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ABSTRACT

During the Android app development, the SDK is essential, which

provides rich APIs to facilitate the implementations of functional-

ities. However, in the Android framework, there still exist plenty

of non-SDK APIs that are not well documented. These non-SDK

APIs can be invoked through unconventional ways, such as Java

reflection. On the other hand, these APIs are not stable and may

be changed or even removed in future Android versions, providing

no guarantee for compatibility. From Android 9 (API level 28),

Google began to strictly restrict the use of non-SDK APIs, and

the corresponding checking mechanism has been integrated into

the Android OS.

In this work, we systematically study the use and design

of Android non-SDK APIs. Notably, we propose four research

questions covering the restriction mechanism, the present usage

status, malicious usage, and the API list evolution. To answer these

questions, we conducted a large-scale measurement based on over

200K apps and the source code of three recent Android versions.

As a result, a series of exciting and valuable findings are obtained.

For example, Google’s restriction is not strong enough and can

still be bypassed. Besides, app developers use only a tiny part of

non-SDK APIs. Our work provides new knowledge to the research

community and can help researchers improve the Android API

designs.
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1 INTRODUCTION

As the most popular mobile operating system, Android occupies

more than 72% of the global smartphone market share [9]. At the

end of 2020, close to 3.15 million apps are available for users to

download in Google Play [11]. Such a large number of apps benefit

from the Android SDK provided by Google. Developers can quickly

build their apps through the rich APIs provided by the SDK and

then distribute them on the app market.

During the app development, the APIs invoked by developers are

derived from the android.jar library. On the other hand, at the app
execution stage, the APIs referred by apps are dynamically linked

to the implementations of the framework.jar library, a runtime
library located in the Android OS. Though both android.jar
and framework.jar are constructed based on the source code of
AOSP (Android Open Source Project), a large proportion of APIs in

framework.jar do not exist in android.jar, called non-SDK APIs.

Non-SDK APIs are not documented in the Android framework

Package Index [12], and they could be internal APIs, restricted APIs,

or hidden APIs (see Section 2.1 for details). These APIs are not stable

and may be changed or even disappear in future Android versions,

providing no guarantee for compatibility. Therefore, by design, non-

SDK APIs cannot be invoked by developers directly. In practice, the

well-known programming tricks for accessing them are using the

Java reflection mechanism or replacing the official android.jar
with a custom one containing the non-SDK APIs. Inevitably, using

the unstable non-SDK APIs will cause compatibility issues, like app

crashes and unexpected behaviors [32, 36, 45].

Obviously, the widespread use of non-SDK APIs is not a good

phenomenon. Therefore, from Android 9 (API level 28), Google

began to strictly restrict the invocations of non-SDK APIs and

encouraged developers to use the public APIs provided by the

SDK to build apps [15]. On the OS level, a new API invocation

checking mechanism was introduced, and restricted non-SDK API

lists were provided for reference officially. The current solution

tries to push app developers to drop non-SDK APIs gradually, and

the ideal situation is blocking the use of any non-SDK APIs in apps.

However, such an ultimate aim cannot be easily reached, and there

is still a lack of up-to-date knowledge on the evolution of Android

non-SDK APIs. Their usage in the wild and the effectiveness of

Google’s restriction have not been systematically evaluated.

Our Work. In this work, we systematically investigate how

developers use non-SDKAPIs and the evolution of non-SDKAPIs in

the Android framework. Notably, we seek to answer the following

research questions:
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Usage of Developers:

⇒ RQ1: Can Google’s restriction on non-SDK APIs be bypassed?

⇒RQ2:What is the present status of using non-SDK APIs in apps?

Malware vs. Benign Apps:

⇒ RQ3:What are the differences in using non-SDK APIs between

malicious and benign apps?

Evolution of Non-SDK APIs:

⇒ RQ4: How did non-SDK APIs evolve in the Android framework?

To answer these proposed research questions, we collected

226,209 apps from multiple app markets to analyze how and why

developers use non-SDK APIs. We also constructed a malware

dataset based on VirusTotal [43] to analyze the differences in using

non-SDK APIs between malicious and benign apps. In addition,

through analyzing the source code of recent Android versions (9, 10,

and 11), we studied the evolution of non-SDK APIs in the Android

framework. Also, to facilitate the measurement, we built a series of

targeted lightweight analysis tools, such as veridex++ for scanning
non-SDK APIs used in apps.

Contributions. Here we list the main contributions of this paper:

• Large-scale Measurement. Based on over 200K APK files

and the source code of three recent Android versions, we

conducted a multi-dimension large-scale measurement on

the Android non-SDK APIs in the wild.

• Systematic Study. We systematically studied the Android

non-SDK APIs from the aspects of developers, malware, and

system design. In particular, we proposed four significant

research questions and answered them with enough support-

ing evidence. Here we give the corresponding short answers.

(1) The restriction of Google still can be bypassed through the

double-reflection and call stack breaking techniques.

(2) Non-SDK APIs are widely used in apps. The usage purpose

is to achieve some app features not supported by the SDK.

(3) Non-SDK APIs have been abused by malicious apps, for

example, to dynamically load malicious code.

(4) The adjustment of non-SDK APIs is mainly for security

concerns and fine-grained functionality control.

Both OS designers and the software engineering research com-

munity can benefit from this work. (1) For OS designers: Google can

follow our guidelines to reformulate the policy of restricting access

to non-SDK APIs, and change risky APIs with secure alternative

ones. (2) For the research community:We providedmulti-dimension

large-scale measurement data on the Android non-SDK APIs. It

reflects how app developers use APIs, and the analysis results could

help design usable APIs in the future.

Roadmap. The rest of this paper is organized as follows. Section 2

provides the necessary background information to allow readers to

understand this work better. Section 3 presents the experimental

setup of this work. Section 4 details our empirical research to

answer the above research questions. Section 5 discusses some

mitigation measures to reduce the use of non-SDK APIs and the

limitation of this work. Section 6 introduces related work, and

Section 7 concludes this work.

2 BACKGROUND

In this section, we provide the necessary background of Android

APIs and focus on non-SDK APIs.

2.1 Android APIs

API is short for application programming interface, which is a

pre-defined function. Developers only need to call the correspond-

ing API according to the convention defined by the interface

without accessing the source code or understanding the details

of the internal working mechanism. Android APIs provide de-

velopers with the ability to access system resources of Android

devices. For example, they can access external storage through the

getExternalStorageDirectory() API. The collection of these

APIs constitutes the SDK. The Android SDK is almost completely

closed and interacts with developers through APIs.

When developing apps, the APIs used by app developers are

originated from android.jar1 which is a library in the devel-

opment environment. Corresponding to android.jar used for

development, there is framework.jar2, a runtime library in the

Android system that contains more APIs, including non-SDK APIs.

The relationship between android.jar and framework.jar is

illustrated in Figure 1. Non-SDK APIs exist widely in the source

code, usually in the following three forms, as shown in Listing 1.

Internal APIs are not planned to be open to the outside world and

are only for internal use by the system. Restricted and hidden APIs

are to prevent developers from using some unstable APIs. These

APIs may be removed from the Android framework or become

public APIs in a specific Android version.

1 // Internal API
2 package com.android.internal.telephony.cdma;
3 public class SmsMessage extends SmsMessageBase

{
4 @UnsupportedAppUsage
5 public static SmsMessage createFromPdu(byte[]

pdu) { }
6 }
7 // Restricted API
8 public class Activity extends

ContextThemeWrapper{
9 private void initWindowDecorActionBar () { }
10 }
11 // Hidden API
12 public class TelephonyManager {
13 /⁎⁎ Returns a constant indicating the state

of the card apps on the default SIM card.
14 ⁎ @hide ⁎/
15 @SystemApi
16 public SimState int getSimApplicationState ()

{ }
17 }

Listing 1: Example of non-SDK APIs.

• Internal APIs. These APIs are usually in the com.android.
internal package. The source code of all classes under this
package is invisible and only can be used by system apps.

1Location: <SDK-dir>/platforms/android-X/android.jar, X is the API level.
2Location: /system/framework/framework.jar

648

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on July 19,2022 at 04:07:30 UTC from IEEE Xplore.  Restrictions apply. 



APIs in        
android.jar Non-SDK APIs

framework.jarDevelopment 
environment

Runtime
 environment

Figure 1: Relationship of android.jar and framework.jar.

This package provides the core functions of the Android

system and can be used to access some sensitive resources.

• Restricted APIs. These APIs are labeled by the Java qualifiers

private or default.
• Hidden APIs. These APIs are usually clearly marked with

@hide in the Java doc.

As the Android OS evolves and new versions are released, each

version is assigned a unique integer identifier, called the API level.

Each Android device runs at exactly one API level, which precisely

indicates the version of the API set that can be invoked by the

apps running on the device. When an app is built, it contains the

following API level information:

(1) minSdkVersion – the minimum API level required for the

Android device to run this app. If the API level of the device is lower

than the value specified by minSdkVersion, the device will prevent
the user from installing this app.

(2) targetSdkVersion – the API level of the Android device

at which this app expects to run. This information indicates

that the app developer has tested this app against the target

API level, and the system should not enable any compatibility

behaviors to maintain this app’s forward compatibility with the

target version [17].

2.2 Restricted Non-SDK APIs

Access Method. Non-SDK APIs cannot be accessed directly

through the SDK provided by Google. Before Android 9, when

developing an app, the non-SDK APIs could be accessed through

the following three ways:

(1) SDK replacement.Developers can use a custom android.jar
(containing the non-SDK APIs implementations) to replace the

default android.jar.
(2) Java reflection. Through Java reflection [18], developers can

call the methods and properties of any object at runtime, even

if these methods and properties are labeled by the Java qualifier

private.
(3) Java Native Interface (JNI). In the Java layer, developers can

call the native code by defining JNI functions. Further, they can

access SDK and non-SDK APIs through specific APIs provided by

NDK in the native code [31].

However, in Android 9, Google realized the problem of refer-

encing a large number of non-SDK APIs in apps and began to

restrict the use of non-SDK APIs [15]. The purpose of limiting

the use of non-SDK interfaces is mainly to improve apps’ stability

further, prevent apps from crashing during runtime, and improve

the experience of users and developers [6].

Table 1: APK dataset.

Type Source Amount

(total)

Amount

(filtered)
Benign Apps APKPure, F-Droid, Anzhi,

Baidu, Huawei, Xiaomi, ...

226,209 79,493

Malware VirusTotal 10,029 10,029

Non-SDK API Lists. To minimize the impact of non-SDK APIs

restrictions on development workflow, Google classified all APIs

in the Android framework into four different lists and targeted

different lists to enforce different restrictions [10], as follows:

• blacklist – blocklist. Regardless of the targetSdkVersion
of the app, once the app tries to access the APIs in this list, a

runtime crash will be triggered.

• greylist-max-x – conditionally blocked. The APIs in this list
are usually expressed in the form of greylist-max-x, and x
is the code name of Android. For example, greylist-max-p
means that if the targetSdkVersion of the app is no more
than Android P (i.e., API level 28), the app can still access

the non-SDK APIs. However, if the targetSdkVersion is
greater than Android P, a runtime crash will occur when the

app accesses the non-SDK APIs.

• greylist – unsupported. The APIs in this list are currently
not restricted and can still be used in apps.

• whitelist – SDK APIs. The APIs in this list can be freely

used and are now supported as part of the officially docu-

mented Android framework.

The APIs in the first three lists (i.e., non-SDK APIs) are not

officially supported andmay be changed at any timewithout notice.

3 METHODOLOGY AND DATASET

To answer the proposed research questions, in this section, we

illustrate our measurement approach and constructed datasets.

3.1 Methodology

As illustrated in Figure 2, on a high level, our measurement contains

three main steps, as follows:

• APK Dataset Construction. First, we constructed the APK

dataset used in the study, including benign apps and mali-

cious ones.

• API List Generation. Based on the source code of AOSP, we

built an automated app scanner veridex++ and generated
the non-SDK API lists.

• Multi-dimension Analysis. To answer the proposed research

questions, we designed multiple kinds of targeted analysis

based on the data constructed in the previous steps.

3.2 App Dataset Construction

In this work, the dataset used in our research is divided into two

types, as shown in Table 1.

• Benign Apps. Since Google Play did not provide the app

bulk downloading APIs anymore, we selected 18 popular

app markets, including 9Apps, 2265, Anzhi, APKPure, Baidu,

DownloadPCAPK, F-Droid, Gfan, Huawei, LapTopPCAPK,
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Figure 2: Overview measurement flow.

Lenovo, LePlay, Leyou, Flyme, PC6, Yingyongbao, Uptodown,

and Xiaomi. After de-duplication, a total of 226,209 appswere

obtained.

• Malware. We requested access to the VirusTotal dataset [43]

and obtained a total of 10,029 malicious samples. VirusTotal

claims that their provided malicious apps have been marked

as "malicious" by at least 15 anti-virus engines.

Since we focus on the change before & after the launch of

Google’s restriction on non-SDK APIs (from API level 28), we

filtered the apps with targetSdkVersion 27 and later versions. The
filter implementation is based on Androguard [1]. Note that we did

not filter malicious apps because most of their targetSdkVersion
attributes are less than 28.

3.3 API List Generation

Veridex++. Starting from Android 9, in order to help developers

detect non-SDK APIs used in their apps, Google provided a

static detection tool – veridex [16]. This tool can be built by

compiling the source code of AOSP. To suit apps with different

targetSdkVersion attributes, we built three versions of veridex
based on the source code of Android 9, 10, and 11 (corresponding

to API level 28, 29, and 30).

In addition, we integrated these three versions of veridex into
one tool and added the support of parallel execution for large-

scale app scanning, called veridex++. We utilized this tool to scan

apps to obtain the used non-SDK APIs. To further reflect the real

intention of developers using non-SDK APIs, we excluded the non-

SDK APIs in the official libraries used by apps. These libraries

are support libraries required to run apps, usually containing

specific characteristics, such as beginning with com.google.⁎,
com.android.⁎, androidx.⁎, and android.⁎.

Non-SDK API Lists. Based on the source code of AOSP, through

executing the corresponding source code compiling command3, we

obtained all non-SDK APIs corresponding to Android 9, 10, and 11

(API level 28, 29, and 30). For Android 12 (API level 31), the source

code is currently not available, but Google provides independent

non-SDK API lists for the Android 12 developer preview version.

3Command: m out/soong/hiddenapi/hiddenapi-flags.csv

3.4 Multi-dimension Analysis

To answer the proposed four research questions, we designed

targeted analysis solutions. To RQ1, we tested various bypass ap-

proaches to validate their effectiveness and explored the restriction

implementation. To RQ 4, the analysis is mainly based on comparing

different versions of non-SDK lists. To RQ 2 and 3, we combined

multiple data sources to measure the status. The detailed analysis

methods are given by research questions in Section 4. Note that data

measurement is only a part of our study, and we also investigated

the fundamental causes behind these statistics results.

4 FINDINGS

In this section, we summarize our empirical research results on the

research questions proposed in Section 1.

� RQ1. Can Google’s restriction on non-SDKAPIs be
bypassed?

As mentioned in Section 2.2, there exist some approaches (SDK

replacement, Java reflection, and JNI) to access the non-SDK APIs.

Through developing multiple Android apps, on Google Pixel 2

with Android 8, 9, 10, and 11, we tested the effectiveness of these

approaches before/after Google launching the restriction.

Current Restriction. Based on our tests, the execution results of

the mentioned bypassing methods on the blacklist are listed in
Table 2. We can find that, before Google launching the restriction,

these approaches can achieve access successfully. The difference is

that only the Java reflection approach can access restricted APIs (the

private and default APIs) because such an approach can access
any object. After Google launching the restriction, all approaches

cannot work and will trigger a runtime crash.

The execution results on the greylist and the greylist-max-x
are consistent with Google’s claim (as mentioned in Section 2.2).

That is, there is no accessing restriction to the APIs on the greylist.
When we tried to access the APIs on the greylist-max-x, if
the targetSdkVersion of the app is less than or equal to the

restricted level, these APIs can be accessed successfully. When

the targetSdkVersion of the app is greater than the restricted

level, it will cause a runtime crash.

Principle of Restriction. It seems that Google’s strategy of

restricting non-SDKAPIsworkswell in Android 9 and later versions.

We further investigated the implementation of such a restriction. It
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Table 2: The effectiveness of accessing non-SDK APIs on the blacklist.

Approaches Before Google launching restriction After Google launching restriction

Internal APIs Restricted APIs Hidden APIs Internal APIs Restricted APIs Hidden APIs

Normal Invocation × × × × × ×
SDK Replacement

√ × √ × × ×
Java Reflection

√ √ √ × × ×
Java Native Interface

√ × √ × × ×

is deployed on the Android Runtime level. Inside the ART virtual

machine, each API has a set of access_flags flag bits to express
the attributes of the API [4]. For example, setting access_flags as
0x2 is to indicate that the API is private. There are some reserved
bits in access_flags, which were not fully utilized before Android
9. In Android 9, these reserved bits can be used to identify which list

each API belongs. When an API call triggered by an app at runtime

enters the ART virtual machine, the ART virtual machine will first

identify the caller’s identity. If the API call is made by system apps,

it will not be restricted. If not, this API’s restriction level (i.e., the

list that this API belongs to) will be identified according to the value

of access_flags to restrict non-SDK API calls.

In the above restriction, the ART virtual machine performs two

checks to prevent non-SDK API invocations: (1) Check the caller’s

identity (system or third-party app). (2) Check the restriction level

of the invoked API.

Bypass Restriction. Since the execution logic of Google’s re-

striction needs to check the API caller’s identity, it can still be

bypassed by destroying the integrity of the caller’s identity.

There are two ways for developers to achieve this goal:

(1) Double-reflection. This is a Java way. Using the system

class to reflect, we can change the caller’s identity to be the

system [5]. We first leverage reflection to obtain the reflection

API, called the meta-reflection API. This meta-reflection API is

loaded by the system class. Then, we use this meta-reflection

API to reflect the call to the non-SDK API. At this time, the

call to the non-SDK API will be considered a system call. In

addition, there is a setHiddenApiExemptions() API (a non-SDK
API) under the VMRuntime class that can be used to exempt a non-
SDK API from the restriction. Combining the double-reflection

with setHiddenApiExemptions(), all non-SDK APIs can still be

accessed through the previous approaches (i.e., SDK replacement,

Java reflection, and JNI).

(2) Call Stack Breaking. This is a JNI way. By breaking the call

stack of the API, the ART virtual machine cannot identify the

caller [14]. Specifically, through creating a new native thread and

then attaching the new thread to the ART virtual machine, this

new thread will be on a new call stack. Therefore, within this new

thread, when invoking an API, this API call will occur within the

new call stack, and the ART virtual machine will recognize that

this call is made by a system component, not a third-party app.

RQ1 Finding

In Android 9 and later versions, app developers can still use

double-reflection and call stack breaking to bypass Google’s

restriction and access non-SDK APIs.

Table 3: Statistics of apps using non-SDK APIs.

Target SDK

version

Total apps Apps using

non-SDK APIs

Percentage

27 (Android 8.1) 13,043 11,157 85.5%

28 (Android 9) 39,839 35,237 88.4%

29 (Android 10) 21,407 19,098 89.2%

30 (Android 11) 5,204 4,581 88.0%

Table 4: Statistics of average non-SDK APIs usage per app.

Target SDK

version

Apps using

non-SDK APIs

Used non-SDK

APIs amount

Average

usage /app

27 (Android 8.1) 11,157 184,491 16.5

28 (Android 9) 35,237 737,467 20.9

29 (Android 10) 19,098 633,697 33.2

30 (Android 11) 4,581 167,460 36.6

� RQ2. What is the present status of using non-SDK
APIs in apps?

Next, we measured the usage of non-SDK APIs in the wild. As

mentioned in Section 3.3, we obtained the usage of non-SDKAPIs in

apps utilizing veridex++. Through comparing the usage in different
app versions, we analyzed the reaction of developers to Google’s

restriction. Note that, since there is no official non-SDK APIs lists

for API level 27 (before Google launching the restriction), we used

veridex++ configured for the API level 28 to analyze apps with
targetSdkVersion 27.

Overall Statistics. As listed in Table 3, using non-SDK APIs is

quite common, with over 85% of apps. Also, the usage percentages

in apps with different targetSdkVersion are stable, from 85.5% to

89.2%, with a slight increase. Table 4 reflects that, to a single app,

more andmore non-SDKAPIs are used afterGoogle launching

the restriction. On average, the apps with targetSdkVersion
27 use 16.5 non-SDK APIs, and this number increases to 36.6 on

targetSdkVersion 30.
To explore the causes behind the above statistics results, we

conducted reverse analysis on various apps, especially those

with multiple versions. Specifically, we decompiled them using

Apktool [3] and performed differential analysis on their smali files.

Finally, we discovered three main reasons:

(1) With the evolution of the Android OS, some APIs used in

apps were adjusted to non-SDK API lists, but developers did not

replace these APIs used in their apps in time. For example, some

apps end the call by using the endCall() API. This API is a public
API in Android 9 and was moved to the greylist in Android 10.
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Figure 3: Distribution of non-SDK APIs referenced by apps.

Table 5: Statistics of unique non-SDK APIs used in apps.

Target SDK

version

Total non-SDK

APIs in lists

Unique used

non-SDK APIs

Percentage

28 (Android 9) 141,735 4,346 3.1%

29 (Android 10) 285,463 4,398 1.5%

30 (Android 11) 315,872 2,194 0.7%

(2) Some apps integrated third-party libraries containing non-

SDK APIs. These libraries are updated with app updates, which

may introduce new non-SDK APIs. For example, the app Opera
integrates Mintegral [8], a third-party library for advertising SDK
aggregation. Its updated version for targetSdkVersion 29 uses
the getBatteryCapacity() API (a non-SDK API) that does not

exist in its previous versions.

(3) To increase the competitiveness of apps, the developer

provides some unique functions through non-SDK APIs. For

example, some developers utilize the non-SDK APIs under the

BatteryStatsHelper class to monitor the battery usage of apps.

Usage by Lists.Next, we investigated what types of non-SDK APIs

are used by app developers. We counted the number of non-SDK

APIs referenced by apps on the greylist, greylist-max-x, and
blacklist with targetSdkVersion 28, 29, and 30, as plotted in
Figure 3. It shows that most of the used non-SDK APIs belong to the

greylist because the greylistAPIs have not been totally blocked
and will not trigger runtime crashes. Some apps still use the APIs

on the blacklist, and the proportion is gradually increasing.
As listed in Table 5, the proportion of non-SDK APIs used in

apps accounts for a small part of the whole non-SDK APIs space

(0.7% ∼ 3.1%), which means that developers are only interested in

some specific functions of non-SDK APIs.

Usage by Purposes. To further explore the developers’ intentions

of using non-SDK APIs, we located the belonged packages of these

frequently used non-SDK APIs. According to the core keywords in

the package names extracted by the NLP techniques, we filtered

the top 10 belonged packages, as shown in Figure 4.

• app. This package contains high-level classes encapsulating
the overall Android application model [21]. For example,

developers can obtain the ActivityThread class instance
through currentActivityThread() (greylist, 61,885 us-
ing times) in apps, which is the main thread of the current

app. Then, they can further obtain the context, package name,

and other app information through ActivityThread.
• os. This package provides essential system services, message

passing, and inter-process communication [26]. For example,

developers can use getVolumeList() (greylist, 17,024

Figure 4: Top 10 belonged packages of non-SDK APIs.

using time) to return the path of all SD cards mounted on the

device. However, the getExternalStorageDirectory()
API provided in the SDK can not achieve this.

• view. This package provides the classes that expose the basic
user interfaces handling screen layout and interaction with

the user [29]. For example, the developer can count the num-

ber of user clicks in apps by hooking mOnClickListener
(greylist, 8,355 using times) under the mListenerInfo
(greylist, 13,604 using times) object.

• content. This package contains the classes for accessing and
publishing data on the device [22]. For example, if developers

need to implement the hot patch function, they can invoke

addAssetPath() (greylist, 13,865 using times) to achieve
the dynamic resource loading.

• widget. This package contains (mostly visual) UI elements
to use on the app screen [30]. For example, when devel-

opers retrieve the width and height of a picture, if this

picture does not set the width and height values, the values

of mMaxWidth (greylist-max-p, 11,952 using times) and

mMaxHeight (greylist-max-p, 11,895 using times) will be
returned by default.

• net. This package assists network access, beyond the normal
java.net.⁎ APIs [25]. For example, developers can judge

the current GPRS status through getMobileDataEnable()
(greylist, 14,091 using times). If GPRS is turned on, they
can perform the network traffic transmission tasks.

• telephony. This package provides APIs for monitoring basic
phone information [27]. For example, developers can obtain

the neighboring cell information of the device through

getNeighboringCellInfo() (greylist, 3,796 using times)
to locate the current device location.

• graphics. This package provides low-level graphics tools,
such as canvases, color filters, points, and rectangles [23].

For example, developers usually use custom fonts in apps,

and they need to load the font files and create fonts through

createFromFamiliesWithDefault() (greylist, 26,019 us-
ing times).

• util. This package provides common utility APIs [28].

For example, suppose developers need to enable apps to

adapt different device screens. In that case, they can use
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noncompatWidthPixels (greylist, 20,251 using times) and
noncompatHeightPixels (greylist, 18,472 using times) to
obtain the device screen resolution.

• media. This package provides the classes that manage

various media interfaces (audio and video) [24]. For example,

if developers want to keep audio and video in sync, they

usually need to use getLatency() (greylist, 2,724 using
times) to obtain the track’s estimated latency.

In summary, many popular app features cannot be supported by

the Android SDK APIs, developers have to use non-SDK APIs.

RQ2 Finding

Using non-SDK APIs is very common in app developments,

even after Google launching the restriction. App developers

are only interested in a small part of non-SDK APIs, and the

purposes are using unique features not supported by the SDK.

� RQ3. What are the differences in using non-SDK
APIs between malicious and benign apps?

The targetSdkVersion attributes of all malicious apps in our
dataset are less than 28, so we used veridex++ configured for API
level 28 to scan them for generating the usage list of non-SDK APIs.

The result shows that the usage of non-SDK APIs is widespread. In

total, 61% of malware (6,150/10,029) used at least one non-SDK API.

Following the same approach, we scanned the benign apps

with targetSdkVersion 28. We compared the results and selected

the top 10 non-SDK APIs used in two kinds of apps for further

analysis, as shown in Figure 5. It shows that the non-SDK APIs

used by benign apps and malicious apps are quite different, and only

four APIs (currentActivityThread(), status_bar_height(),
noncompatWidthPixels(), and noncompatHeightPixels()) ex-
ist in both bar charts. Further checking shows malicious apps

abuse non-SDK APIs to achieve malicious purposes. Here we

give two concrete cases.

Case Study 1. getService() is the most frequently used non-

SDK API in malicious apps, which is designed for obtaining specific

system services. In some usage cases, the malicious app invokes this

API to obtain the IPhoneSubInfo interface [7], mainly responsible
for querying SIM card information. Further, with IPhoneSubInfo,
this app can use the hidden method – getSubscriberId(int
subId) to obtain the IMSI (International Mobile Subscriber Identity)

of the SIM card4 according to subId. Finally, this app can guess

the PIN (Personal Identification Number) code of the SIM card

based on the IMSI. By default, it is usually the last six digits of

the IMSI or 123456. The PIN code is essential and protects many

significant functions of the SIM card, like network billing and

internal information modification. With the PIN code, the malicious

app can deduct fees without the user’s consent. Part of the exploit

code is listed in Listing 2.

1 public static String getPayPassword(String str ,
Context context){

2 if(! TextUtil.notNull(str)){
3 str = SIMUtil.getIMSI2(context);
4 }

4If the current device is a dual-mode phone, it will return the IMSI of the main card.

5 return TextUtil.notNull(str)?str.substring(
str.length () -6, str.length ()):"123456";

6 }

Listing 2: Exploit case of PIN through getService().

Case Study 2. Even if both benign and malicious apps use the

same non-SDK API, their purposes are different. For example,

currentActivityThread() can be used to obtain the hidden

ActivityThread class instance. After an app gets ActivityThread,
all APIs belonging to this class can be invoked by reflection, like

the APIs for obtaining the process name and the app package name.

For themalicious usage (as demonstrated in Listing 3), an app can

further obtain the mPackages instance in ActivityThread through
the reflection and set its mClassLoader parameter to a custom

DexClassLoader object referring to a malicious DEX file (Line 9).
When this malicious DEX file is loaded, the app achieves dynamic

malicious code loading to bypass the anti-virus detection.

For benign usage, the primary purpose is to improve the

user experience. In Android 9, if an app uses non-SDK APIs, a

dialog box will pop up at runtime to indicate that there exists

an API compatibility problem. As a solution, the app can set the

mHiddenApiWarningShown parameter in ActivityThread to true
to prevent displaying this warning dialog box.

1 public void attachBaseContext(Context context){
2 ...
3 Class <?> cls = Class.forName("android.app.

ActivityThread");
4 Method method = cls.getMethod("

currentActivityThread", new Class [0]);
5 ...
6 DexClassLoader dexClassLoader = new

DexClassLoader(String.valueOf(absolutePath2
) + "/code.dex", absolutePath , "/data/data/
" + context.getPackageName () + "/lib/",
context.getClassLoader ().getParent ());

7 Field declaredField2 = Class.forName("android
.app.LoadedApk").getDeclaredField("
mClassLoader");

8 declaredField2.setAccessible(true);
9 declaredField2.set ((( WeakReference) ((Map)

declaredField.get(invoke)).get(
getPackageName ())).get(), dexClassLoader);

10 }

Listing 3: Malicious usage of currentActivityThread().

RQ3 Finding

Non-SDK APIs have been abused for malware to achieve

malicious purposes. Even for the same APIs, the usages of

malicious and benign apps are usually different.

� RQ4.Howdid non-SDKAPIs evolve in theAndroid
framework?

The above analysis shows there are still a large number of apps

using non-SDK APIs, and intrusive changes to non-SDK APIs will

cause extensive app crashes. Therefore, it is essential to understand
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Figure 5: Top 10 non-SDK APIs used by malicious and benign apps.

Figure 6: Changes in the amount of non-SDK APIs.

the evolution of non-SDK APIs in the Android framework. As

mentioned in Section 3.3, we obtained the non-SDK API lists of

Android 9, 10, 11, and 12 (API level 28, 29, 30, and 31). Further, we

conducted a series of API list evolution analyses.

Restricted APIs Amount. The number of APIs in each list of the

four versions is shown in Figure 6. It shows that Android 9 has

fewer restricted APIs than other versions, especially the APIs on the

blacklist. However, the APIs on the blacklist have increased
significantly in later versions, especially from Android 9 to 10,

which has increased by about 16 times. The number of APIs in

other lists has remained relatively stable. Since Android 9 is the

first version that Google began to implement restrictions on, if

many APIs are directly added to the blacklist, it will cause API
compatibility issues for a large number of apps.

API List Adjustments. To characterize the evolution of non-SDK

API lists, we recorded the changes in the number of APIs in these

lists between the adjacent Android versions, as shown in Table 6.

In the adjustment of restricted API lists: (1) If a new non-SDK

API is added to the Android framework, it will be highly likely

added to the blacklist directly. The reason is that these newly

added APIs have not been used by any apps, which can directly

serve the purpose of restricting developers’ access. (2) The APIs on

the blacklist and greylist-max-x are more likely to be removed
from the Android framework than the greylist. It is because these

two types of non-SDK APIs are used relatively infrequently. Also,

their functions are more relevant to user privacy. For example,

notifyLocationChanged() is on the blacklist in Android 10

and was removed in Android 11. Using this API can notify the cell

location change of the device. (3) Only a few APIs will be moved

to the list with lower restriction levels or become public APIs. The

APIs are usually moved to the list with the adjacent restriction

level. For example, more APIs on the greylist are moved to the
greylist-max-x rather than the blacklist. Since the APIs on
the greylist are still used by apps, moving them directly to the

blacklist will cause numerous app crashes at runtime. Moving

them to the greylist-max-x not only ensure that apps using these
APIs can still run on old devices, but also achieve the purpose of

restricting the use of these APIs on the latest version of devices.

Reasons of Adjustments. We further explored that, in the list

adjustment, why some APIs are further restricted (e.g., greylist
→ greylist-max-x), and some APIs are loosened to the lower

restriction lists (e.g., greylist → whitelist). As a preliminary,
we first investigated which kinds of non-SDK APIs were adjusted.

Through filtering the keywords of names of packages that each

non-SDK API belongs to, we obtained the most frequently adjusted

features (packages) and the number of associatedAPIs in the process

of list adjustment, as shown in Table 7. It shows that the APIs

belonging to the Android telephony framework are more likely to

be affected. Telephony is related to various system core services,

such as CALL services, SMS services, and APN access points.

For the case of enhancing the restriction, the first reason is the

security concern. These APIs may bypass privacy protection and

infringe user privacy. For example, deleteMessageFromIcc() is
on the greylist in Android 10 and was moved to the blacklist in
Android 11. Text messages are stored on the SIM card by default, not

on the Android device. Using this API can delete all text messages

stored on the SIM card, causing permanent loss of user data. Also,

for the same reason, various newly added telephony-related APIs

are directly added to the blacklist.
Besides, adding some APIs to the restricted list can achieve a

more fine-grained access control of the API’s functions. For

example, finish() is an overloaded function in the android.app.
Activity class used to close the activity and has two declarations

654

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on July 19,2022 at 04:07:30 UTC from IEEE Xplore.  Restrictions apply. 



Table 6: Changes of the amount of non-SDK APIs by list type between adjacent Android versions.

List Changes Android 9→ Android 10 Android 10→ Android 11 Android 11→ Android 12

new → blacklist 145,103 53,802 38,954

new → greylist-max-x 5 27 28

new → greylist 16,966 126 30

blacklist → remove 1,847 17,979 14,790

greylist-max-x → remove 15,195 4,912 1,573

greylist → remove 1,478 488 506

blacklist → greylist-max-x 0 0 0

blacklist → greylist 0 2 36

blacklist → whitelist 0 119 97

greylist-max-x → blacklist 1 1 7

greylist-max-x → greylist 121 4 0

greylist-max-x → whitelist 111 83 23

greylist → blacklist 168 853 14

greylist → greylist-max-x 791 895 3,098

greylist → whitelist 197 98 10

whitelist → blacklist 15 1 1

whitelist → greylist-max-x 0 0 0

whitelist → greylist 467 7 0

†: new represents the number of APIs newly added to the list, and remove represents the number of APIs removed from the list.

Table 7: The most affected features during the list change process and the number of related APIs.

List Changes Android 9→ Android 10 Android 10→ Android 11 Android 11→ Android 12

new → blacklist (telephony, 25,218) (telephony, 7,690) (telephony, 6,759)
new → greylist-max-x (telephony, 1) (app, 5) (view, 12)
new → greylist (apache, 8,496) (telephony, 60) (libcore, 13)
blacklist → remove (media, 395) (telephony, 5,138) (telephony, 2,727)
greylist-max-x → remove (media, 2,124) (net, 567) (app, 234)
greylist → remove (util, 351) (telephony, 175) (provider, 108)
blacklist → greylist-max-x N/A N/A N/A

blacklist → greylist N/A (telephony, 1) (bluetooth, 35)
blacklist → whitelist N/A (telephony, 45) (telephony, 30)
greylist-max-x → blacklist (system, 1) (telephony, 1) (media, 4)
greylist-max-x → greylist (os, 53) (telephony, 3) N/A

greylist-max-x → whitelist (media, 21) (telephony, 29) (graphics, 5)
greylist → blacklist (hardware, 55) (app, 127) (graphics, 10)
greylist → greylist-max-x (telephony, 125) (R, 702) (telephony, 915)
greylist → whitelist (media, 75) (util, 58) (media, 3)
whitelist → blacklist (os, 11) (os, 1) (telephony, 1)
whitelist → greylist-max-x N/A N/A N/A

whitelist → greylist (util, 107) (provider, 7) N/A

†: N/A means that no features are affected.

(with parameters or not), as shown in Listing 4. Note that finish()
is a publicly accessible API. However, finish(int finishTask)
belongs to the greylist before Android 12 and was moved to the
greylist-max-x in Android 12. In fact, the internal implemen-

tation of finish() calls finish(int finishTask) and passes in
a default parameter – DONT_FINISH_TASK_WITH_ACTIVITY (Line
4-6), which means closing the activity without closing the stack.
When the activity to be closed is not at the bottom of the stack, if

the app calls finish(int finishTask) rather than finish() and
passes in the FINISH_TASK_WITH_ROOT_ACTIVIT parameter, this
app will exit unexpectedly.

1 public static final int
DONT_FINISH_TASK_WITH_ACTIVITY = 0;

2 public static final int
FINISH_TASK_WITH_ROOT_ACTIVITY = 1;

3 public static final int
FINISH_TASK_WITH_ACTIVITY = 2;

4 public void finish (){
5 finish(DONT_FINISH_TASK_WITH_ACTIVITY);
6 }
7 private void finish(int finishTask){ ... }

Listing 4: Example of the API being further restricted.
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The restriction on finish(int finishTask) (and other similar
APIs) is beneficial to less experienced developers, preventing

them from passing in wrong parameters and causing unexpected

consequences.

The main reason for loosening restrictions may be the requests

from app developers. Since some developers must use the restricted

APIs to implement specific functions, they applied to Google for

releasing some APIs (through the Android Issue Tracker [13]). On

the other hand, it is also related to the new features added in the

new versions of the Android OS. For example, from Android 9 to 10,

many media-related APIs under the android.media.tv package
were moved from the greylist to whitelist. The corresponding
is that, in Android 10, Google brought many improvements and

changes to the Android TV, including security & privacy, media &

graphics, dynamic partitions, and energy consumption/doze [2].

RQ4 Finding

In the evolution of Android OS, the non-SDK API lists were

adjusted frequently. The reasons for enhancing API restrictions

are mainly for security concerns and fine-grained control.

The reasons for loosening API restrictions are mainly due to

developer requests and newly added features.

5 DISCUSSIONS

In this section, we discuss some limitations of this work and give

suggestions for reducing the use of non-SDK APIs and improving

the efficiency of malware detection.

Limitations. In this study, our basic data of non-SDK APIs used

in apps relies on the veridex tool provided by Google. However,
veridex cannot detect JNI calls, and the detection of reflection is
not 100% accurate. On the other hand, dynamic analysis is not a

suitable solution for the massive number of apps in our dataset

due to efficiency and coverage issues. Therefore, compared with

the dynamic analysis approach, we developed veridex++ based on
veridex, a static analysis solution for the large-scale app scanning.

We used veridex++ configured for API level 28 to scan apps

with targetSdkVersion attributes less than 28. It may cause false
positives because, for some non-SDK APIs in API level 28, when

these apps used them, these APIs might still be SDK APIs. For the

top 10 non-SDKAPIs used bymalicious apps, wemanually excluded

such false positives.

The number of apps with targetSdkVersion 30 is relatively

small (i.e., 5,204) because it is the latest Android API level (when

conducting this work), and the mainstream Android devices on the

market are still Android 10 (API level 29). Therefore, considering

the future versions of released apps, some basic data may fluctuate,

like Table 3, Table 4, and Table 5. Also, to further understand

the developers’ intentions of using non-SDK APIs, large-scale

surveys/interviews on developers could be conducted.

Restriction Suggestions. According to the above analysis, most

developers may ignore Google’s restriction, resulting in an increase

in using non-SDK APIs in recent versions of apps. Here we propose

some suggestions for balancing the requirements of developers and

app compatibility.

(1) For app development, when developers invoke non-SDK

APIs, Android Studio should prompt a reminder about the

consequence of accessing the API or provide an alternative

to the public APIs with similar functions. Also, an integrity

check mechanism of SDK should be added to Android Studio.

So it can detect whether the android.jar library has been
replaced and resets it to the official version.

(2) For app runtime, Google needs to further cut off the way

to access non-SDK APIs, such as adding a mechanism to

identify double-reflection calls. Also, at the native layer, apps

should be prohibited from creating new native threads to

prevent them from bypassing the restriction by breaking the

function call stack.

(3) For API design, the widely used non-SDK APIs should be

released or redesigned for public usage. Google could use

the API usage data and the developer requests as references.

Malware Detection.Malware detection is a popular topic in the

mobile security research community. The current mainstream

malware detection technology is to build a classifier through

machine learning based on a series of features extracted from apps,

such as requested permissions and API calls [19, 34]. The accuracy

of identifying malware basically depends on the extracted features.

That is, the selected features should have significant differences

between malicious and benign apps. This research shows that non-

SDK APIs meet this requirement because there exist significant API

usage differences (see Figure 5). In addition, the app behaviors are

entirely different for the same APIs, and the corresponding API

call sequences are also entirely different. Therefore, we recommend

using non-SDK APIs as an essential feature when building malware

classifiers to improve malware detection accuracy.

6 RELATEDWORK

The Android API has been studied by plenty of previous work.

However, most research focused on public APIs, and rare work

noticed the non-SDK APIs in Android. In this section, we review

the related work on Android APIs.

Non-SDK APIs. The most relevant work to non-SDK API was

conducted by Li et al. [35]. They empirically investigated the

evolution of Android internal APIs and hidden APIs from the

aspects of significance, impact, and adoption. However, their work

was based on early versions of Android (≤ 6.0) before Google

deployed the restriction on non-SDK APIs. The relevant knowledge

needs to be updated to reflect the current status. Also, at that time,

since Google did not provide the complete list of non-SDK APIs at

each API level, the corresponding data analysis may not be accurate

(may exist false positive or false negative).

Unlike the above research, in this paper, we mainly focus on the

usage of non-SDK APIs in the Android framework after Google

deployed access restrictions on non-SDK APIs. To the best of our

knowledge, we are the first to conduct a systematic study of non-

SDK APIs after Google implemented the restriction.

API Evolution. Various previous work studied the evolution

of Android APIs. McDonnell et al. [42] found that Android is

evolving fast at a rate of 115 API updates per month on average.

However, developers cannot adopt these newly added APIs in
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time. Linares-Vásquez et al. [38] analyzed the relation between

the success of apps and the change- and fault-proneness of the

underlying APIs. Their study shows that less fault- and change-

prone APIs contribute more to apps’ successes. In addition, they also

investigated a relationship between API changes and developers’

reactions [39]. Li et al. [37] performed an exploratory study of

deprecated Android APIs based on a prototype research tool called

CDA and discovered that the Android framework codebase is

regularly cleaned up from deprecated APIs in a short period. More

recently, Liu et al. [40] conducted an empirical study to characterize

silently-evolved methods across ten versions of the Android API.

These methods are functions whose behavior might have changed,

but the corresponding documentation did not change accordingly.

Compatibility Issues. API evolution causes compatibility issues

in Android apps [44]. Li et al. [36] proposed CiD to detect API-

related compatibility issues based on an API lifecycle model.

He et al. [32] studied compatibility problems induced by the

evolution of Android OS. They developed IctApiFinder to discover

incompatible API usage issues in Android apps based on inter-

procedural data-flow analysis. Huang et al. [33] identified the

callback compatibility issues induced by callback API evolution and

devised Cider to detect this kind of issue. Cai et al. [20] empirically

investigated the app incompatibilities that are actually exercised

at runtime and found that runtime incompatibilities are mostly

due to API changes during SDK evolution. Xia et al. [45] focused

on the Android developers’ reactions to evolution-induced API

compatibility issues. Their research shows that developers do not

want to provide alternative implementations for incompatible API

invocations. More recently, Mahmud et al. [41] introduced ACID,

which leverages API differences and static analysis of source code of

Android apps to detect compatibility issues caused by API evolution.

7 CONCLUSION

Since Android 9, Google began to restrict access to non-SDK APIs

to improve apps’ stability. In this paper, we conducted the first

large-scale study on the use and design of non-SDK APIs. We

first explored the implementation of Google’s restriction. Then,

we investigated the present usage trend and purposes of non-SDK

APIs. Next, we compared their usage in malicious apps. Finally,

we characterized the evolution of non-SDK APIs in the Android

framework. A series of exciting and valuable findings are obtained,

which provides new knowledge to the research community and can

help researchers improve Android APIs’ design.
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