-programs do not support such HTTP-like mechanisms. To

implement user states in WeChat mini-programs, developers need

to utilize WeChat’s specific authentication mechanism based on the

OAuth 2.0 model [31]. Figure 3 shows an example of mini-program

authentication and user state process in the logic layer and the

back-end. Specifically:

• Step ➊: The mini-program initiates wx.login, prompting the

WeChat client to produce a temporary credential, generally 5-

minute valid, named code.
• Step ➋: Developers need to setup a handler page handler.php
in their own servers. The front-end of mini-programs sends

the code to the handler page, and the page will communicate

with the WeChat server by the back-end API code2Session,
retrieving the user’s unique OpenID and session_key. At this
point, the session_key-OpenID forms a pair of credentials for

the user state.

There are two options to check the user state on specific pages:

• Step ➌.A: Design a custom user state using the OpenID, stored
locally [38] via wx.setStorage. When validation is needed, de-

velopers can use wx.getStorage to fetch the OpenID, as demon-

strated in Page I of Figure 3.
• Step ➌.B: Use wx.checkSession for the validation of user state

generated by wx.login, as seen in Page II of Figure 3.

It is crucial to mention that the custom user state method man-

dates verification on every authentication page. Otherwise, the

page will lack user state by default.

Sharing and Forwarding. AsWeChat is a social-focused app with

social features, users can share mini-programs with their friends

through Moments or chats [34]. The shared mini-programs will

appear as WeChat mini-program cards as normal chat messages.

Moreover, developers can customize the shared mini-program card

and use the onShareAppMessage function of one specific page in

the logic layer to determine whether this page can be shared or

forwarded to other users.

index.wxml
index.wxml
code2Session

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Zidong Zhang, et al.

The Authentication Page

Page II

Page I

Mini-Program
Storage

code + Appsecret + appid

session_key + OpenID

handler.php

 ➊➊

 ❷

 ❸.B

WeChat Back-end API

code2Session:

❸.A

Figure 3: Case of authentication and user state management.

2.2 Threat Model
Here, we discuss the threat model used in our work, including the

attack scenario and the attacker’s capabilities.

Scenario. Both the attacker and the victim are WeChat users.

They can access WeChat mini-programs using the official WeChat

client on any platform (Windows/macOS/iOS/Android). Addition-

ally, their devices run normally without malicious mini-programs.

In this scenario, the attacker does not intercept communications

directly between WeChat clients, nor is there a need for physical

or remote manipulation of the victim’s device. Moreover, the at-

tack can also occur indirectly (e.g., through sharing mini-program

cards).

Attacker’s Capabilities. An attacker can exploit MiniCPRF vul-

nerabilities to generate malicious mini-program cards and either

personally click on them or induce the victim to do so, enabling

both individual and mass targeting. Furthermore, the attacker can

create or modify malicious mini-program cards, with or without an

existing card as a base. To construct or modify these cards, attack-

ers only need to acquire the page routing URL and corresponding

parameters, which can be obtained directly or indirectly from the

victim. These capabilities are relatively easy for the attacker to

achieve because WeChat mini-program cards are stored in the local

storage, and a public method [12] is still functional in the latest

version of WeChat (Jan 2024). Consequently, the attacker can ac-

cess the detailed content of mini-program cards for the purpose of

modification or forgery.

3 MOTIVATION CASE AND MINICPRF
3.1 Motivation Case
Here, we give a real-world case to illustrate MiniCPRF. In this case,

an attacker can bypass the authorization of OKLOK (a mini-program

for smart locks management) through MiniCPRF and take over the

smart locks of the victim users.

Normal Workflow. The unlocking process of OKLOK is illustrated

in Figure 4. OKLOK offers two binding options for users Bluetooth

smart locks: QR code scanning (①.A) and a mini-program’s device

search page (①.B). In both methods, the mini-program communi-

cates with the back-end server, submitting the QR code or receiving

Bluetooth broadcast packets and retrieving a unique, user-invisible

_id identifier (used to identify each lock). This _id guides the user

to the Bind Page (pages/index/deviceAdd?_id=...), verifying
whether the lock has been bound (②). If the lock is already bound,

other users will receive a message indicating the need for permis-

sion to access it. If unbound, the current user’s account will be

linked to the lock, and the process advances to the Unlock Page

(/pages/index/deviceDetail?_id=...), carrying the _id (③).

The login status (user state) is checked on this page, and then the

mini-program will start the unlocking process to unlock the target

lock (④).

Vulnerability andAttack.However, the above process can present
opportunities for attackers. Through manual analysis, we discov-

ered that the Bind Page allows users to share, presenting as a

WeChat mini-program card. As illustrated in Figure 4, a WeChat

mini-program card is an XML text stored in the local storage of the

WeChat client. It contains the page routing URL (i.e., <pagepath>)
that the mini-program navigates to after a user clicks on this card.

Also, OKLOK allows users to forward the Bind Page to any chat. Be-
sides, we found that the Unlock Page does not implement complete

user state verification, which means that this page only checks if

the user is logged in, not if the user is the owner of the _id lock. In

other words, any user who provides the correct _id can unlock the

target lock.

The attack process is described as follows: First, the attacker

can share the Bind Page to any chat (❶). Then, the attacker can

extract this card from the local storage to obtain the lock’s _id (❷).

Next, they can modify the URL in the <pagepath> XML section

of the card to the URL of the Unlock Page with the device’s _id
(pages/index/deviceDetail?_id=...), and update the modified

card to the local storage (❸). Since the Unlock Page implements

incomplete user state checks, the attacker can click on the modified

mini-program card (❹) and then navigate to that page and perform

unauthorized unlocking (❺). It should be noted that attackers can

acquire the victim’s _id directly (e.g., by accessing the victim’s

device) or indirectly. For example, in an Airbnb rental scenario, if

the landlord (victim) remotely shares a temporary mini-program

card with the tenant (attacker) for unlocking, it may accidentally

expose the device’s _id, enabling the attacker’s permanent control

of the device by exploiting MiniCPRF.

Even worse, the mini-program sharing feature enables attack-

ers to widely distribute malicious mini-program cards, potentially

affecting all OKLOK products. To carry out the attack mentioned

above, the attacker only needs the device’s _id. Besides, WeChat’s

functionality of navigating through mini-program QR codes (i.e.,

WeChat mini-program code [29]) allows attackers to enable unau-

thorized unlocking for any user who scans such a QR code. In

other words, attackers can widely distribute forged mini-program

pages/index/deviceAdd?
/pages/index/deviceDetail?
pages/index/deviceDetail?

MiniCAT: Understanding and Detecting Cross-Page Request Forgery Vulnerabilities in Mini-Programs CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

OKLOK Server ③ Unlock Page

OR

 ①.A Scan the QR code

 ①.B Mannual Searching

_id

pages/index/deviceAdd?_id=
 Bind Pag② e

Incomplete User
State Check

_id
Lock Opened

pages/index/deviceDetail?_id=

Mini-program Card

(Mallory & Victim)

 ➊➊Share to a chat

➋➋Extract

Mallory

Users

Evil Mini-program Card

➍➍Navigate by click

Changed

➎Unauthorize➎ d

Extract from
Local WeChat Db

Save to
Local WeChat Db

 OKLOK
Binding Page

Mini Programs

 OKLOK

Forge/Modify

➌➌Modify & Save

_id Leakage

④

An Mini-program Card Snippet

Figure 4: The workflow and attack path of the OKLOK case.

cards, affecting many users simultaneously in a "spray and pray"

approach.

3.2 Summary of MiniCPRF
To summarize, a complete attack flow exploiting MiniCPRF can be

generalized in three steps.

Step 1 Attackers identify potentially vulnerable pages and obtain

parameters from the page’s routing URL by forwarding (say ❶).

Step 2 The attacker modifies a mini-program card or generates a

new one by modifying the page routing URL (say ❷ & ❸).

Step 3 When the victim (or the attacker in some exploiting cases)

clicks on the crafted mini-program card, the attacker can per-

form sensitive operations (say ❹ & ❺).

Root Causes.We have identified three main factors that cause the

appearance of MiniCPRF.

• The routing of WeChat mini-programs only allows developers

to convey parameters in the URL schema. If the developer lacks

security awareness, such as transmitting sensitive parameters in

plaintext within page routing URLs, this can lead to information

leakage and associated security risks.

• WeChat mini-programs lack a unified and overall user state

implementation, with existing user state security depending

on the developer’s awareness. In the above case, the lack of

implementation of user state verification on sensitive pages is a

key factor for the attack’s success.

• WeChat’s lack of integrity checks enables the forwarding of

modified and forged malicious mini-program cards, and these

cards are stored as plain-text XML in the local storage, allowing

attackers easy access to view and modify page routing parame-

ters from those cards.

Consequences. In summary, MiniCPRF can result in two potential

consequences.

• Unauthorized operations. If developers include sensitive operation-
related parameters in the mini-program page routing URLs, at-

tackers can manipulate or forge those URLs to carry out unau-

thorized operations. Additionally, through sharing or generating

a mini-program code, these malicious mini-program cards can

be used by others, creating a significant security threat.

• Sensitive data leakage. Sensitive data may be leaked during the

attack. In the above case, the lock’s _id should be invisible to the
mini-program users. However, attackers can obtain _id through

the MiniCPRF vulnerability. If the _id is used on other pages of

the mini-program or involved in other sensitive operations, it

Table 1: Comparison of CMRF, CSRF, and MiniCPRF.

MP: Mini-program; WA: Web app.

Vulnerablity Target Mechanism Scope
CMRF MP Cross-MP Two/Multi MPs

CSRF WA WA routing Single WA

MiniCPRF MP MP routing Single MP

can increase the attack surface, leaving it vulnerable to further

exploitation.

Remarks. It is important to distinguish MiniCPRF from CMRF

(Cross Miniapp Request Forgery) proposed by Yang et al. [70].

MiniCPRF targets security issues in routing within a single mini-

program. On the contrary, CMRF concentrates on the risks in com-

munication between two mini-programs. CMRF assesses if a target

mini-program verifies the source called by another mini-program,

similar to cross-app security concerns in mobile apps. Besides, it

should be noted that MiniCPRF is a new type of vulnerability. Al-

though its attack method (using URL modifications and forgeries)

might look similar to CSRF, they have different targets for attack

and underlying mechanisms. The differences among CMRF, CSRF,

and MiniCPRF are summarized in Table 1.

3.3 Automated Detection of MiniCPRF
Although WeChat mini-program pages and web apps have similar

routing mechanisms, applying existing studies on security issues

like CSRF in web apps to mini-programs is difficult. Specifically,

previous studies [55, 63] usually use hybrid static-dynamic analysis

approaches to detect CSRF. However, WeChat has strict security

measures to prevent instrumentation analysis on real-world mini-

programs. As a result, we cannot obtain the current page’s routing

URL or the user state at run-time. Besides, since all back-end com-

munication in the mini-program is invisible, we cannot access the

communication context. Thus, existing methods are inapplicable

for detecting MiniCPRF in mini-programs. There is a need for a

new solution to address these challenges.

Fortunately, unlikeweb apps, mini-programs can be easily crawled

and unpacked. With direct access to the source code, it becomes

feasible to detect potential MiniCPRF vulnerabilities using static

analysis. In detail, we need to design a system that can automati-

cally acquire the source code of mini-programs and perform code

analysis on both the logic layer (i.e., JavaScript files) and the ren-

der layer (i.e., WXML files). The system should accurately collect

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Zidong Zhang, et al.

Metadata
API

WeChat
Client

User Actions
Simulator

Me
ta
da
ta

In
fo

Render
Layer
(WXML)

Logic
Layer
(Js) Routing

API Calls

WXML
Elements

User State

Shareablity

S1#

S2#

S3#

S4#

Auto
Event

Function

Event
Trigger

Crawler MiniCPRF Detector

wxunpacker

Result

Figure 5: The Workflow ofMiniCAT.

risky page routing URLs, associated parameters, and attack paths

for MiniCPRF. This collected information can be used to create

malicious mini-program cards to launch MiniCPRF attacks.

4 DESIGN OF MINICAT

We designed an automated analysis framework,MiniCAT, to detect

potential MiniCPRF vulnerabilities in WeChat mini-programs. As

shown in Figure 5,MiniCAT contains two modules: Mini-Program
Crawler to collect massive mini-programs and MiniCPRF Detector to
detect MiniCPRF vulnerabilities in mini-programs.

4.1 Mini-Program Crawler
Crawling WeChat mini-programs is challenging since there are no

official or third-party markets similar to Google Play [14] or Ap-

kpure [4] for Android apps. Typically, users access mini-programs

by scanningmini-programQR codes or searchingwithin theWeChat

client. Zhang et al. [73] developed MiniCrawler to download mini-

programs using specific WeChat APIs and designated AppIDs,

which are unique identifiers for mini-programs. However, batch

querying of AppIDs has become impossible due to Tencent’s re-

striction on related API access.

During our investigation, we discovered that when a user ac-

cesses a mini-program on the WeChat Windows client, the client

creates a directory under the user profile folder to store the mini-

program, located at user_file/Applet/AppID. Furthermore, a

WeChat metadata API [23] can provide metadata information for

mini-programs, such as description, type, and developer informa-

tion, based on the AppID. This discovery inspired us to develop

an automated crawler that simulates user actions on the WeChat

Windows client.

Our crawler, called Mini-Program Crawler, utilizes Natural Lan-
guage Processing (NLP) techniques to construct a keyword dictio-

nary to search for mini-programs within the WeChat Windows

client, similar to the approach mentioned in MiniCrawler [73]. Addi-
tionally,Mini-Program Crawler leverages the mini-program metadata

to generate the keyword dictionary. The metadata can be obtained

through the metadata API using the mini-program AppID from the

user profile directory.

Furthermore, the crawler retrieves mini-program packages from

the user profile directory and unpacks them into source code us-

ing wxappUnpacker [42] for further analysis, serving as input for
MiniCPRF Detector.

1 /* deviceAdd.wxml */
2 /* <button bindtap ="__e" class="ubgc -blue umar -t100"

data -event -opts ="{{[['tap ',[['toBindDevice']]]
]}}">{{''+(lan.btn_bind||'bind ')+''}}</button >

*/
3
4 /* deviceAdd.js */
5 ④ Page({
6 ...
7 onLoad: function(e) {
8 var data = this ;...
9 wx.setStorageSync ("user",data.user)

10 ...
11 }
12 onShareAppMessage () {
13 return {..}
14 },...
15 ③ toBindDevice: function () {
16
17 var a = {
18 _id: t.form.code ,
19 user: t.user._id ,
20 remark: t.form.remark };
21 /* binding the device from the server -side */
22 n.default.httpPost ({
23 name: "device/bind",
24 data: a,
25 /* If the binding process is successful , the

device 's _id will be connected to the URL as a
parameter */

26 ② success: function(a) {
27 var n = {
28 _id: t.form.code
29 };
30 ① wx.redirectTo({url: "/pages/index/deviceDetail/

deviceDetail?param =" + JSON.stringify(n) });
31 },
32 fail: function(e, t) {
33 n.default.showToast(t);
34 }
35 }) ;}...})
36
37 /* deviceDetail.js */
38 Page({
39 ...
40 onLoad: function(t) {
41 var o = this;
42 o.app = wx.getStorageSync('user '),
43 if(o.app){o.getDetail ();}
44 },...
45 getDetail: function () {
46 var t = this ,
47 o = {_id: t.param._id};
48 ...
49 success: function(o) { ...
50 t.blue.device = o,
51 /* Unlock the corresponding lock */
52 t.toStart ();
53 ...});
54 } ,...})

Listing 1: Code snippet of OKLOK.

4.2 MiniCPRF Detector
Following the attack for MiniCPRF flow described in Section 3, we

designed MiniCPRF Detector in the following steps.

Step I: Identifying the Nodes Calling Page Routing APIs. Ac-
cording to the WeChat developer documentation [37], page rout-

ing APIs of WeChat mini-programs are called in the logic layer

of the mini-program (i.e., in JavaScript files). We focus on three

routing APIs: wx.navigateTo, wx.reLaunch, and wx.redirectTo.
In detail, MiniCPRF Detector constructs an Abstract Syntax Tree

MiniCAT: Understanding and Detecting Cross-Page Request Forgery Vulnerabilities in Mini-Programs CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

(AST) of the source code in the mini-program logic layer (i.e.,

JavaScript code). Then, it filters the callee nodes that match the

names of those APIs. Next, MiniCPRF Detector filters the callee node
and extracts the url property to obtain the URL passed through

the page routing API. The URL is then split by regular match-

ing into the potentially vulnerable mini-program page, (for Steps

III and IV) and parameters (for Step II). As in the case of OK-
LOK (see Listing 1), MiniCPRF Detector can locate the API call to

wx.redirectTo (Line 30∼31). It extracts the url property from

this API as the page routing URL, including the vulnerable page

/pages/index/deviceDetail/deviceDetail and its parameters

JSON.stringify(n).

Step II: Building the Attack Path. After obtaining the routing
and parameters of a potentially vulnerable mini-program page, the

next step to launch theMiniCPRF attack is to build an attack path. In

other words, our goal is not to obtain exact parameter values, which

may be server-generated and hard to extract statically. Rather, we

focus on outlining and formulating the attack path, which are the

steps an attacker must take at the render layer to activate the page

routing API, reach the vulnerable page, and eventually extract its

routing URL. As described in Listing 1, after retrieving the URL,
our MiniCPRF Detector aims to identify how to initiate the page

routing API for url attribute manipulation within the attack con-

text. Through manual analysis, we have charted the reverse attack

path to engage the routing API at the mini-programs logic layer

as follows: ①wx.redirectTo() → ②success: function(a) →
③toBindDevice: function()→ ④Page({..}).

However, the existing static analysis tools for mini-programs [57,

60, 65] are insufficient for automated analysis of mini-programs like

OKLOK, as they fail to detect MiniCPRF issues. In detail, these tools

use forward static analysis, focusing on client-side data flow, such

as TaintMini [65], which constructs data flows from user inputs to

sensitive APIs. However, our approach differs from this, as we aim

to reconstruct the entire attack path instead of building a data flow

through page routing APIs. Thus, we need to find a new method

for detecting MiniCPRF.

Since the attack path always ends with a page-routing API callee

node, reverse taint analysis can potentially automate the analysis of

this path. To verify our assumption, we manually analyzed the at-

tack path in themini-program. In the related view page in the render

layer (deviceAdd.wxml), we discovered that the event toBindDe-
vice interacts with the logic layer through a WXML attribute in a

button component. As shown in Listing 1, when the user clicks the

(bindtap) button, it triggers the logic layer (deviceAdd.js) to ex-

ecute the toBindDevice event-handling function. The _id is then

passed to toBindDevice through the event channel and ultimately

linked with ?param= to construct the complete page routing URL.

To address this issue, we propose an analysis method based on

reverse taint analysis. Specifically, we set the page routing API

node as the sink node and aim to locate its event-handling function

toBindDevice through reverse taint query (as the target source

node). Following that, the MiniCPRF Detector attempts to identify

the WXML elements and attributes that trigger the event on the

corresponding logic layer page. Note that reverse taint analysis aids

our analysis by accurately identifying components on the attack

path, such as event-handling functions and WXML components

Algorithm 1 Finding the event-driven function in the logic layer.

1: function findEventHandling(rawAST, routingAPI_calleeNode)

2: sourceNodeList← ∅
3: sink = routingAPI_calleeNode

4: sourceNodeList += reverseTaint(rawAST,sink)

5: for source in sourceNodeList do
6: sourceScope = source.getContainer().getScope()

7: sinkScope = sink.getContainer().getScope()

8: if sourceScope == sinkScope then
9: PR_node = sourceScope.getpredNode()

10: if PR_node.getContainer() instanceof Function then
11: continue
12: else if PR_node.getContainer() instanceof TopLevel then
13: EV_FunctionNode = source

14: break
15: end if
16: end if
17: end for
18: return EV_FunctionNode

19: end function

that trigger events. Therefore, we must solve the following two

challenges to automate the above manual process:

Challenge I: Locating the correct event-handling function in
the logic layer. In Listing 1, we found that the attack path passed

two functions: success and toBindDevice. If MiniCPRF Detector
mistakenly identifies success as an event-handling function, it

cannot find the corresponding WXML element on the render layer

page, resulting in an interruption in the attack path. Therefore, it is

crucial for our approach to identify the correct function accurately.

To address Challenge I, we analyzed the AST of the source code

and identified that the part executing the page routing API (Lines

15∼35 in Listing 1) acts as a function container. This container

could either be an event-handling function (EV function) or another
function type (OT function, e.g., the success callback function). Dis-
tinguishing between these functions is possible by examining the

scope of their preceding node (PR node). Based on the standardized

architecture of mini-program logic layers [24], the PR node of an
EV function aligns with its module node at the AST’s top level (the

Page() object in Listing 1), while the PR node of an OT function is

located within a function container.

In particular,MiniCPRF Detector identifies each function’s PR node
using reverse taint analysis, as shown in Algorithm 1. It defines

the PR node scope per node, accurately locating the EV function
while avoiding OT function confusion. If an EV function ties to mini-

program page functions [36] like onLoad or onHide, it suggests user
interaction response, such as page loads or refreshes. In summary,

we can solve Challenge I by analyzing the scope of PR nodes in
the AST, achieving accurate locating of event-handling functions

without interference from other functions.

Challenge II: Identifying WXML components in the render
layer. After solving Challenge I, we can locate the event-handling

function on the logic layer. Then, we must implement a data flow

analysis to find the event-triggered element in the render layer.

Although tools like [57, 60, 65] do analyze WXML data flows, they

fall short of our needs as their analysis initiates at the render layer.

/pages/index/deviceDetail/deviceDetail

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Zidong Zhang, et al.

Algorithm 2 Finding event trigger attribute in the render layer.

1: function findEventWXML(wxmlFile, jsFile, EV_FunctionNode)

2: newSourceCode← ∅
3: newSourceCode += (convertoHTML(wxmlFile), jsFile)

4: newAST← ∅
5: newAST += buildAST(newSourceCode)

6: wxmlSinkNode = EV_FunctionNode

7: wxmlSourceNode = reverseTaint(newAST, wxmlSinkNode)

8: EV_attribute = wxmlSourceNode

9: return EV_attribute

10: end function

This necessitates a technique for the MiniCPRF detector to analyze

WXML files effectively and make the attack path uninterrupted.

As the syntax of WXML is similar to HTML [43], we can use a

public tool [44] to convert WXML files to HTML files while main-

taining the raw WXML tags and attributes. Then, utilizing well-

established HTML-supported analysis tools (such as CodeQL [11]),

we can reconstruct the AST with the transformed mini-program

source code for further cross-layer analysis. As shown in Algo-

rithm 2, MiniCPRF Detector uses the previously queried EV function
as the new sink node of the new reverse taint analysis in the new

AST. Finally, MiniCPRF Detector can locate the attribute correspond-

ing to the EV function (called EV attribute). Since the converted

WXML files preserve all original attributes, we can identify the

EV attribute and its corresponding element as the target event-

triggered WXML components.

In the OKLOK case (Listing 1), we can construct a complete attack

path of the MiniCPRF vulnerability page after Step II. That is, to get

the value of t, an attacker only needs to click the target <button>
on the deviceAdd page (deviceAdd.wxml). After clicking, t will

be passed into toBindDevice and used as part of the parameter

url of wx.redirectTo in deviceAdd.js. Then, the OKLOK mini-

program will jump to the vulnerable page deviceDetail. If page
deviceDetail can be shared or forwarded, the attacker can easily

obtain the value of t by extracting its routing URL.

Step III: Checking User State. In the OKLOK case, a crucial fac-

tor for the success of the attack was the lack of correct user state

implementation on the deviceDetail page, allowing attackers’

unauthorized access and sensitive operations. As mentioned in Sec-

tion 2, the implementation of user state inWeChat mini-programs is

more unified than that of web apps, enabling us to perform general

static analysis on them.

Our static analysis focuses on detecting two types of API calls

in the onLoad page load functions of potentially vulnerable pages.

The absence of these calls suggests that the page does not check

the user state upon loading, leading to higher risks, especially if

MiniCPRF vulnerabilities exist.

(1) The APIs can check if the user state obtained by wx.login is

expired, such as wx.checkSession.
(2) The APIs can get the local mini-program storage cache, such as

wx.getStorage and wx.getStorageSync.
In the OKLOK case, after the user logs into the mini-program,

wx.setStorageSync("user") on the logic layer is used to store

the user field in local storage. However, when users navigate to

the deviceDetail page and trigger the onLoad function, it lacks

complete verification of the user state. That is, the page logic can

be executed regardless of whether the user is logged in. This incon-

sistency in user state is key to the success of MiniCPRF attacks.

Step IV: Shareability Check. As mentioned in Section 2, the on-
ShareAppMessage() function can control the shareability of the

mini-program page. MiniCPRF Detector analyzes the page with page

routing API calls in Step I, checking whether it uses this function to

determine its shareability. As shown in Listing 1, MiniCPRF Detector
identifies that the page deviceAdd.js calls the onShareAppMes-
sage() function in the OKLOK case. The attacker can share the

page within any chat and extract the full page routing URL from

the WeChat local storage, which simplifies the attack.

5 IMPLEMENTATION OF MINICAT

Here, we introduce the implementation of MiniCAT, including the

Mini-Program Crawler and MiniCPRF Detector modules. In summary,

MiniCAT contains 2,374 lines of Python code and 900 lines of QL

code.

Mini-Program Crawler Implementation. First, we used pywin-
auto [19] (a set of Python modules to automate the Windows GUI)

to simulate the user search and access process on the WeChat Win-

dows client. Moreover, using the NLP word segmentation library,

jieba [16], we processed mini-program descriptions from the meta-

data API mentioned in Section 4 to create the search keyword list.

Finally, we used wxappUnpacker (a public WeChat mini-program

unpacking tool) to unpack the crawled mini-program packages.

MiniCPRF Detector Implementation. After obtaining source

codes of mini-programs, we implemented MiniCPRF Detector follow-
ing the steps designed in Section 4 based on CodeQL, a static anal-

ysis tool that can build ASTs and conduct static data flow analysis.

Furthermore, we used the wxml-transformer to convert WXML

to HTML files.

6 EVALUATIONS
In this section, we discuss the detection results ofMiniCAT. We also

design a passive DNS-based approach to evaluate the popularity

of mini-programs. Moreover, two real-world cases are analyzed

deeply, and measurements on multi-platforms are discussed.

Experiment Setup. Our Mini-Program Crawler was deployed on a

Windows 10 laptop (i7-6600u/16 GB RAM) with Python 3.8.0. For

MiniCPRF Detector, we performed the analysis on a server running

Ubuntu 20.04 with 32 CPU cores and 256 GB memory, utilizing 10

threads to analyze all mini-programs.

Dataset.We collected and successfully unpacked 44,273 WeChat

mini-programs using Mini-Program Crawler, which occupied a stor-

age space of 126.38 GB. These mini-programs consisted of 2,264,377

pages, with an average of approximately 51 pages per mini-program.

For those non-unpackable mini-programs, we found that they were

incompatible with the wxappUnpacker tool due to their use of a

newer version of the WeChat mini-program base library. Addition-

ally, failures in unpacking were also attributed to missing main

packages [17].

Result Overview. Among the mini-programs collected, MiniCAT

successfully analyzed 41,726/44,273 (94.2%), identifying 13,349/41,726

MiniCAT: Understanding and Detecting Cross-Page Request Forgery Vulnerabilities in Mini-Programs CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

(32.0%) as potentially vulnerable with a cumulative 119,471 risky

pages. On average, each such mini-program contained nine poten-

tial MiniCPRF vulnerabilities. The remaining 2,547/44,273 (5.8%)

mini-programs were not analyzed due to absent codes fromWeChat

Cloud Development [28] or highly obfuscated source codes.

Efficiency. Mini-Program Crawler took about 15 seconds to crawl

a single mini-program, enabling an average collection of 2,687

mini-programs daily. Finally, our crawler collected a dataset of

44,273 mini-programs, proving the capability to gather WeChat

mini-programs.

For MiniCPRF Detector, the total analysis time was eight days, av-

eraging 106.75 seconds for each mini-program. Building each mini-

program AST and performing a global data flow analysis in a Cod-

eQL query was time-consuming. To optimize the process,MiniCPRF
Detector introduced a 5-minute timeout for CodeQL queries, con-

sistent with the default timeout of CodeQL CLI [10] and another

previous JavaScript static analysis work using CodeQL [61]. As a

result, 14,920 out of 41,726 (35.8%) mini-programs were skipped due

to timeouts. Our further analysis revealed that these mini-programs

featured heavily obfuscated source codes, leading to timeouts due

to endless CodeQL iterations.

6.1 False Positive and False Negative
As described in Section 4, MiniCAT generates potential MiniCPRF

attack paths by scanning the source code of mini-programs. In other

words, incorrectly identifying secure mini-program page routes

(such as pages that cannot be shared) as potential attack paths

will result in false positives (FP), as attackers are unable to exploit

these routes for constructing MiniCPRF attacks. Similarly, note

that if essential elements on the attack paths (such as page routes

and their parameters, trigger pages, WXML elements, and page

shareability) are not properly identified, MiniCAT may overlook

potential MiniCPRF vulnerabilities, leading to false negatives (FN).

Due to the absence of ground truth, we followed the methodol-

ogy outlined in previous studies [65, 70] to select 100 samples from

mini-programs flagged as potentially vulnerable. These samples

were manually inspected to determine whether they could con-

struct MiniCPRF attack paths, thus measuring FP. Additionally, we

manually selected 100 samples from mini-programs excluded from

the MiniCAT query results. Then, we manually examined them

to identify whether insecure page routing implementations (i.e.,

potential MiniCPRF attack paths) existed, thus measuring FN.

False Positives. Among the selected 100 potentially vulnerable

samples of mini-programs, we did not detect any FPs. Moreover, we

found that MiniCAT strictly analyzes source code models derived

fromMiniCPRF attack processes, following the guidelines set in the

WeChat official developer documentation. This approach allows

attackers to potentially use MiniCAT’s detection results to forge

mini-program cards for MiniCPRF attacks, ensuring MiniCAT does

not produce false positives.

False Negatives. Among the selected 100 mini-programs not iden-

tified as potentially vulnerable by MiniCAT, we discovered 3 FN

cases. These three FN cases correspond to different scenarios: 1)

MiniCAT identified a function that invokes the page routing API

as being embedded within another function registered in Page(),

Fo
od

Bu
si
ne
ss

En
te
rt
ai
nm
en
t

Ed
uc
at
io
n

Fi
na
nc
e

Tr
af
fi
c

Te
ch

He
al
th

Go
ve
rn
me
nt

Li
fe
st
yl
e

0

5

10

15

20

25

Pe
rc
en
ta
ge

10.14

5.05

6.88 7.24 7.24 7.24 7.24

10.09

18.35

25.69

Figure 6: The MiniCPRF statistic based on categories.

rather than as an independent event-handler function. 2) MiniCAT

failed to capture the full page URL due to its construction from

concatenated paths and strings. 3) The page’s use of getApp() [48]
to fetch the mini-program instance before defining Page() altered

its position in the AST, leading MiniCAT to mistakenly exclude it

based on Algorithm 1.

In detail, Scenario 1 represents a complex challenge in the domain

of static analysis tools (such asMiniCAT) due to the dynamic nature

of function calls and event handling in JavaScript. Thus, it can lead

to unpredictable outcomes that hinder systematic detection. Sce-

nario 2 and Scenario 3 involved deviations from standard practices

as recommended in the mini-program development documentation.

We regard the latter two scenarios as instances where developers

deviated from the guidelines outlined in the mini-program devel-

opment documentation.

Note that the definition of our FP and FN is based on the static

query results provided by MiniCAT, rather than the actual harm

caused by the vulnerabilities detected during scanning. We will

discuss the latter in Section 6.3.

6.2 Insight Evaluation
To evaluate the impact of MiniCPRF on mini-programs, we per-

formed a detailed analysis of the evaluation results from multiple

dimensions.

CategoryAnalysis.Wemeasured the potential impact ofMiniCPRF

on mini-programs based on their categories, as shown in Figure 6.

Among all the mini-program categories affected by MiniCPRF,

LifeStyle has the highest percentage (25.7%). What surprises us

is that the Government category (18.4%) and the Finance category

(7.2%) have relatively high proportions. Developers should ensure

the security of these mini-programs since they often require fre-

quent interactions with sensitive personal information, such as ID

cards and credit card numbers.

Template Development. After analyzing results from MiniCAT,

we identified 36 potentially vulnerable mini-program templates

with similar risk-related page routes, event-function names, and

WXML components. These templates, often used in similar func-

tionalities such as shopping and dining categories, are sourced from

third-party providers or WeChat itself. 503/13,349 (3.8%) matched

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Zidong Zhang, et al.

these templates. For instance, we discovered two completely unre-

lated mini-programs with similar structures. MiniCAT identified a

camping reservation app and a coffee shop ordering app that both

concatenated the price as a parameter in the page route on their

order submission pages (pages/order/order?action=selectO
rder&showall=1&is_chooese_tick=..&price=..), allowing
attackers to modify the price and successfully invoke WeChat pay-

ments. Nevertheless, whether the vulnerabilities stem directly from

the templates or how developers implement them remains unclear.

Our finding suggests caution when using templates in development

as there could be associated security risks.

Inconsistent User States. To discern whether developers inadver-

tently introduced MiniCPRF vulnerabilities, we analyzed all 119,471

risky pages. Of these, 13,109 (11.0%) involved user-state checks on

their target pages, while 106,362 (89.0%) did not. In those 106,362

pages, except for only 3 (0.2%) potentially vulnerable mini-programs

excluded user states across all pages, 6,792 (53.9%) of the potentially

vulnerable mini-programs lacked user-state involvement on target

pages. As mentioned in Section 4, inconsistent user state implemen-

tations are security hazards. Therefore, our analysis found that the

current user state implementation of the WeChat mini-program

framework may inadvertently cause developers to overlook user

state verification on certain pages.

ImpactMeasurement by pDNS.To assess the impact ofMiniCPRF,

we aimed to measure the popularity of potentially vulnerable mini-

programs. Although WeChat has no official mini-program ranking,

previous studies [70, 73] used ratings to assess their popularity and

impact. However, since the rating is optional for users, it may not

accurately represent the user base. After investigation, we found

that each WeChat mini-program had a domain allowlist [32], which

restricts communication to specific domains.MiniCAT can crawl

this list via the mini-program metadata API [23]. Therefore, we

leveraged passive DNS (pDNS) [18] data related to these domains

to indicate mini-program popularity.

Specifically, pDNS collects and examines historical DNS data,

providing insights into domain resolutions. By tracking the pDNS

records of the domain allowlist over time, we can infer the popular-

ity of the mini-program. Utilizing a commercial tool with extensive

pDNS records, we filtered out common service domains (e.g., Con-

tent Delivery Network (CDN) and Object Storage Service (OSS))

and specific duplicated domains (e.g., official WeChat/Tencent and

third-party APIs). We focused on the unique domains of each mini-

program. Our study targets 3,208 mini-programs with 9,007 related

domains and measures their pDNS records in seven days (4th June

to 11th June 2023). The top 10 mini-programs by pDNS record

counts are detailed in Table 2. The result shows many potentially

vulnerable mini-programs are very popular. Although pDNS does

not give an exact user count for each mini-program, it can serve as

a relative measure of popularity, offering insights into the impact

of potentially vulnerable mini-programs.

6.3 Vulnerability Verification
As mentioned above,MiniCAT identifies potential vulnerabilities

in mini-programs. However, verifying a MiniCPRF vulnerability is

challenging due to the absence of ground truth about the server-

side processes of these mini-programs, for example, with the route

Table 2: Mini-programs with top 10 pDNS record counts.

#Vul: Number of MiniCPRF potential vulnerabilities;

#pDNS: Number of pDNS records.

Mini-Program Name Category #Vul #pDNS
LingLingFa Job 9 226,572,893

Changan E-parking Traffic 6 11,271,812

Sohu Lifestyle 28 11,191,188

OPPO Shop Shopping 2 10,489,618

BianLiFeng Food 8 10,364,160

LengshuiJiang Parking Traffic 11 9,311,400

Xiwo E-learning E-learning 11 8,717,258

WMS Business 4 8,019,688

MOGO Traffic 9 7,474,291

CMobile CloudVision Entertainment 20 4,984,846

wx.navigateTo("/pages/pay/submit?orderid=...&price="),
we can find that it redirects users to a payment page, showing

the payment price and order id. However, it is uncertain whether

modifying the price leads to a real vulnerability due to the lack

of additional server-side authentication mechanisms for the mini-

program.

Thus, for MiniCPRF, our verification focuses on the front-end

of mini-programs. Specifically, we determine a mini-program as

vulnerable if: 1) Parameters within the page routing URL can be

obtained by manually sharing its card. 2) These parameters can be

modified. 3) Users can open and be redirected from the modified

mini-program card.

Building the Test-case Dataset. Since manually analyzing all

13,349 potentially vulnerable mini-programs is impractical, we thus

constructed a potentially vulnerable mini-program set for manual

vulnerability verification and evaluating the effectiveness of Mini-

CAT. We implemented the method based on an existing study [70].

In detail, we extracted parameter names linked to potential vul-

nerabilities from the results of MiniCAT. Then, we classified these

parameters into five categories:

• Payment Info: Covers payment details, such as method and

outcome. If breached, attackers can shop without payment.

• Promotion Info: Consists of membership cards, coupons, and

promotions. Vulnerabilities allow attackers to claim undue bene-

fits.

• Order Info: Information like order IDs and total prices. Attack-

ers could tamper with prices and item counts, leading to some

severe consequences.

• Device Info: Pertains to device data, especially from IoT de-

vices, like device ID and UUID. Compromised info risks unau-

thorized access or leaks.

• Personal Info: Includes mobile numbers, addresses, and credit

card numbers, leading to sensitive personal data leakages of

users.

We prioritized these categories because their modifications carry

serious consequences.Table 3 displays the categorized results. Note

that a mini-program can fall under multiple categories due to vari-

ous insecure routing implementations.

pages/order/order?action=selectOrder&showall=1&is_chooese_tick=..&price=..
pages/order/order?action=selectOrder&showall=1&is_chooese_tick=..&price=..
wx.navigateTo("/pages/pay/submit?orderid=...&price=")

MiniCAT: Understanding and Detecting Cross-Page Request Forgery Vulnerabilities in Mini-Programs CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Table 3: Categorized results of parameters.

#IVM: Number of potentially vulnerable mini-programs involved.

Category Examples #IVM
Payment payprice, isPaysuccess 2,432 (18.2%)

Promotion coupon_id, membercard 1,903 (14.3%)

Order orderId, goods_id 3,385 (25.4%)

Device deviceID, device_uuid 5,805 (43.4%)

Personal mobile, creditcardNum 4,642 (34.8%)

Verification Overview. To build our test case for verification,

we randomly selected 80 mini-programs from each category, to-

taling 400 mini-programs. We detected severe security issues in

316/400 (79.0%) mini-programs, such as data leaks. Besides, we

found that 33/400 (8.3%) mini-programs were unverifiable due to

deprecation and inaccessibility, e.g., we could not verify some inter-

nal use mini-programs without specific credentials. Among the 316

mini-programs with vulnerabilities, 234/316 (74.1%) mini-programs

have at least sensitive information leakage (e.g., leakage of phone

number or address, etc.), and 82/316 (25.9%) mini-programs can con-

duct overstepping sensitive operations (e.g., viewing or modifying

other users’ information without permissions, etc.)

Harmless Mini-program with MiniCPRF. After excluding 33
mini-programs that cannot be analyzed, we found that 38/367

(10.4%) mini-programs cannot modify the parameters of their page

routing URLs, or we failed to open their modified mini-program

cards. We can categorize these 38 cases into three scenarios: 1) Op-

erations implemented through MiniCPRF remain within the normal

user role (12/38, 31.6%), such as a news app where users read news

controlled by the id in page/news/id=. Even if the id is modifiable,

it does not allow any sensitive operations. 2) Page routes contain

one-time use or tamper-proof parameters (12/38, 31.6%). For exam-

ple, in cases like /pages/pay/submit?money=..&user=..&sig
n=...×tamp=..., the parameters sign and timestamp have

time constraints, preventing attackers from altering them to bypass

authentication. 3) Developers implemented secondary verification

on the server side (14/38, 36.8%). For example, in cases where the

payment amount is passed in the page route, the server-side re-

verification of the payment amount ensures that even if modified,

the payment cannot be processed successfully.

6.4 Real-world Case Studies
Based on our evaluation, we introduce some representativeMiniCPRF

instances to show the impact of MiniCPRF on real-world mini-

programs, such as unauthorized control of smart devices and ar-

bitrarily modified shopping prices. These cases demonstrate that

MiniCPRF can cause significant security threats even as a front-end

vulnerability.

Case I: Unauthorized Operations. DBDLOCK is a smart device

management mini-program that allows device owners to autho-

rize other users by adding them as friends, considering the need

for multiple people to use a single smart device. Specifically, the

friendDetail page receives a user_id parameter and redirects

to the friendAuth page. The user_id uniquely identifies a mini-

program user. Then, the friendAuth page adds the user associated

1 /* The trigger page: friendDetail.js */
2 tofriendAuth: function () {
3 var t = {
4 user_id: this.detail.friend._id
5 };
6 ...,
7 success: function(t) {
8 /* The target callee node*/
9 wx.navigateTo({

10 url: "/pages/friend /\ texttt{friendAuth }/
friendAuth?param=" + JSON.stringify(t)}

11 });},...
12
13 /* Shareability implementation: friendAuth.js */
14 onShareAppMessage: function () {...}, ...
15 /* The user state check in the target page */
16 onLoad: function(e) {
17 var n = this ;...
18 n.user = wx.getStorageSync ("login") || {},
19 ...
20 n.initView ();
21 }

Listing 2: Friends authorization in DBDLOCK.

with this user_id as a friend of the current user and grants them

device permissions. Although user_id is transparent to the mini-

program and users, attackers can obtain their own user_id by

registering two accounts and replicating the process due to the

shareability of the friendAuth page. Subsequently, attackers can
generate malicious mini-program cards or malicious WeChat mini-

program codes to redirect to pages/friend/friendAuth/friend
Auth?param={user_id of Attackers}. If victims click on these

malicious cards or scan the generated codes, they inadvertently add

the attacker as a friend, thereby granting the attacker unauthorized

control over their devices.

Case II: Modify Shopping Price. Due to the convenient integra-

tion of payment API [33] with mini-programs on WeChat, more

and more mini-programs are used for online businesses. In this case,

developers must implement secure payment mechanisms and hide

sensitive information while jumping to other mini-program pages.

Otherwise, attackers can perform sensitive payment operations by

exploiting the MiniCPRF vulnerability (e.g., shopping for free).

EasyOrderHelper is a mini-program designed to help vendors sell

products online and receive payments. Vendors can share the mini-

program with the customers to sell their products online. As shown

in Listing 3, when a user submits an order, the mini-program will

navigate to the order submission page submitOrder, carrying the
total number of current user’s products in the shopping cart as

cartNum, and the total price of the shopping cart as cartPrice.
However, the payment logic violates the security rules ofWeChat

Payment [39], which requires the payment order generation pro-

cess to be invisible to the front-end of the mini-program. Plus, the

server side of this mini-program lacks secondary authentication

of the payment price. As a result, attackers can forward the sub-
mitOrder page to generate a mini-program card and modify the

cartPrice parameter to a lower price, even zero. After clicking the

card again, attackers can generate an order and purchase the goods

at the modified price. More seriously, if the attacker forwards those

malicious mini-program cards to other users, these cards might be

widely spread, leading to huge financial losses for the merchant.

page/news/id=
id
/pages/pay/submit?money=..&user=..&sign=...×tamp=...
/pages/pay/submit?money=..&user=..&sign=...×tamp=...
pages/friend/friendAuth/friendAuth?param=
pages/friend/friendAuth/friendAuth?param=

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Zidong Zhang, et al.

1 /* The trigger page */
2 cart_count: function(t) {
3 ... this.setData ({
4 cartCount: h.data.cartNum ,
5 cartMoney: parseFloat(a).toFixed (2) ,...
6 });
7 },...
8 to_submit_order: function () {
9 this.haveAvatar ? wx.navigateTo ({

10 url: "/pages/submitOrder/submitOrder?cartNum =" +
this.data.cartCount + "& cartPrice =" +
this.data.cartMoney

11 }) : this.setData ({
12 authShow: !0
13 });},...
14
15 /* pages/submitOrder/submitOrder.js */
16 onLoad: function (...){
17 ...
18 this.setData ({
19 ...
20 cartNum: a.cartNum ,
21 cartPrice: a.cartPrice,
22 ... })) ,...

Listing 3: Shopping for free in EasyOrderHelper.

Table 4: Feature comparison of mini-program platforms.

RI: Page Routing Implementation; USI: User State Implementation;

US: URL Schema; PwU: Parameter with URL; ENC: Encryption;
CF: Cookie-like Features; CI: Custom Implementation.

Platforms RI USI Daily

US PwU ENC CF CI Active User

WeChat ✓ ✓ × × ✓ 928M
WeCom ✓ ✓ × × ✓ 130M
Baidu ✓ ✓ × ✓ ✓ 378M
Alipay ✓ ✓ × × ✓ 639M
TikTok ✓ ✓ × ✓ ✓ 276M

✓: Implementation found; ×: Implementation not found.

6.5 Measurements on Other Platforms
To further evaluate the all-sided impact of MiniCPRF on the mini-

program ecosystem, we analyzed other mini-program platforms

besides WeChat. This analysis is divided into two main aspects:

Similarity Mechanism and Feasibility of MiniCPRF.

Similarity Mechanism. Table 4 highlights the page routing and
user-state mechanisms’ resemblance to WeChat’s, indicating po-

tential shared vulnerabilities due to similar routing structures. Our

research examinedmini-programs from theWeCom [41], Baidu, Ali-

pay, and TikTok platforms. In our test set, we found mini-programs

with the same names across these platforms: 49 in WeCom, 49 in

Baidu, 23 in Alipay, and 17 in TikTok. Further analysis showed a

high degree of similarity in the vulnerability patterns of these mini-

programs compared to their WeChat counterparts: 49/49 (100%) in

WeCom, 47/49 (95.9%) in Baidu, 20/23 (87.0%) in Alipay, and 12/17

(71.5%) in TikTok. For mini-programs from platforms other than

WeChat that produce inconsistent results, we noted they use distinct

routing prefixes, suggesting a unified vulnerability classification.

Detailed cases of these vulnerable mini-programs across platforms

are listed in the public GitHub repository ofMiniCAT [49].

Listing 4 illustrates the similarity in parameters and target pages

of mini-programs named Wenjuanxing across different platforms

despite minor differences in routing prefixes. This uniformity in

routing mechanisms meansMiniCAT needs only minimal adjust-

ments for each platform. Thus, due to the similarity of the routing

mechanisms, MiniCAT only needs to make some simple adjust-

ments to apply to the analysis of the corresponding platform. For

example, to analyze Baidu mini-programs, MiniCAT only needs to

adjust the API names involved in each step. The MiniCPRF Detector
from MiniCAT now supports automated WeCom, Baidu, Alipay,

and TikTok mini-programs analysis.

Feasibility of MiniCPRF. As previously discussed, to perform

the MiniCPRF attack, the attackers should easily access, view, and

modify the page routing URLs and their parameters. If we want to

figure out how to implement MiniCMRF on other platforms, we

need to answer the following two questions:

• Can attackers obtain mini-programs page routing URLs and pa-
rameters through sharing or forwarding? Our analysis indicates
that only the WeCom and Alipay mini-programs are vulnera-

ble to MiniCPRF attacks. WeCom’s mini-programs can be for-

warded to WeChat, allowing the transition of MiniCPRF attacks

due to similar frameworks. Baidu’s mini-programs only permit

forwarding via encrypted links and always redirecting to the

homepage. Alipay’s mini-programs enable forwarding to vari-

ous applications, with forwarding to DingTalk exposing the path

and parameters [3]. On the contrary, TikTok mini-programs lack

sharing or forwarding capabilities.

• Can attackers construct or modify mini-programs page routing
URLs and parameters? Our findings indicate that all examined

platforms provide navigation to specific mini-program page

paths. Notably,WeCom acceptsmini-program cards fromWeChat,

and due to framework similarities, MiniCPRF attacks can be

transferred fromWeChat to WeCom. From platforms’ developer

documents [1, 5, 25] and W3C specifications [27], Baidu, Alipay,

and TikTok mini-programs facilitate mini-program launching

through the URL schema from H5 or Webview, allowing page

and parameter customization. This feature opens avenues for

MiniCPRF attacks, where attackers can craft a modified URL

schema. Furthermore, even without routing paths and parame-

ters (notably in Baidu and TikTok), attackers can exploit mini-

programs with the same name on other platforms and then

perform attacks.

In summary, despite certain limitations, our measurements indi-

cate that MiniCPRF is a universal risk in the mini-program ecosys-

tem, requiring great attention from vendors and developers.

7 DISCUSSIONS

Limitations. Although MiniCAT can perform further analysis

and evaluations for MiniCPRF, our work still has some limitations.

First,MiniCAT is a static analysis tool based on CodeQL, and its

analysis algorithm is designed based on the standard code structure

of WeChat mini-programs. Thus, like other static analysis meth-

ods, MiniCAT is hard to analyze mini-programs that cannot be

unpacked or heavily obfuscated. Meanwhile, MiniCAT failed to

analyze considerable mini-programs due to timeouts, which can

MiniCAT: Understanding and Detecting Cross-Page Request Forgery Vulnerabilities in Mini-Programs CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

1 /* WeChat Mini -program */
2 goToPage: function(e) {
3 var t = e.currentTarget.dataset.id;
4 wx.navigateTo ({
5 url: "/pages/wjxqPage/wjxqPage?activityId ="+t
6 });},...
7
8 /* Baidu Mini -program */
9 goToPage:function(e){

10 var t =e.currentTarget.dataset.id;
11 swan.navigateTo ({
12 url:"/ pages/baiduAppPages/wjxqPage/wjxqPage?

activityId ="+t
13 })},...
14
15 /* Alipay Mini -program */
16 goToPage: function(e) {
17 var t = e.currentTarget.dataset.id;
18 my.navigateTo ({
19 url: "/ pages/wjxqPage/wjxqPage?activityId ="+t
20 })
21 },...

Listing 4: Source code ofWenjuanxing in multiple platforms.

be partially alleviated by increasing the timeout value. Second, our

crawler cannot successfully collect some mini-programs due to

the compatibility limitations of the WeChat Windows client. Fi-

nally, MiniCAT mainly focuses on detecting potentially vulnerable

mini-programs and cannot automatically verify the vulnerabilities

identified.

Lessons Learned and Mitigation. As mentioned by Wang et

al. [69], current mini-program frameworks have some missing func-

tionality and security features compared to browsers running tra-

ditional web apps. For mini-program routing, we found that the

routing implementation of most mini-program platforms uses plain-

text URL schema and only allows parameters to be passed via URLs,

leading to the risk of MiniCPRF. For user states in mini-programs,

as shown in Table 4, we can observe that, except for Baidu and

TikTok, other mini-program platforms do not support the cookie-

like mechanism. If developers want to implement a reliable user

state, they have to customize their implementation by utilizing

the storage capabilities provided by the mini-program framework

page by page. This process heavily relies on developers’ security

awareness and poses a significant challenge to the security of user

states in mini-programs.

To address the issue of MiniCPRF, we recommend taking the

following measures:

• Developers should consistently implement and verify the user

state across pages and avoid transmitting sensitive parameters

through page routing APIs. Parameters should be fortified with

non-easily forgery elements like time-sensitive signs and times-

tamps. We also advocate conducting sensitive data processing

on the server-side, but not on the front-end of mini-programs.

• Frameworks or super app vendors should address the root causes

of MiniCPRF. They might consider supplying more secure pa-

rameter transmission methods in their page routing APIs and en-

crypting routing details instead of plain text. For mini-program

cards, super apps could integrate server-side, hard-to-forge,

time-sensitive signatures, preventing malicious tampering. Ven-

dors may need to modify their frameworks to implement these

protections. Alternatively, they can provide warning informa-

tion on their development documentation.

Ethical Considerations and Disclosure. To ensure ethical re-

search practices, we conducted proof-of-concept attacks only on

our accounts, devices, and mini-programs, focusing on potential

vulnerabilities in the front-end without exploiting the server-side

and collecting sensitive data. When crawling mini-programs or us-

ing the metadata API, we set a reasonable rate limit (i.e., 20 requests

per minute) to prevent server disruptions.

Meanwhile, we have tried our best to disclose our findings to

related stakeholders and be responsible for the community. Just as

Yang et al. mentioned [70], similar to CMRF attacks, vulnerabilities

from our test-case set were first reported to Tencent, which attrib-

uted MiniCPRF issues to third-party developer lapses. Nonetheless,

to raise awareness among mini-program developers, we acquired

contact details for all 248/316 (78.5%) mini-programs, which pro-

vided contact information and informed them via email, providing

technical details and remedial advice (the letter is inMiniCAT pub-

lic GitHub repository [49]).We have also contacted CNCERT/CC [8],

the Chinese vulnerability coordination organization, and disclosed

our findings with CNVD [7]. As of the submission of this paper,

three cases have been confirmed (CNVD-2023-75836, CNVD-2023-

75837, and CNVD-2024-05527), with the disclosure process ongoing.

8 RELATEDWORK

Mini-Program Security. To comprehensively understand mini-

programs, Zhang et al. [73] presentedMiniCrawler to crawlWeChat

mini-programs and conducted a measurement study of them, in-

cluding their resource consumption, API usage, obfuscation rate,

etc. Lu et al. [59] studied resource management in app-in-app sys-

tems and discovered a series of security flaws that can cause system

resource exposure and deception attacks. Wang et al. [68] proposed

WeDetector to detect three WeChat mini-program bug patterns

and discovered 11 previously unknown bugs in 25 mini-programs.

Zhang et al. [72] studied the identity confusion vulnerability in

app-in-app ecosystems, analyzed 47 super apps and found that

all of them are vulnerable to identity confusion attacks. Yang et

al. [70] proposed CMRFScanner to detect CMRF, a new type of

vulnerability, on a large scale. The results show that 50,281 WeChat

mini-programs and 493 Baidu mini-programs are subject to CMRF.

Most recently, Zhang et al. [74] and Baskaran et al. [50] exam-

ined the sensitive resource access protocols of mini-programs and

discovered master key leakage vulnerabilities. Wang et al. devel-

oped TaintMini [65] to track sensitive data flow in mini-programs,

finding 11.4% of the 238,886 evaluated ones had such data flows,

with 455 risking privacy leaks through collusion. They also devel-

oped APIDIFF [66] to detect API execution differences in WeChat

across platforms, categorizing discrepancies into API existence,

permission, and output. Li et al. [57] developed MiniTracker to

automatically track sensitive flows in mini-programs, addressing

challenges such as asynchronous executions in JavaScript. Their

study on 150K mini-programs revealed common privacy threats

and data leak patterns. Yu et al. [71] developed MiniTaintDev from

WeChat Dev Tools to perform dynamic taint analysis to detect

data leakage and sensitive APIs invokes in mini-programs. Wang

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Zidong Zhang, et al.

et al. [69] explored the web technologies underlying super apps,

detailing their security mechanisms and proposing guidelines for

enhanced security from a browser’s perspective. Tao et al. [64]

introduced JSLibD, a tool for automated extraction and heuristic

detection of third-party libraries in mini-programs. Wang et al. [67]

proposed a framework for data minimization in mini-programs,

focusing on usage scenarios to enhance privacy without compro-

mising functionality. Long et al. [58] investigated dark UI patterns

in mobile apps, highlighting the need for increased awareness and

regulation. Cai et al. [51] addressed the complexity of the shared

account issue in super apps, exploring its implications for security

and user privacy. Zhang et al. [75] discovered and measured the

TrustedDomain attack in app-in-app ecosystems, a method exploit-

ing domain-based allowlist weaknesses. Zhao et al. [76] examined

the security implications of not incorporating signature verification

in mini-program plugins. Li et al. [56] developed XPOScope to de-

tect and mitigate cross-user personal data leakage (XPO) problems

in mini-programs.

Unlike the above research, our work focused on the practical

security issues of the mini-program’s web-app-like features. We sys-

tematically analyzed the problem and presented MiniCPRF, a novel

vulnerability with mini-programs. Then, we developedMiniCAT

to assess the prevalence of this vulnerability on a large scale.

Web App Security. CSRF vulnerability is one of the top security

threats against web apps. Pellegrino et al. [63] developed a model-

based dynamic analysis framework – Deemon, and identified 14

previously unknown CSRF vulnerabilities from 10 web apps. Kho-

dayari et al. [55] focused on the vulnerability of the CSRF client side

in web apps. They proposed JAW to detect client-side CSRF vul-

nerabilities using declarative traversals on hybrid property graphs.

Jensen et al. [53] presented a static analysis tool, TAJS, to detect

potential programming errors in JavaScript web apps. Kashyap et

al. [54] provided JSAI, a robust abstract interpreter specified for-

mally for JavaScript. Hedin et al. [52] proposed a security-enhanced

JavaScript interpreter, JSFlow, for fine-grained information flow

tracking. Park et al. [62] designed SAFE 2.0, a playground for ad-

vanced research in JavaScript web apps. However, all previous

work was designed for web apps, and none of them can analyze

the WeChat mini-program WXML file and build the attack path

required by MiniCPRF, which is implemented byMiniCAT.

9 CONCLUSION
In this work, we presented a new vulnerabilitywithinmini-programs

called MiniCPRF. This vulnerability is caused by the design flaw in

the page routing and user state management of the mini-program

framework, exacerbated by developer misuse. To evaluate the im-

pacts of MiniCPRF, we developedMiniCAT, which analyzed 41,726

mini-programs. Finally, 13,349 mini-programs were identified as

having potential MiniCPRF vulnerabilities. We responsibly reported

our findings to the corresponding vendors, and three of them have

been confirmed with assigned CNVD IDs. Moreover, we conducted

a mini-program impact measurement based on pDNS records and

multi-platform feasibility evaluations. We believe that MiniCPRF

poses a certain security threat to the current mini-program ecosys-

tem, and most developers are unaware of its existence.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable comments

and suggestions. The authors from Shandong University were sup-

ported by National Natural Science Foundation of China (Grant No.

62372268), Shandong Provincial Natural Science Foundation (Grant

No. ZR2023MF043), Taishan Young Scholar Program of Shandong

Province, China (Grant No. tsqn202211001), and Xiaomi Young Tal-

ents Program. Yacong Guwas supported by Postdoctoral Fellowship

Program of CPSF (Grant No. GZC20231361).

REFERENCES
[1] Accessed: 2024-01-27. Alipay Documentation:Mini-Program Scheme. https:

//opendocs.alipay.com/support/01rb18
[2] Accessed: 2024-01-27. Alipay Mini-Program. https://global.alipay.com/pl

atform/site/product/mini-program
[3] Accessed: 2024-01-27. Alipay open platform: how to get any Alipay small program

appId and the page path. https://open.alipay.com/portal/forum/post/17
101017

[4] Accessed: 2024-01-27. APKPure. https://apkpure.net/
[5] Accessed: 2024-01-27. Baidu smart mini-program:mini-program scheme . https:

//smartprogram.baidu.com/docs/develop/function/opensmartprogram/
[6] Accessed: 2024-01-27. Baidu Smart Program. https://smartprogram.baidu.c

om
[7] Accessed: 2024-01-27. Chinese National Vulnerability Database (CNVD). https:

//www.cnvd.org.cn
[8] Accessed: 2024-01-27. CNCERT/CC. https://www.cert.org.cn/publish/en

glish/index.html
[9] Accessed: 2024-01-27. Code Composition of a WeChat Mini Program. https:

//developers.weixin.qq.com/miniprogram/en/dev/framework/quicksta
rt/code.html

[10] Accessed: 2024-01-27. CodeQL CLI. https://docs.github.com/en/code-
security/codeql-cli

[11] Accessed: 2024-01-27. CodeQL for JavaScript. https://codeql.github.com/
docs/codeql-language-guides/codeql-for-javascript

[12] Accessed: 2024-01-27. Decrypting WeChat DataBase. https://www.forensic
focus.com/articles/decrypt-wechat-enmicromsgdb-database/

[13] Accessed: 2024-01-27. Events in WeChat Mini-programs. https://developers
.weixin.qq.com/miniprogram/en/dev/framework/view/wxml/event.html

[14] Accessed: 2024-01-27. Google Play. https://play.google.com/
[15] Accessed: 2024-01-27. JavaScript HTML DOM Events. https://www.w3school

s.com/js/js_htmldom_events.asp
[16] Accessed: 2024-01-27. jieba. https://github.com/fxsjy/jieba
[17] Accessed: 2024-01-27. Packages of WeChat Mini-Program. https://develope

rs.weixin.qq.com/miniprogram/en/dev/framework/subpackages.html
[18] Accessed: 2024-01-27. Passive DNS. https://docs.umbrella.com/investig

ate/docs/passive-dns
[19] Accessed: 2024-01-27. pywinauto. https://github.com/pywinauto/pywinau

to
[20] Accessed: 2024-01-27. Routing in ExpressJS. https://expressjs.com/en/gui

de/routing.html
[21] Accessed: 2024-01-27. Sohu. https://www.sohu.com
[22] Accessed: 2024-01-27. Tencent WeChat. https://www.wechat.com/en/
[23] Accessed: 2024-01-27. The Metadata API for WeChat Mini-Program. https:

//mp.weixin.qq.com/wxawap/waverifyinfo
[24] Accessed: 2024-01-27. The Page Object in WeChat Mini-programs. https://deve

lopers.weixin.qq.com/miniprogram/en/dev/reference/api/Page.html
[25] Accessed: 2024-01-27. Tiktok mini-program:Generate Scheme. https://develo

per.open-douyin.com/docs/resource/zh-CN/mini-app/develop/server
/url-and-qrcode/schema/generate-schema-v2

[26] Accessed: 2024-01-27. TikTok Mini-programs. https://www.tiktok.com/dis
cover/mini-programs

[27] Accessed: 2024-01-27. w3c:MiniApp Addressing explainer. https://github.com
/w3c/miniapp-addressing/blob/main/docs/explainer.md

[28] Accessed: 2024-01-27. WeChat Mini-Program: Cloud Base. https://develo
pers.weixin.qq.com/miniprogram/en/dev/wxcloud/basis/getting-
started.html

[29] Accessed: 2024-01-27.WeChatMini-programCode. https://developers.weixi
n.qq.com/miniprogram/en/dev/framework/open-ability/qr-code.html

[30] Accessed: 2024-01-27. WeChat Mini Program Host Environment. https://deve
lopers.weixin.qq.com/miniprogram/en/dev/framework/quickstart/fra
mework.html

[31] Accessed: 2024-01-27. WeChat Mini Program Login. https://developers.wei
xin.qq.com/miniprogram/en/dev/framework/open-ability/login.html

https://opendocs.alipay.com/support/01rb18
https://opendocs.alipay.com/support/01rb18
https://global.alipay.com/platform/site/product/mini-program
https://global.alipay.com/platform/site/product/mini-program
https://open.alipay.com/portal/forum/post/17101017
https://open.alipay.com/portal/forum/post/17101017
https://apkpure.net/
https://smartprogram.baidu.com/docs/develop/function/opensmartprogram/
https://smartprogram.baidu.com/docs/develop/function/opensmartprogram/
https://smartprogram.baidu.com
https://smartprogram.baidu.com
https://www.cnvd.org.cn
https://www.cnvd.org.cn
https://www.cert.org.cn/publish/english/index.html
https://www.cert.org.cn/publish/english/index.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/quickstart/code.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/quickstart/code.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/quickstart/code.html
https://docs.github.com/en/code-security/codeql-cli
https://docs.github.com/en/code-security/codeql-cli
https://codeql.github.com/docs/codeql-language-guides/codeql-for-javascript
https://codeql.github.com/docs/codeql-language-guides/codeql-for-javascript
https://www.forensicfocus.com/articles/decrypt-wechat-enmicromsgdb-database/
https://www.forensicfocus.com/articles/decrypt-wechat-enmicromsgdb-database/
https://developers.weixin.qq.com/miniprogram/en/dev/framework/view/wxml/event.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/view/wxml/event.html
https://play.google.com/
https://www.w3schools.com/js/js_htmldom_events.asp
https://www.w3schools.com/js/js_htmldom_events.asp
https://github.com/fxsjy/jieba
https://developers.weixin.qq.com/miniprogram/en/dev/framework/subpackages.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/subpackages.html
https://docs.umbrella.com/investigate/docs/passive-dns
https://docs.umbrella.com/investigate/docs/passive-dns
https://github.com/pywinauto/pywinauto
https://github.com/pywinauto/pywinauto
https://expressjs.com/en/guide/routing.html
https://expressjs.com/en/guide/routing.html
https://www.sohu.com
https://www.wechat.com/en/
https://mp.weixin.qq.com/wxawap/waverifyinfo
https://mp.weixin.qq.com/wxawap/waverifyinfo
https://developers.weixin.qq.com/miniprogram/en/dev/reference/api/Page.html
https://developers.weixin.qq.com/miniprogram/en/dev/reference/api/Page.html
https://developer.open-douyin.com/docs/resource/zh-CN/mini-app/develop/server/url-and-qrcode/schema/generate-schema-v2
https://developer.open-douyin.com/docs/resource/zh-CN/mini-app/develop/server/url-and-qrcode/schema/generate-schema-v2
https://developer.open-douyin.com/docs/resource/zh-CN/mini-app/develop/server/url-and-qrcode/schema/generate-schema-v2
https://www.tiktok.com/discover/mini-programs
https://www.tiktok.com/discover/mini-programs
https://github.com/w3c/miniapp-addressing/blob/main/docs/explainer.md
https://github.com/w3c/miniapp-addressing/blob/main/docs/explainer.md
https://developers.weixin.qq.com/miniprogram/en/dev/wxcloud/basis/getting-started.html
https://developers.weixin.qq.com/miniprogram/en/dev/wxcloud/basis/getting-started.html
https://developers.weixin.qq.com/miniprogram/en/dev/wxcloud/basis/getting-started.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/open-ability/qr-code.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/open-ability/qr-code.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/quickstart/framework.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/quickstart/framework.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/quickstart/framework.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/open-ability/login.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/open-ability/login.html

MiniCAT: Understanding and Detecting Cross-Page Request Forgery Vulnerabilities in Mini-Programs CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

[32] Accessed: 2024-01-27. WeChat Mini-Program Network Ability. https://develo
pers.weixin.qq.com/miniprogram/en/dev/framework/ability/network.
html

[33] Accessed: 2024-01-27. WeChat Mini-Program Payment. https://pay.weixin
.qq.com/wechatpay_h5/pages/product/miniapp.shtml

[34] Accessed: 2024-01-27. WeChat Mini-Program Share & Forwarding. https:
//developers.weixin.qq.com/miniprogram/en/dev/framework/open-
ability/share.html

[35] Accessed: 2024-01-27. WeChat Mini-Programs. https://mp.weixin.qq.com/c
gi-bin/wx?token=&lang=en_US

[36] Accessed: 2024-01-27. WeChat Mini Program’s Frame Interface-Page. https:
//developers.weixin.qq.com/miniprogram/en/dev/reference/api/Page
.html

[37] Accessed: 2024-01-27. WeChat Mini-Programs Page Routing. https://develo
pers.weixin.qq.com/miniprogram/en/dev/framework/app-service/rout
e.html

[38] Accessed: 2024-01-27. WeChat Mini-programs Storage. https://developers.w
eixin.qq.com/miniprogram/en/dev/framework/ability/storage.html

[39] Accessed: 2024-01-27. WeChat Payment Guide. https://pay.weixin.qq.com/
wiki/doc/api/wxpay/en/guide/pos/ReasonableQueryMechanism.shtml

[40] Accessed: 2024-01-27. WeChat Revenue and Usage Statistics (2024). https:
//www.businessofapps.com/data/wechat-statistics

[41] Accessed: 2024-01-27. WeCom Mini-programs. https://work.weixin.qq.com
/wework_admin/wxcontacts/wxconnection_h5_guide?t=miniProgram

[42] Accessed: 2024-01-27. wxappUnpacker. https://github.com/system-cpu/wx
appUnpacker

[43] Accessed: 2024-01-27. WXML Introduction. https://developers.weixin.qq
.com/miniprogram/en/dev/framework/view/wxml

[44] Accessed: 2024-01-27. wxml-transformer. https://github.com/imingyu/wxm
l-transformer

[45] Accessed: 2024-01-27. wx.navigateTo. https://developers.weixin.qq.com
/miniprogram/en/dev/api/route/wx.navigateTo.html

[46] Accessed: 2024-01-27. wx.redirectTo. https://developers.weixin.qq.com/m
iniprogram/en/dev/api/route/wx.redirectTo.html

[47] Accessed: 2024-01-27. wx.reLaunch. https://developers.weixin.qq.com/m
iniprogram/en/dev/api/route/wx.reLaunch.html

[48] Accessed: 2024-04-27. WeChat Revenue and Usage Statistics (2024). https:
//developers.weixin.qq.com/miniprogram/en/dev/reference/api/getA
pp.html

[49] Accessed: 2024-06-12. MiniCAT. https://github.com/kee1ongz/MiniCAT
[50] Supraja Baskaran, Lianying Zhao, Mohammad Mannan, and Amr M. Youssef.

2023. Measuring the Leakage and Exploitability of Authentication Secrets in

Super-apps: TheWeChat Case. In Proceedings of the 26th International Symposium
on Research in Attacks, Intrusions and Defenses, RAID 2023, Hong Kong, China,
October 16-18, 2023.

[51] Yifeng Cai, Ziqi Zhang, Ding Li, Yao Guo, and Xiangqun Chen. 2023. Shared

Account Problem in Super Apps. In Proceedings of the 2023 ACM Workshop on
Secure and Trustworthy Superapps (SaTS), Copenhagen, Denmark, November 26,
2023.

[52] Daniel Hedin, Arnar Birgisson, Luciano Bello, and Andrei Sabelfeld. 2014. JSFlow:

tracking information flow in JavaScript and its APIs. In Proceedings of the 29th
ACM Symposium on Applied Computing (SAC), Gyeongju, Republic of Korea, March
24-28, 2014.

[53] Simon Holm Jensen, Magnus Madsen, and Anders Møller. 2011. Modeling the

HTML DOM and browser API in static analysis of avaScript web applications.

In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Con-
ference on Foundations of Software Engineering (ESEC/FSE), Szeged, Hungary,
September 5-9, 2011.

[54] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gibbons,

John Sarracino, Ben Wiedermann, and Ben Hardekopf. 2014. JSAI: A Static

Analysis Platform for JavaScript. In Proceedings of the 22nd ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering (FSE), Hong Kong,
China, November 16 - 22, 2014.

[55] Soheil Khodayari and Giancarlo Pellegrino. 2021. JAW: Studying Client-side

CSRF with Hybrid Property Graphs and Declarative Traversals. In Proceedings of
the 30th USENIX Security Symposium (USENIX-Sec), August 11-13, 2021.

[56] Shuai Li, Zhemin Yang, Yunteng Yang, Dingyi Liu, and Min Yang. 2024. Identi-

fying Cross-User Privacy Leakage in Mobile Mini-Apps at A Large Scale. IEEE
Transactions on Information Forensics and Security (2024).

[57] Wei Li, Borui Yang, Hangyu Ye, Liyao Xiang, Qingxiao Tao, Xinbing Wang, and

Chenghu Zhou. 2023. MiniTracker: Large-Scale Sensitive Information Tracking

in Mini Apps. IEEE Transactions on Dependable and Secure Computing (2023).

[58] Mengyi Long, Yue Xu, Jiangrong Wu, Qihua Ou, and Yuhong Nan. 2023. Un-

derstanding Dark UI Patterns in the Mobile Ecosystem: A Case Study of Apps

in China. In Proceedings of the 2023 ACM Workshop on Secure and Trustworthy
Superapps (SaTS), Copenhagen, Denmark, November 26, 2023.

[59] Haoran Lu, Luyi Xing, Yue Xiao, Yifan Zhang, Xiaojing Liao, XiaoFeng Wang,

and Xueqiang Wang. 2020. Demystifying Resource Management Risks in Emerg-

ing Mobile App-in-App Ecosystems. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security (CCS), Virtual Event, USA,
November 9-13, 2020.

[60] Shi Meng, Liu Wang, Shenao Wang, Kailong Wang, Xusheng Xiao, Guangdong

Bai, and Haoyu Wang. 2023. Wemint: Tainting Sensitive Data Leaks in WeChat

Mini-Programs. In Proceedings of the 38th IEEE/ACM International Conference on
Automated Software Engineering (ASE), Luxembourg, September 11-15, 2023.

[61] Aaditya Naik, Jonathan Mendelson, Nathaniel Sands, Yuepeng Wang, Mayur

Naik, and Mukund Raghothaman. 2021. Sporq: An Interactive Environment for

Exploring Code using Query-by-Example. In The 34th Annual ACM Symposium
on User Interface Software and Technology (UIST), Virtual Event, USA, October
10-14, 2021.

[62] Jihyeok Park, Yeonhee Ryou, Joonyoung Park, and Sukyoung Ryu. 2017. Anal-

ysis of JavaScript web applications using SAFE 2.0. In Proceedings of the 39th
International Conference on Software Engineering (ICSE), Buenos Aires, Argentina,
May 20-28, 2017 - Companion Volume.

[63] Giancarlo Pellegrino, Martin Johns, Simon Koch, Michael Backes, and Christian

Rossow. 2017. Deemon: Detecting CSRF with Dynamic Analysis and Property

Graphs. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security (CCS), Dallas, TX, USA, October 30 - November 03, 2017.

[64] Junjie Tao, Jifei Shi, Ming Fan, Yin Wang, Junfeng Liu, and Ting Liu. 2023. JSLibD:

Reliable and Heuristic Detection of Third-party Libraries in Miniapps. In Pro-
ceedings of the 2023 ACM Workshop on Secure and Trustworthy Superapps (SaTS),
Copenhagen, Denmark, November 26, 2023.

[65] Chao Wang, Ronny Ko, Yue Zhang, Yuqing Yang, and Zhiqiang Lin. 2023. Taint-

mini: Detecting Flow of Sensitive Data in Mini-Programs with Static Taint Anal-

ysis. In Proceedings of the 45th IEEE/ACM International Conference on Software
Engineering (ICSE), Melbourne, Australia, May 14-20, 2023.

[66] Chao Wang, Yue Zhang, and Zhiqiang Lin. 2023. One Size Does Not Fit All:

Uncovering and Exploiting Cross Platform Discrepant APIs in WeChat. In Pro-
ceedings of the 32nd USENIX Security Symposium (USENIX-Sec), Anaheim, CA,
USA, August 9-11, 2023.

[67] Shenao Wang, Yanjie Zhao, Kailong Wang, and Haoyu Wang. 2023. On the

Usage-scenario-based Data Minimization in Mini Programs. In Proceedings of the
2023 ACM Workshop on Secure and Trustworthy Superapps (SaTS), Copenhagen,
Denmark, November 26, 2023.

[68] Tao Wang, Qingxin Xu, Xiaoning Chang, Wensheng Dou, Jiaxin Zhu, Jinhui

Xie, Yuetang Deng, Jianbo Yang, Jiaheng Yang, Jun Wei, and Tao Huang. 2022.

Characterizing and Detecting Bugs in WeChat Mini-Programs. In Proceedings of
the 44th IEEE/ACM 44th International Conference on Software Engineering (ICSE),
Pittsburgh, PA, USA, May 25-27, 2022.

[69] Yue Wang, Yao Yao, Shangcheng Shi, Weiting Chen, and Lin Huang. 2023. To-

wards a Better Super-App Architecture from a Browser Security Perspective.

In Proceedings of the 2023 ACM Workshop on Secure and Trustworthy Superapps
(SaTS), Copenhagen, Denmark, November 26, 2023.

[70] Yuqing Yang, Yue Zhang, and Zhiqiang Lin. 2022. Cross Miniapp Request Forgery:

Root Causes, Attacks, and Vulnerability Detection. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security (CCS), Los
Angeles, CA, USA, November 7-11, 2022.

[71] Jianjia Yu, Zifeng Kang, and Yinzhi Cao. 2023. MiniTaintDev: Unveiling Mini-App

Vulnerabilities through Dynamic Taint Analysis. In Proceedings of the 2023 ACM
Workshop on Secure and Trustworthy Superapps (SaTS), Copenhagen, Denmark,
November 26, 2023.

[72] Lei Zhang, Zhibo Zhang, Ancong Liu, Yinzhi Cao, Xiaohan Zhang, Yanjun Chen,

Yuan Zhang, Guangliang Yang, and Min Yang. 2022. Identity Confusion in

WebView-based Mobile App-in-app Ecosystems. In Proceedings of the 31st USENIX
Security Symposium (USENIX-Sec), Boston, MA, USA, August 10-12, 2022.

[73] Yue Zhang, Bayan Turkistani, Allen Yuqing Yang, Chaoshun Zuo, and Zhiqiang

Lin. 2021. A Measurement Study of Wechat Mini-Apps. In Proceedings of the
2021 ACM SIGMETRICS International Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS), Virtual Event, China, June 14-18, 2021.

[74] Yue Zhang, Yuqing Yang, and Zhiqiang Lin. 2023. Don’t Leak Your Keys: Under-

standing, Measuring, and Exploiting the AppSecret Leaks in Mini-Programs. In

Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications
Security (CCS), Copenhagen, Denmark, November 26-30, 2023.

[75] Zhibo Zhang, Zhangyue Zhang, Keke Lian, Guangliang Yang, Lei Zhang, Yuan

Zhang, and Min Yang. 2023. TrustedDomain Compromise Attack in App-in-app

Ecosystems. In Proceedings of the 2023 ACM Workshop on Secure and Trustworthy
Superapps (SaTS), Copenhagen, Denmark, November 26, 2023.

[76] Yanjie Zhao, Yue Zhang, and Haoyu Wang. 2023. Potential Risks Arising from

the Absence of Signature Verification in Miniapp Plugins. In Proceedings of the
2023 ACM Workshop on Secure and Trustworthy Superapps (SaTS), Copenhagen,
Denmark, November 26, 2023.

https://developers.weixin.qq.com/miniprogram/en/dev/framework/ability/network.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/ability/network.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/ability/network.html
https://pay.weixin.qq.com/wechatpay_h5/pages/product/miniapp.shtml
https://pay.weixin.qq.com/wechatpay_h5/pages/product/miniapp.shtml
https://developers.weixin.qq.com/miniprogram/en/dev/framework/open-ability/share.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/open-ability/share.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/open-ability/share.html
https://mp.weixin.qq.com/cgi-bin/wx?token=&lang=en_US
https://mp.weixin.qq.com/cgi-bin/wx?token=&lang=en_US
https://developers.weixin.qq.com/miniprogram/en/dev/reference/api/Page.html
https://developers.weixin.qq.com/miniprogram/en/dev/reference/api/Page.html
https://developers.weixin.qq.com/miniprogram/en/dev/reference/api/Page.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/app-service/route.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/app-service/route.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/app-service/route.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/ability/storage.html
https://developers.weixin.qq.com/miniprogram/en/dev/framework/ability/storage.html
https://pay.weixin.qq.com/wiki/doc/api/wxpay/en/guide/pos/ReasonableQueryMechanism.shtml
https://pay.weixin.qq.com/wiki/doc/api/wxpay/en/guide/pos/ReasonableQueryMechanism.shtml
https://www.businessofapps.com/data/wechat-statistics
https://www.businessofapps.com/data/wechat-statistics
https://work.weixin.qq.com/wework_admin/wxcontacts/wxconnection_h5_guide?t=miniProgram
https://work.weixin.qq.com/wework_admin/wxcontacts/wxconnection_h5_guide?t=miniProgram
https://github.com/system-cpu/wxappUnpacker
https://github.com/system-cpu/wxappUnpacker
https://developers.weixin.qq.com/miniprogram/en/dev/framework/view/wxml
https://developers.weixin.qq.com/miniprogram/en/dev/framework/view/wxml
https://github.com/imingyu/wxml-transformer
https://github.com/imingyu/wxml-transformer
https://developers.weixin.qq.com/miniprogram/en/dev/api/route/wx.navigateTo.html
https://developers.weixin.qq.com/miniprogram/en/dev/api/route/wx.navigateTo.html
https://developers.weixin.qq.com/miniprogram/en/dev/api/route/wx.redirectTo.html
https://developers.weixin.qq.com/miniprogram/en/dev/api/route/wx.redirectTo.html
https://developers.weixin.qq.com/miniprogram/en/dev/api/route/wx.reLaunch.html
https://developers.weixin.qq.com/miniprogram/en/dev/api/route/wx.reLaunch.html
https://developers.weixin.qq.com/miniprogram/en/dev/reference/api/getApp.html
https://developers.weixin.qq.com/miniprogram/en/dev/reference/api/getApp.html
https://developers.weixin.qq.com/miniprogram/en/dev/reference/api/getApp.html
https://github.com/kee1ongz/MiniCAT

	Abstract
	1 Introduction
	2 Background and Threat Model
	2.1 Mini-Program
	2.2 Threat Model

	3 Motivation Case and MiniCPRF
	3.1 Motivation Case
	3.2 Summary of MiniCPRF
	3.3 Automated Detection of MiniCPRF

	4 Design of MiniCAT
	4.1 Mini-Program Crawler
	4.2 MiniCPRF Detector

	5 Implementation of MiniCAT
	6 Evaluations
	6.1 False Positive and False Negative
	6.2 Insight Evaluation
	6.3 Vulnerability Verification
	6.4 Real-world Case Studies
	6.5 Measurements on Other Platforms

	7 Discussions
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

