
FragDroid: Automated User Interface Interaction
with Activity and Fragment Analysis in Android

Applications

Jia Chen†, Ge Han†, Shanqing Guo*†‡ and Wenrui Diao§
†School of Computer Science and Technology, Shandong University

Email: chenjia@mail.sdu.edu.cn, hangehg@126.com
‡Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education,

Shandong University, Jinan 250100, China

Email: guoshanqing@sdu.edu.cn
§Jinan University

Email: diaowenrui@link.cuhk.edu.hk

Abstract—Recent years have witnessed the enormous growth
of Android phones in the consumer market. On the other hand,
as the most popular mobile platform, Android also attracts lots
of attackers’ attention. As a result, more and more Android
malicious apps appear in the wild, which poses a serious threat
to user’s security and privacy. To such massive volume of Android
malware, automated UI testing techniques have become the
mainstream solutions because of the detection efficiency and
accuracy. However, all existing UI testing techniques treat the
Activity as the basic unit of UI interactions and cannot carry out a
fine-grained analysis for Fragments. Due to the lack of Fragment-
level analysis, the path coverage is usually quite limited.

To fill this gap, in this paper, we propose FragDroid, a
novel automated UI testing framework supporting both Activity
and Fragment analysis. To achieve the Fragment-level testing,
we design the Activity & Fragment Transition Model (AFTM)
to simulate the internal interactions of an app, and ATFM
could be utilized to generate test cases automatically through
UI interactions. With the assist of AFTM, FragDroid achieves
accessing most Activities and Fragments contained in the app
along with the capability of detecting arbitrary API calls. We
implemented a prototype of FragDroid and evaluated it on 15
popular apps. The results show FragDroid successfully covered
66% Fragments and the corresponding API calls of testing apps.
Also, the traditional approaches have to miss at least 9.6% of
API calls invoked in Fragments.

I. INTRODUCTION

The powerful functionalities of smartphones are primarily

supported by diverse mobile applications (apps for short). As

the most popular mobile platform, Android provides millions

of apps for users. There are over 1.5 million applications

and over 50 billion downloads on Google Play - Android’s

official app store. Android’s popularity also attracts attackers’

attention. More and more malicious apps appear in the wild,

which poses a serious threat to user’s security and privacy.

To such massive volume of Android malware, automated

UI testing techniques have become the mainstream solutions

because they could achieve the balance of detection efficiency

and accuracy. The original approach of UI testing is to inject

random test cases into a running app to explore UI states as

many as possible. The most representative tool is Monkey [1]

which is provided by Google. After that, as an enhancement,

the record and replay (R&R) test technique was proposed [2],

[3]. Such technique could record the UI events triggered by

human testers and translate them to scripts. The scripts can

then be executed on other devices to drive the app running

through replaying the recorded UI events. The R&R test

technique could reproduce the test cases easily, but its cost

is quite expensive in the input collection and maintenance.

More recently, model-based testing (MBT) technique was

proposed, which injects test cases into an app aligning with a

specific model. MBT usually contains two phases – model

generation and dynamic testing. The challenge of MBT is

how to generate an effective model with high path coverage

rate. Automatic model generation based on the source code

is usually used in white-box tests, while dynamic slicing at

runtime techniques is usually used in black-box tests. For

dynamic slicing, the model generated by a slicer based on UI

states guides the app to trigger events, and the shortcomings

include the difficulty of backtrack and the lack of context.

Activities are the fundamental building blocks of Android

apps. Existing Android UI test tools based on MBT mainly

use the Activity as the basic unit to distinguish different UI

states. However, since Android 3.0, the Fragment has been

introduced into Android, and it could be treated as sub-

Activity or mini-Activity. The usage of Fragments has become

popular after Android 5.0 because of its high efficiency and

low consumption in the UI switching. To demonstrate its

popularity, we conducted a study on 217 top downloading

apps from Google Play, and it shows that nearly 91% of these

apps use Fragments. At the same time, none of existing MBT

techniques could handle the widespread Fragment components

properly, and the challenges derive from multiple aspects.

Challenge 1: An Activity could host Fragments, and nearly

all existing MBT techniques take Activity as a fixed UI state.

The existing techniques neglect the reachable UI states caused

398

2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

2158-3927/18/$31.00 Â©2018 IEEE
DOI 10.1109/DSN.2018.00049

(a) Fragment of Cate-
gory tab

(b) Fragment of Re-
cent tab

Fig. 1: Fragment Transformation

(a) Fragment of wa-
llpapers

(b) Slide menu (c) Fragment of live
wallpapers

Fig. 2: Fragment switching through hidden slide menu

by Fragment transformations and miss the logic functions

contained in them. Although random input tests, such as

Monkey, can occasionally reach these Fragments, they are not

programmable and cannot be controlled accurately. To achieve

the Fragment-level analysis, the transitions between Activities

and Fragments and the functions contained in Fragments

need to be analyzed. Following this requirement, it has to

be considered that a transformation of Fragments inside an

Activity may lead a switching of UI states. As an example

shown in Figure 1, the clicking on the menu will trigger a

Fragment transformation (from Figure 1(a) to Figure 1(b)),

which further occurs the switching of UI states. In this case, we

could find the object of the rest testing operations is changed

while the Activity is not. If the testing tools ignore Fragment

transformations, the proportion of total reachable UI states will

stay at a low level.

Challenge 2: The approaches to switching Fragment compo-

nents could be invisible or hidden in UI, so the existing MBT

techniques may fail to uncover the relationships of Fragments.

Figure 2 illustrates this situation, in which an app uses the

navigation drawer design. Figure 2(a) and Figure 2(c) show

two Fragments in the same Activity, and the slide menu in

Figure 2(b) is the only bridge between them. Also, the menu

is hidden and only can be seen by clicking the left-top icon

or sliding from left to right. Most existing techniques neglect

such kind of switching relationships and the corresponding UI

states.

Our Work. To address the challenges caused by Fragment

components, we propose FragDroid, a novel automated An-

droid UI testing technique supporting both Activity and Frag-

ment analysis. FragDroid takes the interactions of Activities

and Fragments into consideration during the test. It could

detect and invoke both Activities and Fragments to explore

all reachable UI states.

In the design of FragDroid, we define an Activity & Frag-

ment Transition Model (AFTM) which could be evolutionarily

updated to store the possible transitions between Activities

and Fragments. AFTM considers the dependencies among

UI elements including Activities, Fragments, and widgets. To

address the feature of hidden switching of Fragments, we use

the Java reflection mechanism to switch UI states forcedly.

Also, the design of FragDroid synthesizes the idea of ripper

techniques and automation frameworks/APIs (AF/A) [4], [5],

[6] (providing the high-level syntax for generating test cases).

Given an APK file, FragDroid extracts the dependency in-

formation first. Then this app is installed on a customized

Android device for dynamic execution. FragDroid generates

proper test case scripts base on AF/A, and test cases will

trigger different UI events. At the same time, FragDroid

monitors and analyzes the runtime information. Once the UI

state (on the Fragment level) changes, the AFTM and the

sequence of test cases will be updated until all possible UI

states have been explored.

Contributions. The main contributions of this paper are:

• We proposed Fragdroid, the first Android automated UI

testing framework supporting both Activity and Fragment

analysis. We also implemented a full-feature prototype of

FragDroid.

• We analyzed 217 popular apps from different categories

and revealed that up to 91% of apps are developed with

Fragments. We evaluated FragDroid on 15 of them, and

the average coverage is 66% for Fragments and 71.94%

for Activities. It demonstrates that FragDroid achieves

a satisfactory coverage and reaches a recommendable

performance.

• We applied Fragdroid to discover the relation between the

invocations of sensitive APIs and UI elements (including

Activities and Fragments), which is helpful for detecting

malicious code, bug, etc. In the experiment, 46 sensitive

APIs, like obtaining locations and accessing storage, were

found through deploying FragDroid on 15 selected apps.

The result shows that the API invocations associated with

Fragments account for 49% of the total invocations. The

traditional approaches based on Activity have to miss at

least 9.6% of API calls invoked in Fragments.

Roadmap. The rest of this paper is organized as follows.

Section II gives the necessary background of Activity and

Fragment. In Section III, we present the high-level design of

FragDroid. Section IV provides the definition and initialization

the Activity & Fragment Transition Model. Section V and

Section VI describe the process of dependency extraction and

evolutionary test case generation respectively. The experimen-

399

tal results are presented in Section VII. Section VIII discusses

the limitation of our framework. Section IX summarizes the

related works, and Section X concludes this paper.

II. BACKGROUND

In this section, we briefly introduce the Activity and Frag-

ment components in Android.

A. Activity and Fragment in Android

The Activity class is the most common component of an

Android app, and the way in which Activities are launched and

put together plays a fundamental part in application model [7].

It serves as the entry point to interact with users and provides

a window where the app draws its UI.

The Fragment was introduced in Android 3.0 to facilitate the

app development and better the user experience [8]. It supports

more dynamic and flexible UI designs on large screens. A

Fragment could be treated as a modular section of an Activity

(or mini-Activity), which has its own lifecycle, receives its

own input events. By dividing the layout of an Activity into

Fragments, developers become able to modify the Activity’s

appearance at runtime [9].

B. The Relationship of Activity and Fragment

In simple terms, the Activity and Fragment are both the

fundamental building blocks of Android apps. A Fragment

could be treated as a sub-Activity or mini-Activity. It could be

added to an Activity or removed from an Activity at runtime.

Usually, a Fragment contributes a portion of UI to the host

Activity, which is embedded as a part of the Activity’s overall

view hierarchy. Developers can attach the Fragment layouts

they want to inflate by implementing the onCreateView()
callback method. There are two ways to add a Fragment to the

Activity layout: (1) declare the Fragment inside an Activity’s

layout file; (2) add the Fragment into an existing ViewGroup

programmatically. The FragmentTransaction class [10]

provides the APIs for performing a set of Fragment operations,

including adding, removing, and replacing a Fragment. The

code snippet listed in Figure 3 shows how to add a Fragment

to an Activity at runtime.

In addition, developers can combine multiple Fragments

in a single Activity to build a multi-pane UI and reuse one

Fragment across multiple Activities. Since a Fragment can get

Context instance from its host Activity, it can execute almost

all actions like an Activity, such as starting a new Activity,

obtaining privileges, accessing sensitive information, and so

forth.

III. SYSTEM OVERVIEW

In this paper, we propose FragDroid, an automated Android

GUI testing framework supporting Fragments. It can trigger

nearly all Fragments and Activities during dynamic analysis

to achieve a high path coverage. As illustrated in Figure 4,

FragDroid contains two main phases: Static Information Ex-
traction and Evolutionary Test Case Generation. Here we give

a brief overview.

Static Information Extraction. Based on the static code

analysis, this phase aims to collect the necessary information

to facilitate the subsequent evolutionary test case generation

phase.

• The primary information collected is the Activity &

Fragment Transition Model (AFTM) which is a finite

state model simulating the internal interactions among

Activities and Fragments. This model is extracted from

the smali code1 of the target app. The formal definition

of AFTM will be given in Section IV-A.

• Also, some meta-data used for the evolutionary testing

will be collected, like the number of Activities and Frag-

ments, dependencies among UI controls, etc. Especially,

we provide a JSON file that records all view components

and the locations they appear.

Evolutionary Test Case Generation. In this phase, dynamic

test cases are generated with the data in AFTM. Note that,

AFTM is a dynamic model, and it will be updated continu-

ously until all nodes have been visited.

In the beginning, the queue generation module traverses the

initial AFTM by breadth-first search. Every newly discovered

node (Activity or Fragment) in the AFTM will trigger that

a new item will be pushed to the queue. This item contains

the information of the transition from the entry node to the

discovered node, like the way to reaching particular interface

and a series of UI events during the transition. After that,

the item in the queue will be put to the test case generation
module for generating a test program by Robotium. With the

meta-data collected during static analysis, the test program will

be created and installed to the phone automatically.

After running a test program, the UI driving module ana-

lyzes the current UI state on the Fragment level. Three tasks

are involved: (1) identifying the current Activity and Fragment

based on the previously extracted resource dependency; (2)

triggering all clickable widgets one by one; (3) analyzing the

new UI state after clicking operations and updating the AFTM

(if a new transition relationship appears). The above operations

will not stop until all nodes have been visited.

IV. ACTIVITY & FRAGMENT TRANSITION MODEL

To facilitate the execution of our dynamic analysis frame-

work, we propose the Activity & Fragment Transition Model

(AFTM). AFTM is a finite state model extracted from an

Android app. It contains all working Activities, Fragments, and

the event-driven transitions among them. Working Activities

and Fragments mean they are not isolated and could interact

with users. Essentially, such model simulates the internal

structure of an app and could be treated as a map for dynamic

analysis.

In this section, we give the formal definition of AFTM and

describe how to initialize this model from an app as well as

other associated tasks during static analysis.

1After reversing an APK file, we could get the corresponding smali code,
like the decompilation code from binary code.

400

1 // Get an instance of FragmentTransaction from an Activity
2 FragmentManager fragmentManager = getFragmentManager();
3 FragmentTransaction fragmentTransaction = fragmentManager.beginTransaction();
4

5 // Use the add() method to add a Fragment
6 // ExampleFragment class extends from android.app.Fragment
7 ExampleFragment fragment = new ExampleFragment();
8 fragmentTransaction.add(R.id.fragment_container, fragment);
9

10 // If we want to replace the current Fragment with ExampleFragment, use:
11 // fragmentTransaction.replace(R.id.fragment_container, fragment);
12 fragmentTransaction.commit();

Fig. 3: Code example: Add a Fragment to an Activity

Evolutionary Test Case Generation

AFTM Test Case
Generation

Queue
Generation

UI Driving

AFTM
Meta-dataModel Extraction

Meta-data Extration

Static Information Extration

Test Result

Fig. 4: Overview of FragDroid

A. Definition of AFTM

Definition 1. The AFTM of an app is a tuple < A,F,E >,

where

• A is a finite set of Activities that can switch from/to other

elements (Activities or Fragments) in the call graph of the

app. A0 is the entry Activity, and so on, for A1, A2, A3,

and

• F is a finite set of Fragments that can switch from/to

other elements in the call graph. Similarly, we have F0,

F1, F2, and

• E is a finite set of transition relationships among Activ-

ities and Fragments. There are three basic relationships:

1) E1 : A → A (outer): From an Activity to another

Activity directly. Since there doesn’t exist A → A
(inner), we will use A→ A to represent it.

2) E2 : A → F (inner): From an Activity to its own

Fragments. We will use A→ Fi to represent it.

3) E3 : F → F (inner): From a Fragment to another

Fragment. Both of them belong to one Activity. We

will use F → Fi to represent it.

Note that, in fact, there are seven types of transition:

A → A, A → Fi, F → Fi, A → Fo, F → Ai, F → Ao,

and F → Fo, where Fi (Ai) stands for an internal Fragment

(Activity), and Fo (Ao) stands for an external Fragment

(Activity). Finally, we merge them into three situations as

mention above. The other four situations are ignored. First,

we ignore the edge F → Ai because this transition must go

through its host Activity. Second, all edges starting from a

Setting
Activity
(A3)

Settings
Fragment
(F5)

SplashScreen
Activity
(A0)

HourlyForecast
DetailActivity

(A2)
Report
Fragment
(F4)

WeatherMain
Activity
(A1)

Location2Paging
Fragment
(F2)

Location1Paging
Fragment
(F1)

Location0Paging
Fragment
(F0) E3

E3

E1

E1

E1

E2

E2

WeatherMainActivity
(Location0Paging

Fragment)

XML File
(Activity)

XML File
(Fragment)

Code File
(Activity)

Code File
(Fragment)

Fig. 5: Example of AFTM

Fragment can be regarded as starting from its host Activity.

Therefore, F → Ao and F → Fo can be considered as

A → Ao and A → Fo respectively. In Definition 1, A → Ao

is equal to A→ A. Third, A→ Fo can be split into A→ A
and A→ Fi.

After merging, all transitions among Activities and Frag-

ments can be expressed by the three basic edges. In the paper,

we use E1 to represent A→ A, E2 for A→ Fi, and E3 for

F → Fi. In Figure 5, we give an abstract view of AFTM of

an app, and we could find the three basic edges (E1, E2, and

E3) could cover all situations.

B. Initialization of AFTM

In this subsection, we introduce how to generate the AFTM

from an app.
1) Decompile APK: We use Apktool [11] to decompile the

target APK file to get the smali code and its AndroidMani-

fest.xml file. The initialization construction of AFTM is based

on them. Also, in this step, we further convert the smali code

to the corresponding Java code through jd-core [12] for the

last step – transition edge calculation.
2) Get the Effective Activities and Fragments: In order to

ensure the accuracy of AFTM, we must remove the invalid Ac-

tivities and Fragments, which have no interactions with other

401

UI elements. Invalid Activities include the Activities involved

in intermediate classes as well as isolated Activities. Through

analyzing the manifest file, we can get a list of all declared

Activities. Also, this list does not contain the Activities in

intermediate classes, so the interference of intermediate classes

can be solved. Then, we filter out the isolated Activities. If

an Activity is considered as a node, the interaction between

two nodes is an edge. It is clear that when completing the

classification and acquisition of all the edges, the nodes not

linked by any edge are isolated and should be removed.

To Fragments, through scanning all the decompiled smali

code files, we can find some files that inherit from the

Fragment class. These files are the subclasses of Fragment,

and we save the class names to a list. Next, we scan all smali

files again to find out all derived classes that inherit from these

subclasses of Fragment and add the newly discovered ones

to our collection. Note that this collection still needs to be

filtered. Here we assume that we have obtained a valid list of

Activities. Then we collaborate the effective Activity classes

with the Fragments in the collection to observe whether there

exists a statement of the Fragment. If the statement could be

found, we consider the corresponding Fragment is an effective

Fragment. Following this approach until all Fragments in

the collection are checked, we will get an updated effective

collection in the end.

3) Get the Transition Edges: We treat the Activities and

Fragments found in the static analysis as nodes, so the transi-

tion relationships among them are edges. There are seven types

of edges in practice. Note that, as mentioned before, the seven

types will be merged to three basic types: A → A, A → Fi,

and F → Fi. We designed an Algorithm to emulate those

edges and generate the AFTM graph, as listed in Algorithm 1.

As shown in Algorithm 1, to the edge A → A, we should

analyze the file of every Activity. Whenever we want to switch

to a new Activity, we need to create an Intent object with

the information of this converted Activity and execute the

startActivity() method. If there exists Java code like

the form of new Intent(Class A0, Class A1) or

setClass(Class A0, Class A1) in A0 class, the sec-

ond parameter (Class A1) could be used as the information

of the Activity converted to because it indicates the name of

the new Activity. Then we will add this switching relationship

A0 → A1 to the list. To the code new Intent(String
action) or setAction(String action), it is a dif-

ferent case because the String type of parameter indicates

the information of the Action in AndroidManifest.xml file.

Therefore, we have to find the corresponding statement in

AndroidManifest.xml, determine the Activity it belongs to, and

add the corresponding edge and nodes to the graph.

To the edge with Fragment as the end node, say A → Fi

and F → Fi, we look for the code of instances of Fragment

F1 in Activity A0’s class file or Fragment F0’s class file.

Then If F1 belongs to A0 or F0 and F1 belong to the same

Activity, these edges and nodes will be added to the graph.

Algorithm 1 Generate AFTM Graph

Input:
Current Activity java file called A0.java

Current Fragment java file called F0.java

AndroidManifest.xml

Output:
The AFTM Graph G = (V,E)
function GETEDGEATOAORATOF()

for all lines in A0.java do
if contains setClass(Class A0, Class A1) or

new Intent(Class A0, Class A1) then
V = V ∪A0;
V = V ∪A1;
E = E ∪ (A0→ A1);

end if
if contains new Intent(String action) or

setClass(String action) then
if find A1 in AndroidManifest.xml by action

then
V = V ∪A0;
V = V ∪A1;
E = E ∪ (A0→ A1);

end if
end if
if contains new F1() or instanceof(F1) or

F1.newInstance() then
if F1 ∈ A0 then

V = V ∪A0;
V = V ∪ F1;
E = E ∪ (A0→ F1);

end if
end if

end for
end function
function GETEDGEFTOF()

for all lines in F0.java do
if contains new F1() or instanceof(F1) or

F1.newInstance() then
if F0, F1 ∈ A then

V = V ∪ F0;
V = V ∪ F1;
E = E ∪ (F0→ F1);

end if
end if

end for
end function

V. STATIC INFORMATION EXTRACTION

FragDroid needs the dependency information to identify

states and analyze relationships in apps. Such information is

provided as knowledge for the subsequent evolutionary test

case generation phase.

In the previous research, TrimDroid [13] explains widget,

handler, and Activity dependency on the level of Activity. As

402

1 // Create intent for next Activity
2 Intent intent = new Intent(Context,

SecondActivity.class);
3

4 // Start the Activity from Activity
5 startActivity(intent);
6

7 // Start the Activity from Fragment
8 getActivity().startActivity(intent);

Fig. 6: Code example: Start next Activity

the Activity dependency in TrimDroid, FragDroid extracts the

dependency relationships among Activities and extends the

scope to the Fragment level as well as the dependency rela-

tionships between Activities and Fragments. Besides, resource

dependency and input dependency are the essential parts of

the collected meta-data. The Activity & Fragment dependency

specifies the Activities and Fragments impacted by the behav-

iors of another Activity or Fragment. The resource dependency

helps the UI driving component to quickly distinguish which

Activity or Fragment the current UI belongs to through source-

IDs. The Input dependency is built up manually to provide

proper inputs for widgets like EditText so that the test cases

could reach more states.

A. Activity & Fragment Dependency

It is known that the switching between Activities could

be proceeded by Intent. Usually, an Intent contains many

serialized data some of which are concerned with the widget

state. Likewise, in a Fragment, the Intent can be used for

the transition from a Fragment to an Activity. This can be

implemented by calling the Context of host Activity in a

Fragment via function getActivity(), as shown in the

code snippet in Figure 6. In some cases, a Fragment shares

events with its host Activity. One way to achieve that is to

define a callback interface inside the Fragment and require

the host Activity to implement.

Furthermore, a Fragment may be used in one or more

Activities, which means ExampleFragment in Figure 3 can

appear in any Activity which involves Fragment components.

In reverse, an Activity is able to hold more than one Fragment.

The code in Figure 3 shows how to add a Fragment to

an Activity, in which ExampleFragment can be replaced

with any subclass of android.app.Fragment. To the

example shown in Figure 1, in order to discover more possible

test paths, it would be helpful if we identify the Fragments

of CATEGORY and RECENT tabs in the current Activity.

For such a purpose, Algorithm 2 describes the procedure of

identifying the dependency among Activities and Fragments.

First, FragDroid gets all used classes from each Activity

and its inner classes (like ExampleActivity$1.class)

and then analyzes the inheritance chain of each used class.

If there exists class android.app.Fragment or class

android.support.v4.app.Fragment in the inheri-

Algorithm 2 Activity & Fragment Dependency

Input: a ∈ Activity
Output: The Relationship of Activity & Fragment R =
(A,F)
R← �
FClass← “android.app.Fragment”
sFClass← “android.support.v4.app.Fragment”
for all a in Activity do

allClass← getInnerClass(a)
for all aClass in allClass do

Classes← getUsedClass(aClass)
for all Class in Classes do

classChain← getSuperChain(Class)
if FClass ∈ classChain ‖ sFClass ∈

classChain then
R = R ∪ {a, Class}
break

end if
end for

end for
end for

tance chain, this class is a derived class of Fragment. Then

this Activity and class are the dependency of the Activity and

Fragment.

B. Resource Dependency

Android UI is constituted with numerous UI components. A

UI component in the present UI state always belongs to some

certain Activity. In existing research, several Activity-level

analysis tools design their UI models by analyzing the layout

files and code of Activities [13]. However, the introduction

of Fragment makes the Activity-based UI models incomplete,

because a widget in current UI state may belong to an Activity

or a Fragment. For instance, in Figure 1(a), the listener of the

tab marked as “CATEGORIES” belongs to an Activity, but the

list below is implemented in a Fragment. It means the code

of different widgets in the same UI may be implemented in

different files.

The static analysis phase extracts the resource dependency

to match widgets to their host Activities and Fragments. In An-

droid, a unique number (resource-ID) is used to identify a re-

source. As shown in Algorithm 3, the dependency information

is collected by discovering the resource-IDs that repeatedly

appear in both layout and resource files. Function getID()
fetches a widget’s resource-ID, and function getAID() /

getFID() outputs a list of resource-IDs contained in an

Activity or Fragment. At the same time, all non-interaction

widgets not declared in code file are ruled out.

C. Input Dependency

Android apps usually require users to enter some informa-

tion to complete a specific function. Different input values

usually lead to different outcomes. For example, in the login

Activity of an app, only the correct account information can

403

Algorithm 3 Resource Dependency

Input: a ∈ Activity, f ∈ Fragments, L ∈ Layouts
Output: The AFRM Model M = (A,F,RID)
M ← �
for all l in Layouts do

for all w(idge) in l do
id← getID(w)
isF ind = false
for all a in Activity do

aID ← getAID(a)
if id ∈ aID && l ∈ a then

M = M ∪ {a, null, w}
isF ind = true
break

end if
end for
if !isF ind then

for all f in Fragment do
fID ← getFID(f)
if id ∈ fID && l ∈ f then

M = M ∪ {null, f, w}
break

end if
end for

end if
end for

end for

let the test process move on. Without a successful login,

most of the subsequent Activities will not be reached. As

another example, a search box in TheWeatherChannel requires

inputting the name of an existing place for checking weather

information. If a test tool inputs random string like “abc”, this

app may report an error or give the null result, and the test

cannot continue.

There are many studies on improving the input for dynamic

analysis. TrimDroid [13] considers the input relationship of

different widgets. Chen et al. [14] propose a simple way

to generate input according to the state of a widget and its

context. Dynodroid [15] cuts down impossible input sequence

combinations to decrease the number of generated test cases.

FragDroid utilizes some techniques of these works to ensure

that it could generate inputs as accurate as possible. Moreover,

FragDroid introduces a new input interface which is a file

containing resource-IDs of all input widgets (like EditText,

CheckBox, and so on). Regarding this file, analysts can

manually fill the input fields with correct values in advance,

then FragDroid will use these values with a preference during

tests.

VI. EVOLUTIONARY TEST CASE GENERATION

This section discusses how the AFTM is iteratively updated.

It is a kind of dynamic process that the output of the previous

test is fed back to AFTM, and new test cases will be generated

according to the update of AFTM. This process ends when all

nodes in AFTM model are accessed and all test cases have

been executed, and no new node is added to AFTM.

A. UI Driving and AFTM Update

FragDroid could drive the execution of a test case automat-

ically and reach the target interface set in the case. There are

three methods for FragDroid to reach a certain interface:

• We use the command am start -n <COMPONENT>
-a android.intent.action.MAIN -c
android.intent.category.LAUNCHER to

launch an app by Android Debug Bridge (ADB) [16], in

which <COMPONENT> is the entry Activity.

• We translate the operation series of test cases and

stored them as a test script, then package them into the

target Android app by Ant [17] and install this app to

the testing phone. Finally, we use the ADB command

am instrument -w <TestPackageName>
android.test.InstrumentationTestRunner
to run this app, in which <TestPackageName> is

the package name of this app.

• During static analysis, we modify AndroidManifest.xml

by adding the attribute <action android:name=
"android.intent.action.MAIN"/> for every

Activity and use the ADB command am start -n
<COMPONENT> to forcibly start an Activity which Frag-

Droid cannot visit by normal methods in the first phase of

dynamic testing, in which <COMPONENT> is the target

Activity.

No matter which method a test case is used to complete

the UI transition, the tested app will eventually reach a

stable interface unless the system collapses with FC (Force

Close). When the app settles down to a steady-state, there are

three possible situations: reach an unvisited Activity, reach

an unvisited Fragment, reach a visited interface. These three

situations may trigger the update of AFTM and/or the UI

queue through a kind of evolutionary manner. The ways of

handling different situations are described as below:

Case 1 – Reaching an unvisited Activity. When Frag-

Droid reaches a new Activity interface, a new item will

be added to the UI queue. The operation list of this item

contains the operation list of its previous item and the

operation information converting from the previous item to

here. Also, if the function getFragmentManager() or

getSupportFragmentManager() is found in the cur-

rent Activity, it means the existence of dynamic switching

between this Activity and some Fragment. Therefore, based

on the amount of the Fragments having dependency with

this Activity, the same amount of items will be added to

the UI queue. The operation lists of these items contain the

operation information reaching this Activity and the approach

of switching from this Activity to this Fragment. In Case 1,

we use the Java reflection mechanism as the switching method

by default.

Case 2 – Reaching an unvisited Fragment. There are two

ways for FragDroid to reach a new Fragment: clicking event

404

and Java reflection mechanism. The Java reflection mechanism

offers the functionality of obtaining all inside information of

a known class, such as fields and methods, and it allows

to invoke any field or method of a given object. With the

aid of reflecting the FragmentManager class in the target

Activity, the corresponding FragmentTransaction class

could be constructed. The sub-classes of Fragment involved

in the current Activity will be instantiated on Java Virtual

Machine by reflection, and then they are filled into the cor-

responding switch functions of FragmentTransaction
class. Finally the transition between Fragments could be

implemented by executing the method commit in the

FragmentTransaction class. Besides, if a new Fragment

could be visited through a clicking event, this explicit clicking

process will take the place of the implicit reflection mechanism

and is set as the initial operation for transition during element

generations.

Case 3 – Reaching a visited interface. If the testing app

reaches a visited interface, FragDroid will complete the input

fields and get all coordinates of the controls that can be clicked

on this interface. Then, clicking events will be injected by

FragDroid from top to bottom, from left to right automatically.

A clicking event may lead to the following situations: if the

interface doesn’t change, the clicking operation will move on;

if a dialog box or a menu pops up, it will be removed by

clicking on blank space and continues the clicking operation; if

the interface changes, the new interface will be terminated by

killing current execution and the testing app will be restarted

and execute under the click operation until all clicking events

are completed; if the app crashes, the testing app will be

restarted to the current interface and execute under clicking

operations.

B. Queue Generation & Test Case Generation

For the whole evolutionary test, the UI transition queue

is maintained on the basis of AFTM in a width-first strat-

egy. Each dynamically generated item in the queue is the

information on the transition from one interface to another.

This procedure can be divided into two core modules – queue

update and test case generation.

In the beginning, FragDroid uses the original AFTM to ini-

tialize the UI transition queue. In the UI transition queue, the

data structure of each UI queue item contains four properties:

the way of reaching a certain interface (Activity or Fragment),

start interface, target interface, and an operation list storing

the concrete operations from the start interface to the target

interface. Once AFTM is updated, the queue will also be

updated.

The test case generation module transforms the items in

the UI queue into executable test cases. The template of

test case based on the library of Robotium is accomplished

with the information inside the items. One of the most

difficult parts is to generate the test case of mandatory

switching to hidden or unvisited Fragments. In the pro-

cess of translating the operation list into Java code for test

cases, if no explicit operation can be used for interface

transition, the Java reflection mechanism will be utilized.

The concrete process of reflection is to reflect the Activity

class that the target Fragment belongs to, then determine

whether there exists getSupportFragmentManager()
or getFragmentManager() in that class. Respec-

tively, the Activity inherits from android.app.Activity
or android.support.v4.app.Activity. The cor-

responding FragmentManager is obtained to execute

beginTransaction() and reflect the Fragment classes

to switch. Finally, the switching function is constructed and

executed with the Fragment container’s resource-ID.

C. Test Termination Condition

As shown in Figure 4, FragDroid generates items for the

UI queue based on AFTM. After that, the items are further

compiled to test cases and executed for dynamic testing. The

state information is extracted from the testing results to update

AFTM. The update of AFTM triggers the next round of

execution. Once the UI transition queue is empty, and AFTM

is no longer updated, it means all test cases have been tested,

that is the end of the loop.

To achieve a higher coverage rate and avoid omission, if

there are Activities that haven’t been visited (according to the

final AFTM), FragDroid will forcibly invoke them through

empty Intents. If the invocation succeeds, these Activities will

be added into AFTM with normal processing as the second

loop phase. When this loop stops (empty UI queue and no

update for AFTM), the whole test terminates.

VII. EXPERIMENT AND EVALUATION

We have implemented a full-featured prototype of Frag-

Droid and carried out a series of experiments. Our experiments

primarily concentrate on the effectiveness of our framework.

Also, to better illustrate the practicability of our framework,

we choose the sensitive API call analysis as a showcase.

A. Dataset

We downloaded and analyzed 217 popular apps (more than

500,000 downloads) from 27 categories of Google Play. The

categories include Tools (21 apps), Entertainment (21 apps),

News Magazine (16 apps), Business Office (15 apps), Books

and Reference (14 apps), etc. The preliminary code analysis

discovered 91% of them use Fragment components.

However, since some apps were encrypted or protected (with

packer), they cannot be analyzed and have to be ruled out in

the dependency extraction phase. Also, some apps failed in the

dynamic testing due to the issues of permissions. Nevertheless,

these problems are out of the scope of our framework, so

not all apps were considered in the experiment. Finally, we

selected 15 apps from these 217 apps for further analysis.

B. Coverage

In total, FragDroid successfully covered 66% Fragments and

71.94% Activities. Table I shows the coverage rate of Frag-

Droid in aspects of Activities, Fragments, and the Fragments

in visited Activities. In this table, each data column consists

405

TABLE I: Coverage of Activities and Fragments Detection

Package Name* Downloads
Activities Fragments Fragments in Visited Activities

Visited Sum Rate Visited Sum Rate Visited Sum Rate
au.com.digitalstampede.formula 50,000+ 1 2 50.00% 2 2 100.00% 1 1 100.00%
com.adobe.reader 100,000,000+ 7 13 53.85% 5 5 100.00% 2 2 100.00%
com.advancedprocessmanager 10,000,000+ 5 7 71.43% 10 10 100.00% 10 10 100.00%
com.aircrunch.shopalerts 1,000,000+ 7 10 70.00% 8 13 61.54% 4 6 66.67%
com.c51 5,000,000+ 28 35 80.00% 2 3 66.67% 2 3 66.67%
com.cnn.mobile.android.phone 10,000,000+ 16 23 69.57% 3 10 30.00% 2 4 50.00%
com.happy2.bbmanga 1,000,000+ 2 5 40.00% 3 5 60.00% 0 2 0.00%
com.inditex.zara 10,000,000+ 7 9 77.78% 7 15 46.67% 2 10 20.00%
com.mobilemotion.dubsmash 100,000,000+ 10 11 90.91% 0 3 0.00% 0 3 0.00%
com.ovuline.pregnancy 1,000,000+ 17 27 62.96% 8 37 21.62% 8 26 30.77%
com.weather.Weather 50,000,000+ 13 17 76.47% 1 1 100.00% 1 1 100.00%
com.where2get.android.app 500,000+ 9 16 56.25% 4 8 50.00% 0 4 0.00%
imoblife.toolbox.full 10,000,000+ 14 14 100.00% 8 9 88.89% 4 5 80.00%
net.aviascanner.aviascanner 1,000,000+ 7 7 100.00% 4 4 100.00% 4 4 100.00%
org.rbc.odb 1,000,000+ 4 5 80.00% 5 8 62.50% 2 3 66.67%

* All APKs are available on Google Play Store

of three sub-columns: Visited, Sum, and Rate. The data of the

“Visited” column records the number of the corresponding

elements (e.g., Activities) successfully tested by FragDroid

on each app; the column “Sum” summarizes the number of

such elements discovered in the phase of Static Information

Extraction, and the column “Rate” lists the ratio of visited

elements in all elements (i.e., the coverage rate) on a certain

level. Taking the category of Fragments in Visited Activities as

an example, it shows the result of testing apps via FragDroid

on the level of Fragments in Activities that are visited by

FragDroid, including the number of visited Fragments in tested

Activities, the number of all Fragments in tested Activities and

the percentage of visited Fragments in all Fragments in tested

Activities.

1) Activity Coverage Analysis: Activities are the primary

containers for UI layouts, and Fragments cannot live without

Activities. Although our analysis focus is not the level of

Activities but the level of Fragments, exploring more Activities

could lead to a higher coverage rate for Fragments. The list of

Activities of an app is extracted from its Manifest file during

the static analysis, and the isolated ones (which cannot be

switched to/from other interfaces) are excluded. FragDroid

gives the number of visited Activities and logs all visited

Activities.

However, there are some situations that decrease coverage

rate of FragDroid for Activities.

• Current developers usually use the material design

mode to develop apps, so that the transition of Ac-

tivities in navigation view drawer cannot be operated

directly [18], such as com.cnn.mobile.android.phone and

com.aircrunch.shopalerts. To solve this problem, we have

applied the mandatory starting in the phase of evolution-

ary test case generation. However, since this operation

does not take the context and Intent into account, some

Activities are still not detected by FragDroid.

• Some Activities require strictly accurate input to move

to the next step. Some special inputs like address names

are not given manually in advance, as a result, some apps

(such as com.weather.Weather) cannot be tested smoothly.

• There are apps like com.aircrunch.shopalerts,

com.where2get.android.app, and com.inditex.zara, which

have action bars [19], and numerous pop operations are

triggered in the app bars, such as com.adobe.reader.

These operations usually lead to the changes of normal

interfaces and interrupt normal test case generation.

2) Fragment Coverage Analysis: The sum of Fragments is

found by FragDroid is based on the method of getting effective

Fragments introduced previously. Fragments rely on Activities.

A few Activities are inaccessible in some apps, and there

are some related research on the discovery of Activities, as

summarized in Section IX. Since this paper focuses on the

probability of exploring Fragments, our framework FragDroid

implements calculating and logging all the Fragments of

visited Activities.
However, there are several Fragments instantiated or loaded

directly without using FragmentManager. In this scenario,

FragDroid cannot determine whether the Fragment is a real

loading, as the failing case com.mobilemotion.dubsmash. Ad-

ditionally, another app com.inditex.zara failed due to the

missing parameters transmitted in the reflection mechanism.
3) Fragment in Visited Activity Coverage Analysis: As

discussed above, some of Activities are not accessible for

testing, which means the Fragments involved in such Activities

are also inaccessible. In the experiment, the average coverage

rate of FragDroid for Fragments in visited Activities is more

than 50%, and for a third of tested apps, this coverage rate

has reached 100%. It confirms that the basic test unit of

FragDroid has been specified from Activity to Fragment.

Furthermore, this framework takes the additional logic caused

by the importing of Fragments into consideration, as a result,

it is of good compatibility with Fragments.

C. Sensitive API Invocation Analysis
The user privacy disclosure in Android is a common con-

cern, caused by the abuse of permissions and the transfer

of sensitive APIs. There are some solutions to solve this

406

problem such as native permission management and dynamic

permission reminder in Android 6.0 to remind the users, which

limits the abuse of authority. Nevertheless, most sensitive

operations are allowed by default at the time of installing an

app. As an Android testing framework, FragDroid offers a

way to detect sensitive operations. We select some common

sensitive operation functions defined by XPrivacy [20] for

testing. The sensitive APIs concerned in this experiment are

mainly related to the information or operations like account,

identification, Internet, IPC, location, media, network, phone,

store. In Table II, we could find the discovered invocation rela-

tions between sensitive APIs and Activities and/or Fragments

on 15 tested applications. For an individual tested app, each

sensitive API listed has three possible situations, as shown

below, where the symbols represent that a sensitive operation

or permission is invoked by Activity and/or Fragment.

• Invoked by Activity: �
• Invoked by Fragment: �
• Invoked by Both Activity and Fragment: �
The results show 46 sensitive APIs were found by Frag-

Droid. Also, the API invocations associated with Fragments

account for 49% of the total invocations. The traditional

approaches based on Activity have to miss at least 9.6% of

API calls invoked in Fragments.

VIII. LIMITATION AND FUTURE WORK

At first, the small sample size in the experiment for imple-

menting FragDroid limits the evaluation of analysis results.

Secondly, there are some specific development methods and

techniques which are not counted in FragDroid. Hence, a small

portion of Activities and Fragments are missed out during the

test. Moreover, FragDroid proposed in this paper is an Android

application testing framework focusing on Fragments, without

regard to other factors affecting its performance, such as input

generation in test cases.

In the future, to optimize the effectiveness of FragDroid,

more techniques related to app developing and testing will

be considered, and better input generation methods will be

integrated into it.

IX. RELATED WORK

Recent works on testing tools have taken numerous, diverse

approaches to achieve different results. Due to that Android

apps often suffer from cross-platform and cross-version incom-

patibilities, it is costly for the manual app analysis. Moreover,

the rapid growth of the number of apps makes those encoun-

tered different security threats and malicious attacks. So, there

has been a great deal of research in static analysis and test of

Android apps. We can find many tools do test input generation

and extract the model of the app automatically. There are also

some systems leveraging automated UI interfaces to trigger the

functions [21], [22], [23], especially getting useful information

or analyze data of apps by targeting specific Activities.

SmartDroid [24], applying both static and dynamic analysis,

is a tool to discover and test UI trigger conditions using a

hybrid approach. During static analysis, it creates an Activity

switch path that leads to the sensitive API calls. In dynamic

analysis, SmartDroid traverses the view tree of an Activity and

triggers the event listeners while waiting for each UI element

to arise. Very similar to our work, SmartDroid determines

whether a new Activity is on the switch path when the event

listener invokes the start of it. If not, it will block the call

to that Activity and continue to traverse the current Activities

view tree until the correct element is activated. It will exclude

the calls to dynamically loaded code or native libraries because

of only relying on static analysis to reveal sensitive behaviors.

In addition, SmartDroid requires modification to the SDK as

well as the modified emulator.

AndroidRipper [25] is an automated test technique which

uses their Graphical User Interface (GUI) for Android apps.

AndroidRipper is based on a user-interface driven ripper that

aims at automatically exploring the GUI of apps in a structured

manner. It is evaluated on open-source Android apps. The

results show that those test cases, which are based on GUI,

are able to detect severe and previously unknown faults in the

underlying code, and its structured exploration outperforms a

random approach.

Dynodroid [15] proposes a system to interact with UI wid-

gets dynamically. The authors implemented a mechanism that

attempts to generate a sequence of intelligent UI interactions

and system events through observing the UI layout, composing

and selecting a set of interactions, and executing those actions.

Dynodroid leverages the Hierarchy Viewer, a tool packaged

with the Android platform to infer a UI model during exe-

cution, to determine an Activity layout. We note that if the

user intends to enable this capability, it is essential to make

changes to the SDK source code. Finally, but most importantly,

Dynodroid requires the tester has access to the source code of

an app, as the use of the Android instrumentation framework

is necessary. Contrarily, CuriousDroid can test any APK file

without source code on account of the fact that it instruments

the app bytecode dynamically.

A3E [26] proposes a system for UI exploration of Android

apps that has two approaches. One is Targeted Exploration

which generates a CFG during static analysis and then uses

the CFG to develop a strategy for exploration by targeting

specific Activities. Another is depth-first Exploration which

attempts to mimic user interactions to drive execution in a

more systematic, albeit slower, way. We can see that A3E is

not proper for large-scale test on account of the fact that its

long test time required for each app. A3E was tested on only

25 apps, and during each test, it costs an average runtime of

87 minutes for targeted exploration method and 104 minutes

per app averagely for the depth-first exploration.

AspectDroid [27] is an app-level system designed to in-

vestigate Android apps for possible unwanted Activities. As-

pectDroid is comprised of application instrumentation, auto-

mated test, and containment systems. By using static bytecode

instrumentation, AspectDroid weaves monitoring code into

an existing app and provides data flow and sensitive API

usage as well as dynamic instrumentation capabilities. The

newly repackaged app is then executed either manually or via

407

an automated test module. Finally, the flexible containment

provided by AspectDroid adds a layer of protection so that

malicious Activities can be prevented from affecting other

devices. The accuracy score of AspectDroid, when tested on

105 DroidBench corpus, shows it can detect tagged data with

95.29%.

TrimDroid [13] is a framework to generate test cases for

GUI test of Android apps, with the ability to achieve a

comparable coverage as it possible under exhaustive GUI test

using fewer test cases. The work of TrimDriod uses prime

path coverage to generate the event sequences and generate

the inputs for GUI widgets in a combinatorial fashion rather

than using randomly generated input. Similar to FragDroid,

TrimDroid extracts the interface models and Activity transi-

tion models of apps. Note that TrimDroid does not involve

Fragments, but FragDroid considers them.

Those testing tools mainly research the Activity layer. How-

ever, based on a significant amount of analysis we have done,

there are some sensitive operations and embedded WebView

as well as security threats brought by library reference in

Fragments. Compared with those tools, FragDroid completes

a lot of work on Fragments and provides a model, including

not only Activities but also Fragments and all the transition

relationship, to be utilized to understand the architecture of the

entire app better and do some security research. The test result

shows FragDroid can be considered as a more comprehensive

and brand-new tool.

X. CONCLUSION

In this paper, we propose FrogDroid, the first Android

automated UI testing framework supporting both Activity and

Fragment analysis. In this framework, an Activity & Fragment

Transition Model is introduced, with the use of which, test

cases can be generated through automated UI interaction. Frag-

Droid runs test cases to visit Activities and Fragments in the

tested app for detecting security information, such as sensitive

APIs and potential vulnerabilities. The analysis of top-rank

apps reveals a high proportion of apps applying Fragments.

During the experiment, FragDroid is applied to 15 selected

apps involving Fragments. On average, the coverage rate of

FragDroid on Activity is 71.94% while that on Fragment

reaches 66%. There are 269 invocations of sensitive APIs

detected from 15 tested apps, and nearly half of them have

an association with Fragment.

XI. ACKNOWLEDGE

We thank our shepherd Ilir Gashi for his guidance on

improving this paper and anonymous reviewers for their

insightful comments. This work is partially supported by

National Natural Science Foundation of China (91546203),

the Key Science Technology Project of Shandong Province

(2015GGX101046), the Shandong Provincial Natural Science

Foundation (ZR2014FM020), Major Scientific and Techno-

logical Innovation Projects of Shandong Province, China

(No.2017CXGC0704) and Fundamental Research Fund of

Shandong Academy of Sciences (NO.2018:12-16).

REFERENCES

[1] “UI/Application Exerciser Monkey,” https://developer.android.com/
studio/test/monkey.html.

[2] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein, “Reran: Timing-and
touch-sensitive record and replay for android,” in 2013 35th Interna-
tional Conference on Software Engineering (ICSE). IEEE, 2013, pp.
72–81.

[3] G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos, “Paranoid
android: versatile protection for smartphones,” in Proceedings of the 26th
Annual Computer Security Applications Conference, 2010, pp. 347–356.

[4] “Espresso,” https://developer.android.com/training/testing/espresso/
index.html.

[5] “Appium,” http://appium.io/.
[6] “Robotium,” http://www.methodsandtools.com/tools/robotium.php.
[7] “Introduction to activities,” https://developer.android.com/guide/

components/activities/intro-activities.html.
[8] D. Hackborn, “The android 3.0 fragments api,” https://android-

developers.googleblog.com/2011/02/android-30-fragments-api.html,
2011.

[9] “Fragment,” https://developer.android.com/guide/components/fragments.
html.

[10] “Fragmenttransaction,” https://developer.android.com/reference/android/
app/FragmentTransaction.html.

[11] “Apktool,” https://ibotpeaches.github.io/Apktool/.
[12] “Jd-core-java,” https://github.com/nviennot/jd-core-java.
[13] N. Mirzaei, J. Garcia, H. Bagheri, A. Sadeghi, and S. Malek, “Reducing

combinatorics in gui testing of android applications,” in Proceedings of
the 38th International Conference on Software Engineering, ser. ICSE
’16, 2016, pp. 559–570.

[14] J. Chen, X. Cui, Z. Zhao, J. Liang, and S. Guo, “Toward discovering
and exploiting private server-side web apis,” in Web Services (ICWS),
2016 IEEE International Conference on. IEEE, 2016, pp. 420–427.

[15] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input generation
system for android apps,” in Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, ser. ESEC/FSE 2013, 2013,
pp. 224–234.

[16] “Android debug bridge,” https://developer.android.com/studio/
command-line/adb.html.

[17] “Apache Ant,” https://ant.apache.org/.
[18] “Navigation drawer,” https://developer.android.com/training/

implementing-navigation/nav-drawer.html.
[19] “App bar,” https://developer.android.com/training/appbar/index.html.
[20] “Xprivacy,” https://github.com/M66B/XPrivacy/blob/master/res/values/

functions.xml.
[21] W. Yang, M. R. Prasad, and T. Xie, “A grey-box approach for auto-

mated GUI-model generation of mobile applications,” in Fundamental
Approaches to Software Engineering. Springer, 2013, pp. 250–265.

[22] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and
A. M. Memon, “Using GUI ripping for automated testing of Android
applications,” in Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, 2012, pp. 258–261.

[23] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan, “PUMA:
Programmable UI-automation for large-scale dynamic analysis of mobile
apps,” in Proceedings of the 12th annual international conference on
Mobile systems, applications, and services, 2014, pp. 204–217.

[24] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou, “Smart-
droid: An automatic system for revealing ui-based trigger conditions in
android applications,” in Proceedings of the Second ACM Workshop on
Security and Privacy in Smartphones and Mobile Devices, ser. SPSM
’12, 2012, pp. 93–104.

[25] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and
A. M. Memon, “Using gui ripping for automated testing of android
applications,” in Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE 2012, 2012,
pp. 258–261.

[26] T. Azim and I. Neamtiu, “Targeted and depth-first exploration for
systematic testing of android apps,” SIGPLAN Not., vol. 48, no. 10,
pp. 641–660, Oct. 2013.

[27] A. Ali-Gombe, I. Ahmed, G. G. Richard, III, and V. Roussev, “As-
pectdroid: Android app analysis system,” in Proceedings of the Sixth
ACM Conference on Data and Application Security and Privacy, ser.
CODASPY ’16, 2016, pp. 145–147.

408

TABLE II: Sensitive Operations Detection

Sensitive APIs Usage

Package Name

co
m

.ad
o
b
e.read

er

co
m

.aircru
n
ch

.sh
o
p
alerts

o
rg

.rb
c.o

d
b

au
.co

m
.d

ig
italstam

p
ed

e.fo
rm

u
la

co
m

.h
ap

p
y
2
.b

b
m

an
g
a

co
m

.c5
1

co
m

.w
eath

er.W
eath

er

co
m

.ad
v
an

ced
p
ro

cessm
an

ag
er

co
m

.in
d
itex

.zara

co
m

.cn
n
.m

o
b
ile.an

d
ro

id
.p

h
o
n
e

co
m

.m
o
b
ilem

o
tio

n
.d

u
b
sm

ash

co
m

.o
v
u
lin

e.p
reg

n
an

cy
1

co
m

.w
h
ere2

g
et.an

d
ro

id
.ap

p

im
o
b
life.to

o
lb

o
x
.fu

ll

n
et.av

iascan
n
er.av

iascan
n
er

Browser browser/Downloads � �
Identification

identification//proc � � � � � � � � � �
identification/getString � � � � � � � �
identification/SERIAL � � � � � � � � � � � � � �

Internet

internet/connect � � � � � � �
internet/Connectivity.getActiveNetworkInfo � � � � � � � � � � � �

internet/Connectivity.getNetworkInfo � � � � � �
internet/inet � � � �

internet/InetAddress.getAllByName � � � � � � � � � �
internet/InetAddress.getByAddress � � � � �
internet/InetAddress.getByName � � � � � � � � � � � � �

internet/IpPrefix.getAddress �
internet/LinkProperties.getLinkAddresses � � � � � � � � � � �

internet/NetworkInfo.getDetailedState � � �
internet/NetworkInfo.isConnected � � � � � � �

internet/NetworkInfo.isConnectedOrConnecting � � � � � � � � � � � �
internet/NetworkInterface.getNetworkInterfaces � � � �

internet/WiFi.getConnectionInfo � � �
IPC ipc/Binder � � � � � � � � � � � � � �

Location

location/getAllProviders � � �
location/getProviders � �

location/isProviderEnabled � � � �
location/requestLocationUpdates � � � � �

Media
media/Camera.setPreviewTexture �

media/Camera.startPreview � �
Messages messages/MmsProvider �
Network

network/NetworkInterface.getInetAddresses � � �
network/WiFi.getConfiguredNetworks �

network/WiFi.getConnectionInfo � �

Phone

phone/Configuration.MCC � � � � � � � � � � � � �
phone/Configuration.MNC � � � � � � � � � � � � �

phone/getDeviceId � � � � �
phone/getNetworkCountryIso � � � � � � �

phone/getNetworkOperatorName � � � � � � �
Shell shell/loadLibrary � � � � � � � �

Storage
storage/getExternalStorageState � � � � � �

storage/open � � � �
storage/sdcard � � � � � � � � � �

System

system/getInstalledApplications �
system/getRunningAppProcesses � � �

system/queryIntentActivities � �
system/queryIntentServices � � �

View

view/getUserAgentString � �
view/initUserAgentString � � � � � � �

view/loadUrl � � � �
view/setUserAgentString � � � �

* �Activity �Fragment �Activity and Fragment

409

