
SHADOWDROID: Practical Black-box Attack
against ML-based Android Malware Detection

Jin Zhang∗†, Chennan Zhang∗†, Xiangyu Liu‡, Yuncheng Wang§, Wenrui Diao∗†(�), and Shanqing Guo∗†
∗School of Cyber Science and Technology, Shandong University

{zhangjinzfy, zcn}@mail.sdu.edu.cn, {diaowenrui, guoshanqing}@sdu.edu.cn
†Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong University

‡Alibaba Inc., eason.lxy@alibaba-inc.com
§Taishan College, Shandong University, wyunc@mail.sdu.edu.cn

Abstract—Machine learning (ML) techniques have been widely
deployed in the field of Android malware detection. On the
other hand, ML-based malware detection also faces the threat of
adversarial attacks. Recently, some research has demonstrated
the possibility of such attacks under the settings of white-box or
grey-box. However, a more practical threat model – black-box
adversarial attack has not been well validated and evaluated.

In this paper, we bridge this research gap and propose a
black-box adversarial attack approach, SHADOWDROID, against
ML-based Android malware detection. On a high level, SHADOW-
DROID tries to construct a substitute model of the target malware
detection system. Utilizing this substitute model, we can identify
and modify the key features of a malicious app to generate an
adversarial sample. During the experiment, we evaluated the
effectiveness of SHADOWDROID against nine ML-based Android
malware detection frameworks. It achieved successful malware
evading on five platforms. Based on these results, we also discuss
how to design a robust malware detection system to prevent
adversarial attacks.

Index Terms—Adversarial attack, Android malware detection.

I. INTRODUCTION

Android is the most popular mobile platform, and its success

primarily benefits from the massive apps which provide rich

functionalities to end-users. On the other hand, the coming of

malicious apps has become a realistic security threat. The se-

curity community has proposed lots of approaches to improve

the accuracy and efficiency of Android malware detection.

In recent years, machine learning (ML for short) techniques

have been applied to this field, and lots of approaches have

been designed, such as Drebin [22], MaMaDroid [38], and

DroidEvolver [50].

In practice, the issue of adversarial attacks can affect the de-

ployments of ML-based Android malware detection solutions.

The attackers try to construct adversarial examples (APKs) to

evade the detection. The previous research [32], [26], [51]

demonstrated the adversarial attacks under the settings of

white-box or grey-box, which requires the pre-knowledge of

the victim detection platforms. However, such an adversary

model is not practical in the real world. In most cases, the

attackers cannot obtain the victim detection platform’s detailed

internal technical design details, such as the adopted detection

features and classification algorithms. One common scenario

is that online malware detection platforms only allow users

to upload APK files and check the final detection result as a

black box. Therefore, there is a research question that has not

been well answered, that is, whether the attackers can evade
ML-based Android malware detection without pre-knowledge.

Our work. In this work, we consider a black-box setting, in

which the attacker cannot know the technical design of ML-
based Android malware detection platforms. Under such a

setting, we propose a practical black-box adversarial attack

scheme, called SHADOWDROID, to evade the detection. The

high-level idea is dynamically constructing a substitute model

which is similar to the target detection platform. Based on

this substitute model, to a malicious app, we identify its key

features affecting the classification results and modify them,

like generating an adversarial example. Note that, during the

manipulation process, the app’s original functionalities should

not be affected. Finally, we submit the modified malicious app

to the target detection platform, and the expected result is that

this app is classified as benign.

To demonstrate the effectiveness of SHADOWDROID, we

evaluated it on nine ML-based Android malware detection

frameworks (seven for open-source versions and two for

re-implementation by ourselves) with diverse technical im-

plementations, including Drebin [22], Maldozer [35], Ma-

MaDroid [38], DroidEvolver [50], Adagio [31], Opcode-

CNN [39], CSBD [19], API-CNN [40], and Code2Pic [53].

SHADOWDROID succeeded on five platforms and failed on

four ones. Considering our black-box threat model, such a

success rate is reasonable. We also explored the fundamental

reasons behind the results. In addition, based on the experi-

ment results, we discuss how to design a robust malware detec-

tion system to defend adversarial example attacks, including

the robust features, classification algorithms, and dataset.

Contributions. Here, we summarize the main contributions:

• Black-box attack. We propose SHADOWDROID, a black-

box adversarial attack approach against ML-based An-

droid malware detection. The high-level idea is to con-

struct a substitute model, identify the key features of a

malicious APK file, and generate an adversary example

to evade detection.

• Evaluations in the wild. We carried out comprehen-

sive experiments on nine ML-based Android malware

629

2021 IEEE 27th International Conference on Parallel and Distributed Systems (ICPADS)

2690-5965/21/$31.00 ©2021 IEEE
DOI 10.1109/ICPADS53394.2021.00084

20
21

 IE
EE

 2
7t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 P
ar

al
le

l a
nd

 D
ist

rib
ut

ed
 S

ys
te

m
s (

IC
PA

DS
) |

 9
78

-1
-6

65
4-

08
78

-3
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

PA
DS

53
39

4.
20

21
.0

00
84

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on November 15,2022 at 02:51:55 UTC from IEEE Xplore. Restrictions apply.

platforms to demonstrate the effectiveness of our attack.

SHADOWDROID succeeded on five platforms and failed

on four ones. The reasons for success and failure are

discussed in depth.

Roadmap. The rest of this paper is organized as follows. Sec-

tion II gives the necessary background about Android malware

detection and adversarial attack. Section III introduces the

high-level idea of our attack and the threat model used in this

paper. The detailed attack scheme is illustrated in Section IV.

The experiment design and the corresponding evaluation result

are given in Section V. We discussed some limitations of

this research in Section VI. The related work is reviewed in

Section VII, and Section VIII concludes this work.

II. BACKGROUND

In this section, we introduce the necessary background of

Android malware detection and adversarial attacks.

A. Android Malware Detection

Traditional malware detection methods can be divided into

static analysis and dynamic analysis. The static analysis mainly

achieves the goal by analyzing the specific contents of target

apps, such as control flow graphs and requested permissions.

On the other hand, dynamic analysis monitors the behaviors

of apps at runtime to detect malicious features.

In recent years, machine learning has been used in Android

malware detection. It is combined with static analysis or dy-

namic analysis, ML-based malware detection methods contain

the following three steps:

1) Feature Extraction. The unique features of an APK

file need to be extracted for further training. In general,

only static features are considered due to the efficiency

concern, like API calls [22], [38], [40], control flow

graph [19], [31], and permissions [22], [30]. The se-

lected features represent specific behaviors of apps,

which significantly influences the accuracy of the pre-

diction model.

2) Feature Encoding. The extracted information requires

further being encoded into vectors before being fed into

machine learning models. Standard encoding methods

include one-hot encoding [40], text encoding [54], and

global integer mapping [41].

3) Model Training. The encoded features extracted from

benign and malicious apps constitute benign and mali-

cious samples in the training dataset, respectively. They

are being fed into a specific machine learning model

for training. In this process, a suitable algorithm needs

to be selected. Support vector machine (SVM) [27],

proven powerful in classification tasks, has been used for

Android application classification in many works [19],

[22], [31]. With deep learning getting popular nowa-

days, a significant number of researchers began to use

methods of deep learning, such as CNN [35], [39], [40],

RNN [41], to detect Android malware.

Most of these ML-based malware detection methods

achieved fairly good malware classification accuracy, say more

than 90% [22], [38], [50].

B. Adversarial Attacks

Although machine learning techniques performed well in

multiple fields, including Android malware detection, it suffers

from the threat of adversarial attacks, as first indicated by

Szegedy et al. [47]. An ML model can be simply defined

as a function y = F (x), which maps the input x to the

corresponding output y. An attacker can craft a well-designed

example x′, and the differences between x′ and x are very

small. However, the y′ outputted by the function will be widely

divergent to y. Crafting the adversarial example x′ from the

original sample x can be formalized as below: [32]:

x′ = x+ δx = x+min ‖z‖ s.t. F (x+ z) �= F (x)

where δx is the minimal perturbation z contributing to model’s

mis-classification, according to a norm ‖•‖ which is suitable

for the input domain.

In the field of Android malware detection, the input x
of F (x) is usually an APK file, and the output y is the

corresponding label (benign or malicious). The goal of the

attacker is to turn the output of a malware detection system

from malicious to benign. The attacker needs to find the

minimal perturbation to deceive the machine learning model

without changing malware’s original functions. Researchers

have figured out some methods so far. For instance, Chen et

al. [25] proposed to reduce detection accuracy by injecting

crafted adversarial examples into training data. Chen et al. [26]

used the Carlini method, Wagner Attack (C&W) [24], and

Jacobian-based Saliency Map Attack (JSMA) [43] to craft

adversarial examples to evade Android malware detection

systems. However, most of the previous research is under

the settings of white-box or grey-box, which means that the

attacker has the entire or part of the knowledge of target

detection systems. However, in most cases, the details of target
systems can not be easily accessed in the real world, and the
assumption of black-box is more practical.

III. THREAT MODEL AND METHODOLOGY

In this section, we give our threat model and the high-level

attack approach.

A. Threat Model

As mentioned in Section II-B, most of the previous ad-

versarial attack approaches require the knowledge of the

target models, such as training datasets, detection features,

and detection algorithm. However, in most cases, the attacker

cannot obtain such knowledge. For example, online malware

detection services only allow the users to upload samples and

get the final results. Therefore, a black-box threat model is

more practical.

In our threat model, the attacker has no prior knowledge of
the target model. She only can input APK (Android Package)

samples to this detection system and check the result, say

630

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on November 15,2022 at 02:51:55 UTC from IEEE Xplore. Restrictions apply.

Benign
APKs

Benign
APKs

Malicious
APKs

Malicious
APKs

Feature Extraction Feature Encoding Model Training

Substitute
Model

Substitute
Model

Substitute
Model

Key Features
IdentificationAPK ManipulationAPK ManipulationMalware

Detection

 continue

benign

Adversarial
Example

malicious

Substitute Model Construction

Adversarial Example Generation

Fig. 1: Attack approach overview.

benign or malicious. To an APK sample that should have

been labeled as malicious, a successful attack is to modify this

sample and make it evade the detection, say being incorrectly

labeled as benign. Also, during this process, the functionalities

of the modified sample are not changed.

B. Methodology

Based on our threat model, we do not know the features

and detection algorithms used by the target model. Therefore,

first, we try to construct a substitute model of the target

model under the attack. Then, for malware, we continue

to modify its features. If the substitute model misclassifies

it, the adversarial example is generated. Finally, we submit

the adversarial example to the target model, based on the

transferability property [42], adversarial examples generated

based on the substitute model may evade the target model, if

the adversarial example doesn’t evade the detection, we will

continue to modify its features until it evades the detection or

reaches the maximum number of modifications.

IV. APPROACH

In this section, we illustrate our attack approach in detail. As

shown in Figure 1 , SHADOWDROID contains two main stages

– substitute model training and adversarial sample generation.

The whole attack process is automated.

• Substitute Model Construction In this stage, we need

to train a substitute model of the target model. The main

challenges are how to select appropriate APK features

and encoding methods for model construction. Also, a

classification algorithm is needed. Finally, this substitute

model should be adaptable for different malware detec-

tion systems.

• Adversarial Example Generation Based on the of-

fline substitute model, we construct adversarial sam-

ples through modifying the features of malicious APKs.

In consideration of attack efficiency, the modifications

should not be random. Therefore, we need to determine

the features to modify and not affect the core (malicious)

functionalities.

A. Substitute Model Construction

After selecting an attack target (an ML-based Android

malware detection system), we need to construct a substitute

Fig. 2: Percentage of features usage.

model which has (nearly) the same malware classification

performance as the target model. Ideally, this substitute model

should be suitable for any selected model. Therefore, we must

carefully determine which detection features and classification

algorithms should be used to build the substitute model.

Feature Selection. Many features could be used for Android

malware detection, like permission, API calls, app compo-

nents, and control flow graphs (CFG). To our model, the used

features should meet the following criteria.

• Since our substitute model is still a malware detection

system, the selected features should distinguish malicious
apps from benign ones.

• Our goal is to modify the features used by our local model

to make the target model mis-classify the malware, so the

features used by our substitute model must be correlated

with the features used by the attacked models.

According to the recent systematic literature review research

of ML-based Android malware detection [37], permissions and

API calls are the most frequently used static classification

features among 79 detection models. As shown in Figure 2,

around half of the models use permissions (45.5%) and

API calls (55.6%). Also, API calls are associated with other

features, including opcode, CFG (Control Flow Graph) / DFG

(Data Flow Graph), Java code, and binary code. For example,

adding extra API calls may also change the CFG. On the

other aspect, it is not easy to modify some other features

without changing the functionalities, like opcode, CFG, and

DFG. Therefore, we select permissions and API calls as the
classification features.

We ever consider another feature selection strategy, that

is, using all possible classification features. However, after

preliminary exploration, we found that the distributions of

different features have significant differences. For example,

the vector dimensions of opcode are far more than other ones.

During this situation, most feature modification operations

will be opcode modifications. Therefore, we adopt the former

strategy, say select the most common features.

Feature Encoding. Next, we need to encode API calls and

permissions as vectors to facilitate classification algorithm

reading. First, we need to obtain the API calls set and

permission set. (1) For API calls, we select some particular

API calls that can better reflect apps’ behaviors. The set

mainly consists of two kinds of API calls: restricted API

631

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on November 15,2022 at 02:51:55 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Classification algorithm assessment results.

Algorithm Accuracy Recall
SVM 99.7% 99.8%

Random forest 96.1% 96.4%
Decision tree 97.2% 99.2%

Logistic regression 96.7% 97.2%
DNN 95.2% 95.2%

calls (protected by permissions) and suspicious API calls

(frequently used by malware). We obtained the corresponding

lists through the tools provided by PScout [23], [7] and an

unofficial implementation [13] of Drebin implementation [22].

(2) For permissions, we use the official permission list of

Android [1].

After obtaining the set S containing the selected API

calls and all permissions, we can encode apps’ features to

a unified format. The status of an app using the API calls

and permissions in S can reflect its behaviors, say the feature

existence. Therefore, to an app x, we turn it into a vector ϕ(x).

ϕ(x) −→ {0, 1}|S|

To the i-th dimension:

ϕi(x) =

{
1, if Si ∈ x

0, otherwise
(1)

It means that if app x contains the i-th feature, the value of

its i-th dimension is set to 1, otherwise set to 0.

Model Training. In the final step, we need to select a

classification algorithm to train our model, suitable for our

selected detection features, and distinguish malware from

benign software. Following the evaluation measures of general

Android malware detection systems, we experimented with

evaluating five ML algorithms: SVM (Support Vector Ma-

chines), random forest, decision tree, logistic regression, and

DNN (Deep Neural Network). During the experiment, in short,

we used 1000 malicious APK files and 1000 benign ones as

the training set, then used the mentioned five algorithms for

training, and used a set containing 1000 APK files for testing.

The experiment results are listed in Table I. We can see that

SVM achieves better than other algorithms in both accuracy

and recall rates. Also, SVM is suitable for high-dimensional

sparse data [36], as our selected features. Therefore, SVM is

used as the classification algorithm in our substitute model.

Under a formal representation, we use the training set:

{(ϕ(x1), y1), (ϕ(x2), y2), ..., (ϕ(xn), yn)} , yi ∈ {−1, 1}
where −1 means benign and 1 means malicious. The basic idea

is to find a hyperplane ω ∈ R|S| in the sample space to dis-

tinguish different types of samples. To app x, its classification

result can be expressed by the following formula:

f(x) =

{
1 (malicious), if (ω, ϕ(x)) > 1

−1 (benign), otherwise
(2)

Note that the training set comes from the classification

results of the target model. For example, we input 2,000 APK

files to the target model, 850 APK files are labeled as benign
and 1,150 labeled as malicious. Our substitute model will

use the 2,000 APK files with the corresponding labels as the

training set.

B. Adversarial Examples Generation

In this subsection, we introduce the method of generating

adversarial examples. Since we have no knowledge about the

target model, we can only modify the features of the malicious

app based on the information of our substitute model to

achieve the evading purpose. We first find the features that

significantly impact the classification results and then modify

these features to generate adversarial examples.

Key Feature Identification. This step is based on the JSMA

(Jacobian-based Saliency Map Attack) approach [43], which

can analyze the impact of input disturbance on the output

result to find the corresponding adversarial disturbance. It

was first used in the image classification field and can find

the pixels that significantly impact the classification result.

Then it iteratively modifies these pixels until the images are

successfully identified as the target type. Its basic idea is to

establish a mapping relationship between feature i and target

output type t:

S(i, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
0, if

∂ft(x)

∂xi
< 0 or

∑
j �=t

∂fj(x)

∂xi
> 0

|∂ft(x)
∂xi

|
∑
j �=t

∂fj(x)

∂xi
, otherwise

(3)

in which, S(i, t) represents the impact of changing the i-th
feature on the classification into the t-th category. The larger
the value of S(i, t), the greater the effect of the i-th feature.

Our goal is to make malicious apps misclassified as benign

ones. In our model, we use SVM as the classification model.

After being trained with the training set, we can get its

hyperplane ω. Therefore, for malware x, our goal can be

expressed as follows:

(ω, ϕ (x)) > 1 → (ω, ϕ (x)) < −1

Since SVM is not a differentiable function, we cannot calculate

the value of
∂fj(x)
∂xi

in Equation 3. However, to our goal, we

only need to select the features i that ωi < 0, and their impact

on target category is proportional to |ωi|, so S(i, t) can be

expressed by the following equation:

S(i, t) =

{
|ωi|, if ωi < 0

0, otherwise
(4)

Then we calculate S(i, t) for each feature i. According to

the results, we can obtain the corresponding key feature list L
(by S(i, t) in descending order).

APK Manipulation. After we obtain the key feature list L,

the next step is to modify the (malicious) app accordingly. The

modifying process is illustrated in Figure 3. Since we use API

calls and permissions as features, we need to modify the app’s

DEX code and manifest file. Therefore we first use apktool[3]

632

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on November 15,2022 at 02:51:55 UTC from IEEE Xplore. Restrictions apply.

Smali Files

Manifest file

Malicious
APK

Malicious
APK

Adversarial
Example

Adversarial
Example

Smali Files
(modified)

Manifest file
(modified)

unpack repackage

 add permissions

add API calls

Fig. 3: APK file manipulation process.

to unpack and decompile the app, then modify features. There

are two requirements for this modification process. The first

is that our modification cannot break the original functions of

the APP. The second is that to prevent the modified APP from

being overly bloated, the number of modifications should be

as small as possible.

(1) To API calls, the goal of our modification is to change the

value of some dimensions from 0 to 1. If we only added it

once, this modification may effectively attack the model based

on the existence of the API call, but has little impact on the

model that uses API call sequence as features. To solve this

problem, for a single API call, we will add it multiple times.

For example, the process of adding the API getDeviceId()
is listed below:

1 .class public Ladd/redundantAPI;
2 .super Ljava/lang/Object;
3 .source "redundantAPI.java"
4 .method public add_method_1 ()V
5 .locals 1
6 const /4 v0 , 0x0
7 .local v0 , "keyEvent":Landroid/view/

KeyEvent;
8 invoke -virtual {v0}, Landroid/view/

KeyEvent;->getDeviceId ()I;
9 return -void

10 .end method
11 ...
12 .method public add_method_n ()V
13 .locals 1
14 const /4 v0 , 0x0
15 .local v0 , "keyEvent":Landroid/view/

KeyEvent;
16 invoke -virtual {v0}, Landroid/view/

KeyEvent;->getDeviceId ()I;
17 return -void
18 .end method

Here we create a new class redundantAPI. In this class,

we define n methods and add API getDeviceID() into each

method. To make the modified app not too redundant, n should

be related to the size of the app and should not be set as small

as possible, like 1% of the total API amount of the app.

(2) To permissions, we will modify the AndroidManifest.xml
file. For specific permission, we only need to add it to this

file. For example, if we want to add android.permission.
CALL_PHONE, the code snippet will be inserted into the

AndroidManifest.xml file.

1 <uses -permission android:name="android.
permission.CALL_PHONE"/>

After the modifications, we use apktool and apksigner [2]

to repackage the APK file and generate a potential adversarial

example. If this example could pass the detection of the

target model, the adversarial example of malicious x has been

generated. Otherwise, the modifications will be conducted

again until achieving the evading or reaching the modification

times threshold.

Note that, during the app manipulation, we only add redun-
dant API calls and permissions to the app, which are never

invoked. Therefore, the app functionalities are not changed.

V. EXPERIMENTS AND EVALUATIONS

We implemented a prototype of SHADOWDROID and car-

ried out various assessment experiments. Here we introduce

our experiment setup and discuss the results.

A. Dataset and Malware Detection Platforms

APK Training Dataset. For training the substitute model, we

used 500 malware and 500 benign apps. The malware set came

from Androzoo [20], while the benign apps came from five

popular app platforms, including Baidu Mobile Assistant [5],

AppChina [4], PP Assistant [6], and Tencent App Store [18].

Detection Platforms. Since SHADOWDROID is designed as

a general black-box attack approach, we need as many as

public Android malware detection models as the attack targets.

After literature review and searching GitHub, unfortunately,

we found most malware detection models proposed in research

papers did not open-source their code. Finally, in total, 9

models were used in our evaluation (7 for open-source ver-

sions and 2 for re-implementation by ourselves), as listed in

Table II. These models use various features and classification

algorithms, we implemented them and tested their accuracy,

as summarized in Table II.

Among these models, though they may use similar types of

features, the implementations could be different. For example,

DroidEvolver [50] uses API calls as detection feature, but it

use all Android API calls as the mapping space. Adagio [31]

uses call graph as the feature and embeds it into a large

vector space. The approach proposed by Nix et al. [40] uses

call sequence as the feature and CNN as the classification

algorithm, so we call it API-CNN for short. Also, we fixed its

implementation bug of input sequence processing. Similarly,

Opcode-CNN is short for the approach of McLaughlin et

al. [39], and Code2Pic for the approach of Yen et al. [53]. Note

that, the unofficial implementation of Drebin on GitHub [13]

is inconsistent with the approach described in the Drebin

paper [22]. Therefore, we re-implemented Drebin. Also, we

re-implemented Maldozer [35].

B. Experiment Setup

For each malware detection framework, we used 1000 mali-

cious apps for evading testing. After generating an adversarial

sample, we submitted it to the framework and checked the

result. If it is still labeled as malicious, SHADOWDROID will

conduct another round of modifications until reaching the

633

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on November 15,2022 at 02:51:55 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Malware detection models used in the experiment.

Models Implementation Main Features
Classification

Algorithm
Success
Rate

Modifications
Rounds

Avg Added
APIs

Avg Added
Permissions

Drebin [22] Re-implementation [12] 8 features† SVM 100% 9.5 776.4 5.86
Maldozer [35] Re-implementation [15] Call sequence CNN 100% 7.8 407.4 5.03
API-CNN [40] Unofficial open-source [9] Call sequence CNN 100% 2.5 232.5 1.24
Code2Pic [53] Official open-source [10] Java code CNN 100% 2.5 210.4 1.15
DroidEvolver [50] Official open-source [14] API calls Online learning 47.2% 47.1 6752.4 14.6
MaMaDroid [38] Official open-source [16] Call graph Random forest 0 - - -
Adagio [31] Official open-source [8] Call graph SVM 0 - - -
Opcode-CNN [39] Official open-source [17] Opcode sequence CNN 0 - - -
CSBD [19] Unofficial open-source [11] CFG Random forest 0 - - -

† Hardware features, requested & used permissions, app components, filtered Intents, restricted API calls, suspicious API calls, and network addresses.

threshold of 100 rounds. If a malicious app is classified as

benign, the attack is successful.

C. Evaluations

Overall Results. The results are listed in Table II. SHADOW-

DROID can achieve a 100% success rate on Drebin, Maldozer,

API-CNN, and Code2Pic. Also, the average modification

rounds are all less than 10. Most app modification operations

are adding APIs, from adding 210.4 APIs to 778.4 APIs. For

DroidEvolver, 472/1000 malicious apps (47.2%) can be mis-

classified. To a successful attack, the average modification

round is up to 47.1, adding 6752.4 APIs and 14.6 permissions.

SHADOWDROID failed on four frameworks (MaMaDroid,

Adagio, Opcode-CNN, and CSBD), and we discuss the causes

below.

Result Analysis. To the successful cases, Drebin uses eight

features such as API calls, permissions, manifest components,

etc. These features are encoded as vectors according to the

existence of these features, and the vector dimension is up to

217,766. Therefore, in our successful attack cases, the APK

manipulation needs around 9.5 rounds. On the other hand,

both Maldozer and API-CNN used API call sequences as

a feature, but the difference is that API-CNN uses pseudo-

dynamic analysis to get the possible API call sequences, while

Maldozer cascades the API calls in all classes. Our API call

injection operations have significant impacts on dimensional

vectors, say fewer modification rounds.

Code2Pic uses Java codes as its feature. It first converts the

DEX files into Java codes, then calculates the TF-IDF values of

these Java codes. Finally, it generates a picture based on these

values and uses a convolutional neural network (CNN) for

training and classification. Following our attack approach, we

injected lots of Smali codes when adding API calls. Therefore,

it would also significantly affect its TF-IDF values, and the

images generated by the values were also affected.

DroidEvolver uses five online learning models and votes to

get the final classification result. In some cases, our adversarial

examples only succeeded in one or two models, not affecting

the final result. Therefore, SHADOWDROID cannot achieve a

100% attack successful rate.

Among those failure models, MaMaDroid uses the API call

graph as its feature. It takes the call relationship between

the packages or families the API belonged to as the input.

Also, we set MaMaDroid in family mode. MaMadroid uses

Soot [49] to create function call graphs from all entry points,

and the default entry points of Soot analysis are the four major

components of Android (Activity, Service, Content Provider,

and Broadcast Receiver). However, our APK manipulation

does not add Android components, not affecting MaMaDroid.

Adagio also uses the call graph as its feature. Unlike

MaMadroid, Adagio uses Androguard to extract the call graph.

However, our added APIs only impact some sub-structures

of the call graph, contributing little to this model’s decision.

An effective method to evade Adagio might be deleting the

significant nodes or edges in the call graph, which may affect

the app functions.

Opcode-CNN uses opcode sequences as its feature. Our

addition of API calls would only increase the invoke and

return-void opcodes. Therefore, to the whole app, the opcodes

we added had little impact.

CSBD used the CFG signature as its feature. It first extracts

the CFG from an APK file and then calculates the signatures

of the CFG’s basic blocks (according to blocks’ opcodes).

Finally, it selects some signatures and generates a vector based

on the existence of these signatures. While attacking, we added

API calls to the self-defined method add_method_i(), which

would increase many basic blocks of the control flow graph,

but their signatures still kept the same. Since we can only

affect the one-dimensional value, our manipulations had little

impact on its vector value.

In summary, mainly the features used by the detection

platform determine the results of our attack. For the successful

attack cases, their features are highly correlated with the

features used by our substitute model. For the failure cases,

our modification operations have little impact on the features.

VI. DESIGN A ROBUST MALWARE DETECTION SYSTEM

For designing a robust malware detection system, we need

to consider three aspects – feature, classification algorithm,

and training dataset.

(1) Robust Features. When making an adversarial sample, we

only add redundant code to avoid affecting the malware’s

functionalities. Therefore, the robust features should be able

to resist redundant codes. According to our experimental

results, for API-CNN (API call sequence), Maldozer (API

call sequence), and Code2Pic (Java code), SHADOWDROID

634

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on November 15,2022 at 02:51:55 UTC from IEEE Xplore. Restrictions apply.

achieved a 100% success rate with a few modification rounds.

The main reason is that the redundant codes we insert can

significantly change the Smali codes and API call sequences.

On the contrary, the features requiring precise modifications

to evade have strong defense capabilities. For example, our

attacks on Adagio and MaMadroid failed, and they all use

call graphs as the feature. For evading such a graph structure,

we must accurately add nodes or edges, which is challenging

under the black-box attack setting. Therefore, we can use

robust features (e.g., call graph) which can resist redundant

codes injections.

(2) Robust Classification Algorithm. Inspired by DroidEvolver,

the combination of multiple algorithms may be a promising

solution. Ensemble learning is a multi-classifier classification

method. It obtains the final prediction result by voting for

each classifier. If we want to break it, we must successfully

attack most of the classifiers, which can improve the model’s

robustness. In our experiments, DroidEvolver and Drebin both

use high-dimensional sparse vectors as features, but SHADOW-

DROID cannot achieve the 100% success rate on DroidEvolver.

The main reason is the deployment of ensemble learning.

Therefore, we recommend using ensemble learning (or similar

solutions) instead of a single algorithm.

(3) Robust Training Dataset. We can use the adversarial

training method [48] to learn adversarial examples, which can

enhance the robustness of the model.

VII. RELATED WORKS

This section reviews the related work on the attacks against

the ML-based Android malware detection systems.

Adversarial attack on Android malware detection is a hot

research topic. However, most of these works adopt the white-

box or grey-box threat model. Chen et al. [26] expanded C&W

and JSMA which are originally used to craft image examples

to generate adversarial examples for evading two Android

malware detection model: Drebin [22] and MaMaDroid [38].

These two different models put forward different APK ma-

nipulation strategies based on the features chosen by these

two classifiers. Some malware detection models use the whole

graph structure as features [31], aiming at maintaining the

apps’ original functionality. In order to evade these models,

Xu et al. [51] proposed MANIS using approaches of the n-

strongest nodes and the gradient sign method to craft adver-

sarial examples without changing any node in the original

app’s graph. In contrast, Grosse et al. [32] optimised method

proposed in [43] to handle binary features. Demontis et al. [29]

implement obfuscation or string encryption to camouflage

specific parts of the app. While Rastogi et al. [45] leveraged

reflection to hide some edges in the app’s call graph. It is

worth mentioning that most of these researches are at least

under the scenario of knowing the features used by models. In

comparison, our attack is under the setting of knowing nothing

of the internal knowledge (e.g., features, encoding methods).

Yang et al. [52] also proposed a black-box attack method.

Their method is to alter the features in bytecode that are not

important to malware but could influence malware detectors’

classification. However, their approach would modify the

apps’ original functionalities. For example, according to their

experimental results, most of the variants generated by the

confusion attack cannot run. On the contrary, our approach

does not change the apps’ original functionalities by only

adding redundant components.

On other platforms, adversarial attacks also bring practical

security threats. Anderson et al. [21] focused on static Win-

dows PE malware evasion. They proposed a black-box attack

based on reinforcement learning (RL). Hu et al. [33] pro-

posed a generative adversarial network (GAN) based algorithm

named MalGAN to generate adversarial malware examples.

Rosenberg et al. [46] generated adversarial examples by mod-

ifying the malware’s API call sequences and non-sequential

features (printable strings). Demetrio et al. [28] successfully

evaded the detection of MalConv [44] by modifying the header

of PE files. Hu et al. [34] attacked the RNN-based malware

detection platform using substitute models.

VIII. CONCLUSION

In this work, we propose a black-box adversarial attack

scheme against ML-based Android malware detection. This

scheme focuses on crafting adversarial examples under the

setting of knowing nothing of target models. The experimental

results have proved that our methods can attack some models

successfully. Further, our approach does not influence apps’

original functions, making it practical in the real world. We

believe defenders should attach great importance to adversar-

ial examples crafting techniques towards ML-based Android

malware detection systems.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their insightful

comments. This work was partially supported by Shandong

Provincial Natural Science Foundation, China (Grant No.

ZR201911070257) and Qilu Young Scholar Program of Shan-

dong University.

REFERENCES

[1] “Android Permission List,” https://developer.android.google.cn/referenc
e/android/Manifest.permission.

[2] “apksigner,” https://developer.android.google.cn/studio/command-line/
apksigner.

[3] “Apktool,” http://ibotpeaches.github.io/Apktool/.
[4] “AppChina,” http://www.appchina.com/.
[5] “Baidu Mobile Assistant,” https://shouji.baidu.com.
[6] “PP Assistant,” https://www.25pp.com.
[7] “PScout,” https://github.com/dlgroupuoft/PScout.
[8] “Source Code of Adagio,” https://github.com/hgasco-dagio.
[9] “Source Code of API-CNN,” https://github.com/vikram-mm/Android

-Malware-Detection.
[10] “Source Code of Code2Pic,” https://github.com/chu840121/yys.
[11] “Source Code of CSBD,” https://github.com/MLDroid/csbd.
[12] “Source Code of Drebin (re-implemented version),” https://github.com

/zhangjin19960527/Drebin.
[13] “Source Code of Drebin (unofficial version),” https://github.com/MLD

roid/drebin.
[14] “Source Code of DroidEvolver,” https://github.com/DroidEvolver/Droi

dEvolver.
[15] “Source Code of Maldozer (re-implemented version),” https://github.c

om/zhangjin19960527/Maldozer.
[16] “Source Code of MaMadroid,” https://github.com/IanWE/mamadroid.

635

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on November 15,2022 at 02:51:55 UTC from IEEE Xplore. Restrictions apply.

[17] “Source Code of Opcode-CNN,” https://github.com/niallmcl/Deep-And
roid-Malware-Detection.

[18] “Tencent App Store,” https://sj.qq.com.
[19] K. Allix, T. F. Bissyandé, Q. Jérome, J. Klein, R. State, and Y. L. Traon,

“Empirical Assessment of Machine Learning-Based Malware Detectors
for Android - Measuring the Gap between In-the-Lab and In-the-Wild
Validation Scenarios,” Empirical Software Engineering, vol. 21, no. 1,
pp. 183–211, 2016.

[20] K. Allix, T. F. Bissyandé, J. Klein, and Y. L. Traon, “AndroZoo:
Collecting Millions of Android Apps for the Research Community,” in
Proceedings of the 13th International Conference on Mining Software
Repositories (MSR), Austin, TX, USA, May 14-22, 2016, 2016.

[21] H. S. Anderson, A. Kharkar, B. Filar, and P. Roth, “Evading Machine
Learning Malware Detection,” Black Hat, 2017.

[22] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck,
“DREBIN: Effective and Explainable Detection of Android Malware
in Your Pocket,” in Proceedings of the 21st Annual Network and
Distributed System Security Symposium (NDSS), San Diego, California,
USA, February 23-26, 2014, 2014.

[23] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “PScout: Analyzing
the Android Permission Specification,” in Proceedings of the 2012 ACM
Conference on Computer and Communications Security (CCS), Raleigh,
NC, USA, October 16-18, 2012, 2012.

[24] N. Carlini and D. A. Wagner, “Towards Evaluating the Robustness of
Neural Networks,” in Proceedings of the 2017 IEEE Symposium on
Security and Privacy (Oakland), San Jose, CA, USA, May 22-26, 2017,
2017.

[25] S. Chen, M. Xue, L. Fan, S. Hao, L. Xu, H. Zhu, and B. Li, “Auto-
mated Poisoning Attacks and Defenses in Malware Detection Systems:
An Adversarial Machine Learning Approach,” Computers & Security,
vol. 73, pp. 326–344, 2018.

[26] X. Chen, C. Li, D. Wang, S. Wen, J. Zhang, S. Nepal, Y. Xiang, and
K. Ren, “Android HIV: A Study of Repackaging Malware for Evad-
ing Machine-Learning Detection,” IEEE Transactions on Information
Forensics and Security, vol. 15, pp. 987–1001, 2020.

[27] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector
Machines and Other Kernel-based Learning Methods. Cambridge
University Press, 2000.

[28] L. Demetrio, B. Biggio, G. Lagorio, F. Roli, and A. Armando, “Explain-
ing Vulnerabilities of Deep Learning to Adversarial Malware Binaries,”
in Proceedings of the Third Italian Conference on Cyber Security
(ITASEC), Pisa, Italy, February 13-15, 2019, 2019.

[29] A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp, K. Rieck,
I. Corona, G. Giacinto, and F. Roli, “Yes, Machine Learning Can Be
More Secure! A Case Study on Android Malware Detection,” IEEE
Transactions on Dependable and Secure Computing, vol. 16, no. 4, pp.
711–724, 2019.

[30] R. Feng, S. Chen, X. Xie, L. Ma, G. Meng, Y. Liu, and S. Lin,
“MobiDroid: A Performance-Sensitive Malware Detection System on
Mobile Platform,” in Proceedings of the 24th International Conference
on Engineering of Complex Computer Systems (ICECCS), Guangzhou,
China, November 10-13, 2019, 2019.

[31] H. Gascon, F. Yamaguchi, D. Arp, and K. Rieck, “Structural Detection
of Android Malware using Embedded Call Graphs,” in Proceedings of
the 2013 ACM Workshop on Artificial Intelligence and Security (AISec),
Co-located with CCS 2013, Berlin, Germany, November 4, 2013, 2013.

[32] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. D. McDaniel,
“Adversarial Examples for Malware Detection,” in Computer Security -
ESORICS 2017 - 22nd European Symposium on Research in Computer
Security, Oslo, Norway, September 11-15, 2017, Proceedings, Part II,
2017.

[33] W. Hu and Y. Tan, “Generating Adversarial Malware Examples for
Black-Box Attacks Based on GAN,” CoRR, vol. abs/1702.05983, 2017.

[34] ——, “Black-Box Attacks against RNN Based Malware Detection Al-
gorithms,” in The Workshops of the The Thirty-Second AAAI Conference
on Artificial Intelligence, New Orleans, Louisiana, USA, February 2-7,
2018, 2018.

[35] E. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb, “MalDozer:
Automatic Framework for Android Malware Detection using Deep
Learning,” Digital Investigation, vol. 24, pp. 48–59, 2018.

[36] V. Kecman, “Support vector machines–an introduction,” in Support
Vector Machines: Theory and Applications. Springer, 2005, pp. 1–47.

[37] Y. Liu, C. Tantithamthavorn, L. Li, and Y. Liu, “Deep Learning for
Android Malware Defenses: a Systematic Literature Review,” Journal
of the ACM, vol. 37, 2021.

[38] E. Mariconti, L. Onwuzurike, P. Andriotis, E. D. Cristofaro, G. J.
Ross, and G. Stringhini, “MaMaDroid: Detecting Android Malware
by Building Markov Chains of Behavioral Models,” in Proceedings of
the 24th Annual Network and Distributed System Security Symposium
(NDSS), San Diego, California, USA, February 26 - March 1, 2017,
2017.

[39] N. McLaughlin, J. M. del Rincón, B. Kang, S. Y. Yerima, P. Miller,
S. Sezer, Y. Safaei, E. Trickel, Z. Zhao, A. Doupé, and G. Ahn,
“Deep Android Malware Detection,” in Proceedings of the Seventh ACM
Conference on Data and Application Security and Privacy (CODASPY),
Scottsdale, AZ, USA, March 22-24, 2017, 2017.

[40] R. Nix and J. Zhang, “Classification of android apps and malware using
deep neural networks,” in Proceedings of the 2017 International Joint
Conference on Neural Networks (IJCNN), Anchorage, AK, USA, May
14-19, 2017, 2017.

[41] R. Oak, M. Du, D. Yan, H. C. Takawale, and I. Amit, “Malware
Detection on Highly Imbalanced Data through Sequence Modeling,” in
Proceedings of the 12th ACM Workshop on Artificial Intelligence and
Security (AISec), London, UK, November 15, 2019, 2019.

[42] N. Papernot, P. D. McDaniel, and I. J. Goodfellow, “Transferability
in Machine Learning: from Phenomena to Black-Box Attacks using
Adversarial Samples,” CoRR, vol. abs/1605.07277, 2016.

[43] N. Papernot, P. D. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The Limitations of Deep Learning in Adversarial Settings,”
in Proceedings of the 1st IEEE European Symposium on Security and
Privacy (EuroS&P), Saarbrücken, Germany, March 21-24, 2016, 2016.

[44] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and C. K.
Nicholas, “Malware Detection by Eating a Whole EXE,” in The
Workshops of the The Thirty-Second AAAI Conference on Artificial
Intelligence, New Orleans, Louisiana, USA, February 2-7, 2018, 2018.

[45] V. Rastogi, Y. Chen, and X. Jiang, “DroidChameleon: Evaluating An-
droid Anti-malware against Transformation Attacks,” in Proceedings of
the 8th ACM Symposium on Information, Computer and Communica-
tions Security (ASIACCS), Hangzhou, China, May 08 - 10, 2013, 2013.

[46] I. Rosenberg, A. Shabtai, Y. Elovici, and L. Rokach, “Query-Efficient
Black-Box Attack Against Sequence-Based Malware Classifiers,” in
The 36th Annual Computer Security Applications Conference (ACSAC),
Virtual Event / Austin, TX, USA, 7-11 December, 2020, 2020.

[47] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J.
Goodfellow, and R. Fergus, “Intriguing Properties of Neural Networks,”
in Proceedings of the 2nd International Conference on Learning Rep-
resentations (ICLR), Banff, AB, Canada, April 14-16, 2014, Conference
Track Proceedings, 2014.

[48] F. Tramèr, A. Kurakin, N. Papernot, I. J. Goodfellow, D. Boneh, and
P. D. McDaniel, “Ensemble adversarial training: Attacks and defenses,”
in Proceedings of the 6th International Conference on Learning Rep-
resentations (ICLR), Vancouver, BC, Canada, April 30 - May 3, 2018,
2018.

[49] R. Vallée-Rai, P. Co, E. Gagnon, L. J. Hendren, P. Lam, and V. Sundare-
san, “Soot - a Java bytecode optimization framework,” in Proceedings of
the 1999 conference of the Centre for Advanced Studies on Collaborative
Research (CASCON), November 8-11, 1999, Mississauga, Ontario,
Canada, 1999.

[50] K. Xu, Y. Li, R. H. Deng, K. Chen, and J. Xu, “DroidEvolver: Self-
Evolving Android Malware Detection System,” in Proceedings of the
6th IEEE European Symposium on Security and Privacy (EuroS&P),
Stockholm, Sweden, June 17-19, 2019, 2019.

[51] P. Xu, B. Kolosnjaji, C. Eckert, and A. Zarras, “MANIS: Evading
Malware Detection System on Graph Structure,” in Proceedings of the
35th ACM/SIGAPP Symposium on Applied Computing (SAC), online
event, Brno, Czech Republic, March 30 - April 3, 2020, 2020.

[52] W. Yang, D. Kong, T. Xie, and C. A. Gunter, “Malware Detection in
Adversarial Settings: Exploiting Feature Evolutions and Confusions in
Android Apps,” in Proceedings of the 33rd Annual Computer Security
Applications Conference (ACSAC), Orlando, FL, USA, December 4-8,
2017, 2017.

[53] Y.-S. Yen and H.-M. Sun, “An Android Mutation Malware Detection
Based on Deep Learning Using Visualization of Importance from
Codes,” Microelectronics Reliability, vol. 93, 2019.

[54] Y. Zhang, Y. Sui, S. Pan, Z. Zheng, B. Ning, I. W. Tsang, and
W. Zhou, “Familial Clustering for Weakly-Labeled Android Malware
Using Hybrid Representation Learning,” IEEE Transactions on Infor-
mation Forensics and Security, vol. 15, pp. 3401–3414, 2020.

636

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on November 15,2022 at 02:51:55 UTC from IEEE Xplore. Restrictions apply.

