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ABSTRACT

With the considerable success achieved by modern fuzzing in-

frastructures, more crashes are produced than ever before. To

dig out the root cause, rapid and faithful crash triage for large

numbers of crashes has always been attractive. However, hindered

by the practical difficulty of reducing analysis imprecision without

compromising efficiency, this goal has not been accomplished.

In this paper, we present an end-to-end crash triage solution

DeFault, for accurately and quickly pinpointing unique root cause

from large numbers of crashes. In particular, we quantify the

“crash relevance” of program entities based on mutual information,

which serves as the criterion of unique crash bucketing and allows

us to bucket massive crashes without pre-analyzing their root

cause. The quantification of “crash relevance” is also used in the

shortening of long crashing traces. On this basis, we use the

interpretability of neural networks to precisely pinpoint the root

cause in the shortened traces by evaluating each basic block’s

impact on the crash label. Evaluated with 20 programs with

22216 crashes in total, DeFault demonstrates remarkable accuracy

and performance, which is way beyond what the state-of-the-art

techniques can achieve: crash de-duplication was achieved at a

super-fast processing speed – 0.017 seconds per crashing trace,

without missing any unique bugs. After that, it identifies the root

cause of 43 unique crashes with no false negatives and an average

false positive rate of 9.2%.

CCS CONCEPTS

• Security and privacy→ Software security engineering.

KEYWORDS

Crash Triage; Software Security

� Corresponding author, chenjiongyi@nudt.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3512760

ACM Reference Format:

Xing Zhang, Jiongyi Chen, Chao Feng, Ruilin Li, Wenrui Diao, Kehuan

Zhang, Jing Lei, and Chaojing Tang. 2022. DeFault: Mutual Information-

based Crash Triage for Massive Crashes. In 44th International Conference on

Software Engineering (ICSE ’22), May 21–29, 2022, Pittsburgh, PA, USA. ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/3510003.3512760

1 INTRODUCTION

Software vulnerability is a prevailing threat in cyberspace. To

discover and eliminate software vulnerabilities, fuzzing has been

recognized as one of the most effective approaches by randomly

or strategically generating a large number of inputs to feed a

program and trigger program exceptions. For example, the fuzzing

infrastructure ClusterFuzz has found more than 25,000 bugs in

Google products (e.g., Chrome) and around 22,500 bugs in over

340 open source projects in September 2020 [3]. Even though con-

siderable progress has made in triggering crashes, the subsequent

procedure—crash triage—remains imprecise, time-consuming, and

labor-intensive.

Accuracy, efficiency, and generality are the major concerns of

current crash triage techniques. However, there lacks a systematic

solution that can balance the trade-offs and achieve accurate,

fast, and fully-automated crash triage. For the past decade, al-

though there has been a wealth of research into crash triage,

including crash deduplication [16, 18, 27, 29, 33, 34] and fault

localization [5, 10, 20, 25, 26, 31, 42, 44, 47, 48], the efficacy of those

approaches significantly varies based on different vulnerability

types, crash reports, and running environment, making them less

applicable to general programs. In particular, a line of prior crash

deduplication approaches work at the granularity of function call

level and fail to bucket crashes by inspecting the crashes’ actual

root cause, which could cause critical vulnerabilities triggered

but missed. The other research aims to deduplicate crashes by

examining the root cause of crashes or representing root cause

with the constraints on crashing paths, which takes significant time

when the number of processed crashes increases. Regarding fault

localization, given that prior statistical approaches fail to capture

sequence information of root-cause basic blocks, the accuracy

of identification is seriously affected. More importantly, those

approaches only output suspicious scores for a set of basic blocks,

for example, top 20 basic blocks. In practice, this does not give

sufficient guidance for analysts, as they still have a set of basic

candidate blocks to examine.
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In this paper, we present an end-to-end crash triage solution

calledDeFault, for rapidly de-duplicating massive traces of crashes

and accurately pinpointing the root cause for unique crashes. We

borrow the concept of mutual information in information theory

and treat crash triage as an information mining process. The

key insight is that mutual information of program entities (e.g.,

functions and basic blocks) is a measurement of their relevance to

the crash. We leverage such “crash relevance”: (1) as the criteria

to bucket unique crashes in crash deduplication; (2) to identify

and filter out irrelevant program entities for shortening traces in

our neural network-based fault localization. Without inspecting

each crash’s root cause, our approach allows crash deduplication

accomplished within a short time without missing bugs. In the

subsequent fault localization procedure, the mutual information

about “crash relevance” is used again to filter program entities that

are irrelevant to the crash, which shortens the long execution traces

and thus facilitates the feeding of inputs to the neural network.

On such a basis, in the last step, we utilize the interpretability of

neural networks to extract the actual root cause from the shortened

traces. With the ability to capture sequence information, the neural

network significantly improves root cause identification accuracy

compared with the traditional approaches.

We implemented a full-featured prototype of DeFault and

evaluated it with 20 programs, including 8 CGC programs and

12 real-world programs. On the one hand, for crash de-duplication,

DeFault processed 22216 crashing traces at a speed of 0.017 seconds

per trace. It identified 42 unique crashing traces without missing

any bugs. Regarding fault localization, it reports no false negatives

and low false positive rate of 9.2%, which is way beyond what the

state-of-the-art tools can achieve.

Contributions. The contributions of this paper are summarized

as follows.

• New techniques. We propose a new approach to measure

the “crash relevance” of program entities based on mutual

information, which is critical for crash deduplication and

fault localization. With such an approach, we design and

present a novel end-to-end analysis system, DeFault, that

directly takes crashing execution traces from fuzzers as input

and automatically pinpoints the root cause of program faults.

• Evaluation.We evaluated DeFault on 20 programs, includ-

ing 8 CGC programs and 12 real-world programs. The results

demonstrate thatDeFault is both efficient and accurate. The

tool publicly available for continuous research1.

Roadmap. The rest of this paper is organized as follows: Section 2

surveys the related research. Section 3 provides the necessary

background, covering mutual information and the attention mech-

anism of interpretability of neural networks. Section 4 describes

the detailed design of DeFault. Section 5 presents the evaluation

results and the comparison with existing techniques. Section 7

concludes this paper.

1DeFault is available at https://github.com/zxhree/default

2 RELATEDWORK

In this section, we review the related work on crash deduplication

and fault localization for software testing. The limitations of the

existing approaches are also summarized.

2.1 Crash Deduplication

Crash deduplication aims to cluster crashes produced by fuzzers

and select a unique crash (or a representative crash) from each

clustered group of crashes that share the same root cause. The

subsequent fault localization is performed on such unique crashes.

With more crashes produced by fuzzing infrastructures, crash

deduplication has become an urgent demand, easing the burden of

subsequent fault localization. However, existing approaches are far

from accurate and practical, as they are either coarse-grained or

make certain assumptions. Below we describe the related work.

Call stack-based deduplication. The widely used call stack-

based approaches measure the similarity among function call

sequences [16, 18, 27, 29], function arguments [9], or call graphs [23]

of the functions on call stacks. In general, such approaches are

coarse-grained. If a program with different vulnerabilities crashed

in the same function, call stack-based deduplication would miss

unique crashes.

Constraint-based deduplication. As the typical representative,

Pham et al. [33] and Podelski et al. [34] collect constraints on the

failing paths and passing paths, and deduce their longest common

prefix, which is further used to characterize the semantics of the

failure. deduplication is conducted based on the unique symbolic

semantics. However, hindered by the drawbacks of symbolic

execution techniques [11, 14] (e.g., control flow dependence and

unsolvable constraints), such approaches are less scalable for

massive crashes of real-world programs.

Patching-based deduplication. Patching-based deduplication

first automatically fixes specific vulnerabilities [12, 28, 37] (e.g.,

buffer overflow and null pointer dereference) at crashing point

and then observes whether unfixed crashes can be reproduced.

The crashes that cannot be reproduced are clustered into the same

group. This approach relies on source code analysis and specific

vulnerability types, not to mention the side effect of program

transformation. Therefore, it is less applicable to binary programs

with unknown vulnerability types.

Report-based deduplication. Report-based deduplication lever-

ages information retrieval techniques to analyze text information

of crash reports. For examples, Wang et al. [38] leverage topic

models, Scaffle et al. [35] use neural networks, and Ye et al. [46]

utilize sort algorithms, to extract crash-related information like call

sequences and the history of vulnerability patching. Kim et al. [22]

use machine learning techniques to predict the root cause, for the

purpose of differentiating various crashes. However, report-based

approaches are too coarse, which are typically performed upon the

function level. Apart from that, the effectiveness depends on how

the OS or the debugger writes the record, which may not provide

sufficient crash-related information.
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2.2 Fault Localization

Automatic fault localization techniques leverage the statistics of

target programs at runtime to locate program faults. The related

work can be categorized as follows:

Program spectrum-based approaches. Program spectrum, such

as the statistics of program paths executions, is a measurement

of program running status. Collefello et al. [15] for the first time

leveraged program spectrum for fault localization. By comparing

the statistics of program entities about normal exit and crash, a

suspicious score is given to each program entity. Generally, themore

execution time a program entity has in crash samples than normal

exit samples, the higher score the program entity gets. The scores of

program entities can be calculated and ranked according to various

approaches [5, 10, 19, 20, 25, 26, 31, 42, 44, 47, 48]. However, all

existing approaches only consider whether a program entity exists

in samples but neglect the execution times of the entities in a certain

sample and the sequence of their executions. As demonstrated in

Section 5, without such sequence information, program spectrum-

based fault localization would inevitably introduce imprecision.

Machine learning-based approaches. Machine learning-based

approaches [30, 32, 36, 50] treat program entities as input and

leverage the classification systems to output the probability of root

cause for each program entity. For instance, Liu et al. [30] represent

the execution flow of a program as a graph. Also, they use graph

mining approaches to extract sub-graphs about program faults and

use SVMs to identify each sub-graph’s contributions to the crash.

Similarly, Nessa et al. [32] use N-Gram to calculate the conditional

probability of program entities in execution traces to the crash.

However, similar to program spectrum-based approaches, those

studies do not recover sequence information for root-cause basic

blocks.

Programslicing-based approaches. Program slicing techniques [39],

including static slicing and dynamic slicing, are to compute a

set of program statements that may affect the values at some

point of interest. In particular, dynamic slicing [6] is often used in

fault localization by analyzing program execution traces. Agrawal

et al. [7] leverage dynamic slicing to locate program faults by

calculating the slices’ intersection. Wang et al. [40, 41] use dynamic

slicing to pinpoint program faults by analyzing data dependence

among program entities. Zhang et al. [51, 53] use dynamic slicing

to extract the change of variables related to the crash to locate root

causes. Moreover, Xu et al. [43] use backward program slicing to

locate program faults with the support of Intel PT. However, due to

the control flow dependence problem – a fundamental drawback

of dataflow analysis, the effectiveness of those approaches is not

satisfactory.

2.3 Limitations of Prior Research

Though much effort has been put into the research of crash triage,

the existing approaches still have multiple critical limitations, as

summarized below.

• Generality. The effectiveness of crash triage techniques

significantly varies with different vulnerability types, crash

reports, and running environment, making them less appli-

cable to general programs.

• Accuracy. Prior crash deduplication approaches work at

the granularity of function call level and fail to bucket

crashes by inspecting the actual root cause of the crashes,

which may cause imprecision and miss bugs. On the other

hand, existing fault localization approaches do not consider

sequence information, which introduces imprecision again.

• Time consumption. To bucket the crashes, existing ap-

proaches examine each crash regardless of the granularity.

After that, a pair-wise match among all crashes is unavoid-

able, which takes significant time with the number of crashes

increasing.

3 PRELIMINARIES

This section provides some necessary backgrounds of mutual

information and introduces the attention mechanism of neural

networks.

3.1 Mutual Information

In information theory, mutual information is a measure of the

mutual dependence between two random variables. It can be

regarded as the amount of information that one random variable

contains about the other random variable. Mutual information is

an important criterion for feature selection in machine learning.

The more information a feature brings to the classification system,

the larger the value of its mutual information is. Namely, such a

feature is more relevant to the classification. Inspired by the fact,

we leverage the mutual information to measure the contribution of

basic blocks to crashes. We use the mutual information not only in

crash de-duplication, but also in the initial step of fault localization

by filtering out the vast majority of program entities (e.g., functions

and basic blocks) that are irrelevant to the crash.

Mutual information.We represent a crashing trace at basic block

level as a list of tuples: B = {𝑏1 : 𝑛(𝑏1);𝑏2 : 𝑛(𝑏2)...;𝑏𝑛 : 𝑛(𝑏𝑛)},

where 𝑏 is (the starting address of) a basic block, 𝑛(𝑏) is its

occurrence in trace B. The output of a fuzzer forms a dataset

D =< B,Y >, where B is a set of crashing traces {B1,B2, ...,B𝑛}

and Y = {𝑦1, 𝑦2, ..., 𝑦𝑛} is a set of labels denoting whether a trace

corresponds a crash or a normal exit.

For a given dataset 𝐷 , the mutual information of a basic block 𝑏

to label 𝑦 is given by:

𝐼 (𝑦 |𝑏) = 𝐻 (𝑏) −𝐻 (𝑏 |𝑦) = 𝐻 (𝑦) −𝐻 (𝑦 |𝑏) (1)

where 𝐻 (𝑦) is the entropy of label 𝑦 and 𝐻 (𝑦 |𝑏) is the conditional

entropy of basic block 𝑏 given label 𝑦. More specifically, we denote

𝑁𝑝 as the amount of non-crashing traces in dataset 𝐷 and 𝑁𝑓 as

the amount of crashing traces in dataset 𝐷 (where 𝑛 = 𝑁𝑓 + 𝑁𝑝 ).

Then the entropy of label 𝑦 is:

𝐻 (𝑦) = −
𝑁𝑝

𝑁
𝑙𝑜𝑔 (

𝑁𝑝

𝑁
) −

𝑁𝑓

𝑁
𝑙𝑜𝑔 (

𝑁𝑓

𝑁
) (2)

Using𝑚𝑎𝑥 (𝑛(𝑏)) to denote the max of 𝑛(𝑏) for basic block 𝑏 in

all B that belong to 𝐷 , we have the conditional entropy 𝐻 (𝑦 |𝑏):

𝐻 (𝑦 |𝑏) = −

𝑚𝑎𝑥 (𝑛 (𝑏) )∑

𝑖=0

𝑝 (𝑏 |𝑛 (𝑏)=𝑖 )𝐻 (𝑦 |𝑏 |𝑛 (𝑏)=𝑖 ) (3)

where 𝑝 (𝑏 |𝑛 (𝑏)=𝑖 ) =
𝑐𝑖 (𝑏)
𝑁 .
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Additionally, the conditional entropy of 𝑦 to 𝑏 |𝑛 (𝑏)=𝑖 is:

𝐻 (𝑦 |𝑏 |𝑛 (𝑏)=𝑖 ) = −
𝑐𝑝𝑖 (𝑏)

𝑐𝑖 (𝑏)
𝑙𝑜𝑔(

𝑐𝑝𝑖 (𝑏)

𝑐𝑖 (𝑏)
) −

𝑐 𝑓 𝑖 (𝑏)

𝑐𝑖 (𝑏)
𝑙𝑜𝑔(

𝑐 𝑓 𝑖 (𝑏)

𝑐𝑖 (𝑏)
) (4)

In the above formula, 𝑐𝑖 (𝑏) is the amount of B in 𝐷 when 𝑛(𝑏) = 𝑖 ,

𝑐𝑝𝑖 (𝑏) is the amount of B in 𝐷 when 𝑦 = 0 and 𝑛(𝑏) = 𝑖 , and

𝑐 𝑓 𝑖 (𝑏) is the amount of B in 𝐷 when 𝑦 = 1 and 𝑛(𝑏) = 𝑖 . Combining

Equation(3) and Equation (4), we can obtain the conditional entropy

𝐻 (𝑦 |𝑏) and the mutual information 𝐼 (𝑦 |𝑏):

𝐻 (𝑦 |𝑏) = −

𝑚𝑎𝑥 (𝑛 (𝑏) )∑

𝑖=0

𝑐𝑖 (𝑏)

𝑁
(
𝑐𝑝𝑖 (𝑏)

𝑐𝑖 (𝑏)
𝑙𝑜𝑔

𝑐𝑝𝑖 (𝑏)

𝑐𝑖 (𝑏)
+
𝑐𝑝𝑖 (𝑏)

𝑐𝑖 (𝑏)
𝑙𝑜𝑔

𝑐𝑝𝑖 (𝑏)

𝑐𝑖 (𝑏)
)

(5)

𝐼 (𝑦 |𝑏) = 𝐻 (𝑦) +

𝑚𝑎𝑥 (𝑛 (𝑏) )∑

𝑖=0

𝑐𝑖 (𝑏)

𝑁
(
𝑐𝑝𝑖 (𝑏)

𝑐𝑖 (𝑏)
𝑙𝑜𝑔

𝑐𝑝𝑖 (𝑏)

𝑐𝑖 (𝑏)
+
𝑐𝑝𝑖 (𝑏)

𝑐𝑖 (𝑏)
𝑙𝑜𝑔

𝑐𝑝𝑖 (𝑏)

𝑐𝑖 (𝑏)
)

(6)

The mutual information 𝐼 (𝑦 |𝑏) quantifies the “amount of infor-

mation” obtained about a crash through observing the presence

of basic block 𝑏. In plain English, it represents the contribution of

basic block 𝑏 to the crash.

Mutual information with threshold. As can be seen from Equa-

tion (6), the amount of “crash relevance” is related to𝑚𝑎𝑥 (𝑛(𝑏))

and the statistics of 𝑏 such as 𝑐𝑖 (𝑏) and 𝑐𝑝𝑖 (𝑏). Its value can vary

according to different𝑚𝑎𝑥 (𝑛(𝑏)). To fairly compare the amount of

information for the basic blocks with different occurrence in the ex-

ecution traces, we use a threshold that is automatically-determined

and turn the problem into a binary classification problem (i.e.,

occurrence is smaller than or larger than a threshold): assume

we have a threshold variable 𝑡ℎ𝑑 whose value is a non-negative

integer with 𝑡ℎ𝑑 ∈ [0,𝑚𝑎𝑥 (𝑛(𝑏))). Given the threshold variable,

𝐻 (𝑦 |𝑏) can be the addition of 𝐻 (𝑦 |𝑏 |𝑛 (𝑏)≤𝑡ℎ𝑑 ) and 𝐻 (𝑦 |𝑏 |𝑛 (𝑏)>𝑡ℎ𝑑 ),

where:

𝐻 (𝑦 |𝑏 |𝑛 (𝑏)≤𝑡ℎ𝑑 ) = −

∑𝑡ℎ𝑑
𝑖=0 𝑐𝑝𝑖 (𝑏)

∑𝑡ℎ𝑑
𝑖=0 𝑐𝑖 (𝑏)

𝑙𝑜𝑔(

∑𝑡ℎ𝑑
𝑖=0 𝑐𝑝𝑖 (𝑏)

∑𝑡ℎ𝑑
𝑖=0 𝑐𝑖 (𝑏)

)

−

∑𝑡ℎ𝑑
𝑖=0 𝑐 𝑓 𝑖 (𝑏)

∑𝑡ℎ𝑑
𝑖=0 𝑐𝑖 (𝑏)

𝑙𝑜𝑔(

∑𝑡ℎ𝑑
𝑖=0 𝑐 𝑓 𝑖 (𝑏)

∑𝑡ℎ𝑑
𝑖=0 𝑐𝑖 (𝑏)

) (7)

𝐻 (𝑦 |𝑏 |𝑛 (𝑏)>𝑡ℎ𝑑 ) = −

∑𝑚𝑎𝑥 (𝑛 (𝑏))
𝑖=𝑡ℎ𝑑+1

𝑐𝑝𝑖 (𝑏)
∑𝑡ℎ𝑑
𝑖=0 𝑐𝑖 (𝑏)

𝑙𝑜𝑔(

∑𝑚𝑎𝑥 (𝑛 (𝑏))
𝑖=𝑡ℎ𝑑+1

𝑐𝑝𝑖 (𝑏)
∑𝑡ℎ𝑑
𝑖=0 𝑐𝑖 (𝑏)

)

−

∑𝑚𝑎𝑥 (𝑛 (𝑏))
𝑖=𝑡ℎ𝑑+1

𝑐 𝑓 𝑖 (𝑏)
∑𝑡ℎ𝑑
𝑖=0 𝑐𝑖 (𝑏)

𝑙𝑜𝑔(

∑𝑚𝑎𝑥 (𝑛 (𝑏))
𝑖=𝑡ℎ𝑑+1

𝑐 𝑓 𝑖 (𝑏)
∑𝑡ℎ𝑑
𝑖=0 𝑐𝑖 (𝑏)

) (8)

Combining Equation (1), Equation (5), Equation (7) and Equation

(8), we have:

𝐼 (𝑦 |𝑏, 𝑡ℎ𝑑) = 𝐻 (𝑦) −

∑𝑡ℎ𝑑
𝑖=0 𝑐𝑖 (𝑏)

𝑁
𝐻 (𝑦 |𝑏 |𝑛 (𝑏)≤𝑡ℎ𝑑 )

−

∑𝑚𝑎𝑥 (𝑛 (𝑏))
𝑖=𝑡ℎ𝑑+1

𝑐𝑖 (𝑏)

𝑁
𝐻 (𝑦 |𝑏 |𝑛 (𝑏)>𝑡ℎ𝑑 ) (9)

By iterating through [0,𝑚𝑎𝑥 (𝑛(𝑏))), we can determine the 𝑡ℎ𝑑

that maximizes 𝐼 (𝑦 |𝑏):

ˆ𝑡ℎ𝑑 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑡ℎ𝑑 ∈[0,𝑚𝑎𝑥 (𝑛 (𝑏))

𝐼 (𝑦 |𝑏, 𝑡ℎ𝑑) (10)

In the execution trace, when the occurrence of a basic block 𝑏

is larger than ˆ𝑡ℎ𝑑 , the basic block has close relevance to label 𝑦. In

Equation 10, 𝐼 (𝑦 |𝑏, ˆ𝑡ℎ𝑑) represents the degree of “crash relevance”.

Filtering of basic blocks with 𝑦 = 0. A criterion basic block is

a basic block that is closely related to the crash (i.e., when 𝑦 = 1)

and has high value of mutual information. Such a criterion basic

block (or a set of criterion basic blocks) is used as the criterion in

the subsequent crash grouping procedure. From the above analysis,

we know that 𝐼 (𝑦 |𝑏, ˆ𝑡ℎ𝑑) represents the contribution of basic block

𝑏 to label 𝑦. However, this representation does not differentiate

whether the contribution is related to normal program exit (i.e.,

when 𝑦 = 0) or program crash (i.e., when 𝑦 = 1). Namely, using the

basic blocks whose 𝐼 (𝑦 |𝑏, ˆ𝑡ℎ𝑑) is large and related to 𝑦 = 0 would

cause false negatives in crash deduplication. When the occurrence

of 𝑏 is larger than the threshold (i.e., 𝑛(𝑏) > ˆ𝑡ℎ𝑑) and the number

of “normal exit” samples is larger than the number of “crashing

samples”, it indicates that, with such a basic block, the program is

prone to exit normally. Therefore, we need to filter out the basic

blocks that have a large 𝐼 (𝑦 |𝑏, ˆ𝑡ℎ𝑑) and are closely related to normal

program exit, and select criterion basic blocks from the rest. The

detailed algorithm of filtering of basic blocks with 𝑦=0 is shown in

Algorithm 1.

Algorithm 1 Filtering of Basic Blocks with 𝑦 = 0

Require: 𝑏 ← input basic block
ˆ𝑡ℎ𝑑 ← threshold of 𝑏

𝑚𝑎𝑥 (𝑛 (𝑏)) ← the maximum occurrence of 𝑏 in the dataset

𝑐𝑝𝑖 (𝑏) ← the amount of “normal exit” samples when occurrence of 𝑏

is 𝑖

𝑐 𝑓 𝑖 (𝑏) ← the amount of “crashing” samples when occurrence of 𝑏 is 𝑖

𝑁𝑝 ← the amount of “normal exit” samples in the dataset

𝑁𝑓 ← the amount of “crashing” samples in the dataset

Ensure: whether to consider 𝑏 as a criterion basic block

1: if

∑𝑚𝑎𝑥 (𝑛 (𝑏) )

𝑖= ˆ𝑡ℎ𝑑+1
𝑐𝑝𝑖 (𝑏)

𝑁𝑝
>

∑𝑚𝑎𝑥 (𝑛 (𝑏) )

𝑖= ˆ𝑡ℎ𝑑+1
𝑐𝑓 𝑖 (𝑏)

𝑁𝑓
then

2: return False

3: else

4: return True

5: end if

3.2 Attention Mechanism of Neural Networks

The attention mechanism was initially proposed to improve the

fitting of neural networks by assigning different weights to the input

sequence and minimizing the loss function [13]. In recent years, a

line of research [8, 21, 24, 45] leveraged the attention mechanism

for the interpretability of neural networks, allowing us to inspect

the internal working of neural networks directly. The hypothesis is

that the magnitude of attention weights positively correlates with

how relevant a specific input region is for predicting output at each

position in a sequence. It can be easily accomplished by visualizing

the attention weights for a set of input and output pairs. In this

paper, we borrow this idea and leverage the attention mechanism

to identify the root cause of program crash by weighing each input

basic block’s contribution to the crash.
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As discussed, the idea of attention mechanism is straightforward.

For an input vector ( �𝑥1, �𝑥2, ..., �𝑥𝑛), suppose we have:

�𝑣 = 𝛼1 �𝑥1 + 𝛼2 �𝑥2 + ... + 𝛼𝑛 �𝑥𝑛

𝑎𝑛𝑑 𝑦 = 𝑓 (�𝑣),

𝑤ℎ𝑒𝑟𝑒
∑

𝑖

𝛼𝑖 = 1, 𝛼𝑖 > 0.

(11)

To function 𝑦 = 𝑓 ( �𝑥), 𝛼𝑖 can be regarded as the contribution that

input byte 𝑥𝑖 makes to 𝑦, where (𝛼1, 𝛼2, ..., 𝛼𝑛) is also known as

a weighted vector. Such a function 𝑦 = 𝑓 ( �𝑥) is often utilized to

determine the influence of input bytes to the output in seq2seq

networks. The transition equation is as follows:

�𝛼 = 𝑔( �𝑥 ; �𝜃 ),

�𝑣 = 𝛼1 �𝑥1 + 𝛼2 �𝑥2 + ... + 𝛼𝑛 �𝑥𝑛,

𝑦 = 𝑓 (�𝑣 ; �𝜃 ),

𝑤ℎ𝑒𝑟𝑒
∑

𝑖

𝛼𝑖 = 1, 𝛼𝑖 > 0

(12)

�𝜃 is the parameter to be determined in the training process. Function

𝑔( �𝑥 ; �𝜃 ) is used to calculate the weight vector, which is also known

as similarity function. In the dataset, �𝑥𝑖 is the 𝑖th sample and �𝑦𝑖 is

the corresponding label. The loss function with mean square error

is:

𝐿(𝑓 ( �𝑥, �𝜃 )) =
∑

𝑖

|𝑓 (𝑔( �𝑥𝑖 ; �𝜃 ) � �𝑥𝑖 ; �𝜃 ) − 𝑦𝑖 |2,

𝑠 .𝑡 .
∑

𝑔( �𝑥𝑖 ;𝜃 ) = 1

(13)

However, when using the gradient descent method to minimize

loss 𝐿(𝑓 ( �𝑥, �𝜃 )), it is difficult to satisfy the constraint
∑

𝑔( �𝑥𝑖 ;𝜃 ) = 1

and get �𝜃 . Therefore, softmax function is adopted as the activation

function of 𝑔( �𝑥, �𝜃 ) in the design of networks, given that the sum

of softmax function’s output equals to 1. The transition equation

with softmax becomes:

�𝛼 = softmax (𝑔( �𝑥 ; �𝜃 )),

�𝑣 = 𝛼1 �𝑥1 + 𝛼2 �𝑥2 + ... + 𝛼𝑛 �𝑥𝑛,

𝑦 = 𝑓 (�𝑣 ; �𝜃 ),

softmax (𝑥𝑖 ) =
𝑒𝑥𝑖∑
𝑗 𝑒

𝑥 𝑗

(14)

And the loss function becomes:

𝐿( �𝜃 ) =
∑

𝑖

|𝑓 (softmax (𝑔( �𝑥𝑖 ; �𝜃 )) � �𝑥𝑖 ; �𝜃 )) − 𝑦𝑖 |2 (15)

The network that we designed (as described in Section 4.3) follows

the above transition equation. In fact, Equation (14) is the core

architecture of the attention mechanism and such an architecture

can be used to determine the relevance of the input bytes and the

output. In particular, under this architecture, we are able to get

the �𝜃 by minimizing 𝐿(𝑓 ( �𝑥, �𝜃 )) with the gradient descent. Function

𝑔( �𝑥 ; �𝜃 ) or 𝑓 ( �𝑥 ; �𝜃 ) could be convolutional neural networks (CNN),

recurrent neural networks (RNN) or fully connected networks.

While in seq2seq networks, 𝑔( �𝑥 ; �𝜃 ) is LSTM and 𝑓 ( �𝑥 ; �𝜃 ) is a fully

connected network.

4 DESIGN OF DEFAULT

The high-level design of our system is illustrated in Figure 1. The

input is a set of crashing execution traces produced by fuzzers.

Those traces are fed into the crash deduplication module, which

buckets crashing traces into multiple categories according to their

root cause and outputs one representative crashing trace with a

unique root cause from each category. Then the representative

crashing trace of each category is sent to the filtering module,

which consists of two filtering steps – function filtering and basic

block filtering. It filters out the vast majority of functions and basic

blocks in the trace that are irrelevant to the crash, so that the neural

network in the subsequent module can take the shortened traces

as its inputs. In the end, the fault localization module leverages the

attention mechanism to identify a set of basic blocks that contribute

to the crash.

4.1 Crash Deduplication

There are two steps for crash deduplication: first, we group crashing

traces into multiple groups based on the calculated mutual infor-

mation of basic blocks; then, we select a representative crashing

trace from each group. The root cause of the selected representative

crashes is different from each other2.

Grouping.Assume that the root cause of crashing trace𝑇𝐴 includes

basic block 𝑏𝐴 , and 𝑏𝐴 is not included in crashing trace 𝑇𝐵 . Thus,

we can put those two traces into two groups: one group contains

traces with 𝑏𝐴 , and the other contains traces without 𝑏𝐴 . Motivated

by that, we separate the dataset into two groups: Group 𝐺𝐴 is the

set of crashing traces with basic block 𝑏; the other group 𝐺𝐵 the

set of crashing traces without basic block 𝑏. The basic block 𝑏 has

the highest 𝐼 (𝑦 |𝑏, ˆ𝑡ℎ𝑑) in the dataset 𝐷 , which is believed to have a

significant contribution to a specific crash.

We repeat the above grouping step for group 𝐺𝐵 until there is

no crashing trace left. After such a preliminary grouping process,

most of the crashing traces in a group have the same root cause.

Since the traces with different basic block statistics could be

categorized into different groups, such a grouping algorithm gives

false positives. Nevertheless, it gives no false negatives. For instance,

assume that basic block 𝑏𝑐 in trace𝑇𝐶 and basic block 𝑏𝑑 in trace𝑇𝐷
are relevant to the same root cause (namely, trace 𝑇𝐶 and trace 𝑇𝐷
share the same root cause), but𝑏𝑐 and𝑏𝑑 have different occurrences.

This happens when the root cause leads to different crashing points

in the program. As a result, our algorithm would put trace 𝑇𝐶 and

trace 𝑇𝐷 into two different groups. Fortunately, although more

groups are produced than the ground truth, the over-categorization

would not miss any root cause of the crashing traces produced by

fuzzers. We show the complete grouping algorithm in Algorithm 2.

Selecting representative crashing traces.Within a group, when

a crashing trace contains a criterion basic block 𝑏 and another basic

block 𝑏1 which is the root cause of another unique crash, this

crashing trace cannot represent this group. It would lead to false

positives and false negatives in subsequent steps. Therefore, to

represent this group, we need to select a crashing trace, whose root-

cause basic blocks only include a criterion basic block 𝑏, without

2Our approach does not guarantee that the crash de-duplication module gives unique

crashes. We only found that there are no false negatives in the evaluation.
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Figure 1: Overall design of DeFault.

Algorithm 2 Mutual Information-based Grouping

Require: B𝑓 ← set of crashing traces B, B𝑝 ← set of non-crashing traces

B

Ensure: CC← set of grouped crashing traces, criterion← set of criterion

basic block of each group

1: CC← []

2: criterion← []

3: D← (< B𝑓 , 1 >) ∪ (< B𝑝 , 0 >)

4: calculate mutual information for each basic block in D

5: select 𝑏 that is related to 𝑦 = 1 and has the largest mutual information

value

6: if
∑ ˆ𝑡ℎ𝑑

𝑖 𝑐 𝑓 𝑖 (𝑏) == 0 then

7: CC.𝑎𝑝𝑝𝑒𝑛𝑑 (𝐵𝑓 )

8: criterion.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑏)

9: return CC, criterion

10: else

11: 𝑛𝑒𝑤B𝑓 ← {B |B ∈ B𝑓 , 𝑏 ∈ B, 𝑛 (𝑏) > ˆ𝑡ℎ𝑑 }

12: CC.𝑎𝑝𝑝𝑒𝑛𝑑 (B𝑓 )

13: criterion.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑏)

14: B𝑓 ← {B |B ∉ 𝑛𝑒𝑤B𝑓 ,B ∈ B𝑓 }

15: goto line 3

16: end if

the basic blocks of other unique crashes. To this aim, we rank the

crashing traces within a group, according to the occurrence of all

criterion basic blocks. A crashing trace obtains higher score if it has

more occurrences of criteria basic blocks. In the end, we select the

crashing trace with the least score to represent its group, meaning

that the crashing trace is more “pure”. The algorithm is described

in Algorithm 3.

4.2 Filtering

Once the representative crashing trace is selected, the filtering

module (shown in Figure 2) performs preliminary filtering to filter

out functions and basic blocks irrelevant to the crash. It can vastly

shorten the length of crashing traces and facilitate the neural

network module to process the shortened traces.

Constructing Datasets. To cover more basic blocks and compre-

hensively assess how the executions of different basic blocks affect

a crash, we construct a dataset that is bred from a unique crashing

trace. We use afl-fuzz to mutate a single crashing input and breed

Algorithm 3 Selection of Representative Crashing Trace

Require: CC← groups of crashing traces,Criterion← the set of criterion

basic blocks

Ensure: Unique← the set of crashing traces after selection

1: Unique← []

2: 𝑆𝑐𝑜𝑟𝑒 ← score dictionary

3: for 𝐵 ∈ CC do

4: for 𝑏 ∈ 𝐵 do

5: for 𝑡 ∈ Criterion do

6: if 𝑡 ∈ 𝑏 && 𝑛 (𝑡 ) > ˆ𝑡ℎ𝑑 then

7: 𝑆𝑐𝑜𝑟𝑒 [𝑏 ] ← 𝑆𝑐𝑜𝑟𝑒 [𝑏 ] + 1

8: end if

9: end for

10: end for

11: 𝑏 ←𝑚𝑖𝑛 (𝑆𝑐𝑜𝑟𝑒 [ {𝑏 |𝑏 ∈ 𝐵 }])

12: Unique.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑏)

13: end for

14: return Unique

inputs that explore different basic blocks. The output of afl-fuzz

can be categorized into crashing inputs and non-crashing inputs.

Note that in extreme cases, for example, when afl-fuzz triggers new

crashes, the follow-up procedures would not be affected. The non-

crashing inputs are obtained by randomly mutating the crashing

inputs. In this way, a large portion of the basic blocks in crashing

traces would also appear in the non-crashing trace, and those basic

blocks are not related to the crash. Consequently, in the dataset, the

statistics of those overlapped basic blocks are significantly different

from the statistics of the crash-related basic blocks. It helps to

form a dataset with differentiable and adequate samples. Note that

this dataset also serves for the training of the neural network in

Section 4.3.

Filtering out irrelevant functions. In the program, there exist

some low-level functions like data copy functions, operation

functions of linked lists, and constructors/destructors of structs

or objects. When those functions are invoked near the root cause,

the mutual information of those functions’ basic blocks would be

very close to the mutual information of the actual root cause, which

brings false positives to the results. Therefore, we calculate mutual
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Figure 2: Illustration of filtering.

information at the function level to filter out the irrelevant functions

to the actual root cause.

The dataset is composed of execution traces at function level

with their corresponding labels: D =< F,Y >. In the dataset, 𝐹𝑖
is the 𝑖th trace of F where 𝐹 = (𝑓1, 𝑓2, ..., 𝑓𝑁𝑓

) is a sequence of

functions in that trace and 𝑦𝑖 represents whether the execution

trace corresponds to a crash. We calculate the mutual information

of function 𝑓𝑖 to label 𝑦, to represent 𝑓𝑖 ’s contribution to label 𝑦:

𝐼 (𝑦 |𝑓𝑗 , ˆ𝑡ℎ𝑑) = 𝐻 (𝑦) −

∑𝑡ℎ𝑑
𝑖=0 𝑐𝑖 (𝑓𝑗 )

𝑁
𝐻 (𝑦 |𝑓𝑗 |

𝑛 (𝑓𝑗 )≤
ˆ𝑡ℎ𝑑
)

−

∑𝑚𝑎𝑥 (𝑛 (𝑓𝑗 ))

𝑖=𝑡ℎ𝑑+1
𝑐𝑖 (𝑓𝑗 )

𝑁
𝐻 (𝑦 |𝑓𝑗 |𝑛 (𝑓𝑗 )> ˆ𝑡ℎ𝑑

) (16)

where 𝑁 is the amount of samples in the dataset, 𝐻 (𝑌 ) is the

entropy of label 𝑦, 𝑐𝑖 (𝑓𝑗 ) is the amount of samples where 𝑓𝑗 ’s

occurrence is 𝑖 , 𝐻 (𝑦 |𝑥) is the conditional entropy, and ˆ𝑡ℎ𝑑 is:

ˆ𝑡ℎ𝑑 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑡ℎ𝑑∈[0,𝑚𝑎𝑥 (𝑛 (𝑓𝑗 ))

𝐼 (𝑦 |𝑓𝑗 , 𝑡ℎ𝑑) (17)

After filtering, function 𝑓𝑖 ’s contribution to label 𝑦 can be

regarded as 𝑟 = 𝐼 (𝑦 |𝑓𝑖 , ˆ𝑡ℎ𝑑)/𝐻 (𝑦) with 𝑟 ∈ (0, 1], where 𝐼 (𝑦 |𝑓𝑗 , ˆ𝑡ℎ𝑑)

is the mutual information and 𝐻 (𝑦) is the entropy of label 𝑦. When

𝑟 = 1, we can infer that an execution trace is a crashing trace by

observing that 𝑓𝑖 appears in the trace. Similarly, when 𝑟 approaches

0, the (non-)existence of 𝑓𝑖 has little impact on whether an execution

trace is a crashing trace or not. Therefore, we filter out the functions

whose 𝑟 is smaller than 0.5 3 and obtain the traces with selected

3The filtering threshold 𝑟 is empirically set to 0.5. We found that the following modules

produced satisfactory results with this value.

functions:

𝐹𝑠 = {𝑓 |𝑓 ∈ 𝐹,
𝐼 (𝑦 |𝑓 , ˆ𝑡ℎ𝑑)

𝐻 (𝑦)
> 0.5} (18)

Filtering out irrelevant basic blocks. After the filtering of

irrelevant functions, the next step is to filter out irrelevant basic

blocks. We denote the dataset as D =< B,Y >, where 𝑛 is the

amount of samples, B = {B1,B2, ...,B𝑛} is a set of execution traces

at basic block level, and Y = {𝑦1, 𝑦2, ..., 𝑦𝑛} is the set of labels for

the execution traces. After the filtering of irrelevant functions in the

dataset, the filtered execution trace becomes 𝐵𝑟 = (𝑏𝑟1 , 𝑏𝑟2 , ..., 𝑏𝑟𝑛 ),

where 𝑏𝑟𝑖 is a basic block. By calculating the mutual information of

𝑏𝑟 𝑗 to label𝑦 = 0, we can select the set of basic blocks that contribute

more to the crash. The mutual information of basic block 𝑏𝑟 𝑗 to

label 𝑦 is given by:

𝐼 (𝑦 |𝑏𝑟 𝑗 ,
ˆ𝑡ℎ𝑑) = 𝐻 (𝑦) −

∑𝑡ℎ𝑑
𝑖=0 𝑐𝑖 (𝑏𝑟 𝑗 )

𝑁
𝐻 (𝑦 |𝑏𝑟 𝑗 |𝑛 (𝑏𝑟 𝑗 )≤ ˆ𝑡ℎ𝑑

)

−

∑𝑚𝑎𝑥 (𝑛 (𝑏𝑟 𝑗 ))

𝑖=𝑡ℎ𝑑+1
𝑐𝑖 (𝑏𝑟 𝑗 )

𝑁
𝐻 (𝑦 |𝑏𝑟 𝑗 |𝑛 (𝑏𝑟 𝑗 )>

ˆ𝑡ℎ𝑑
) (19)

where ˆ𝑡ℎ𝑑 is:

ˆ𝑡ℎ𝑑 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑡ℎ𝑑 ∈[0,𝑚𝑎𝑥 (𝑛 (𝑏𝑟 𝑗 ))

𝐼 (𝑦 |𝑏𝑟 𝑗 , 𝑡ℎ𝑑) (20)

We then filter out the basic block that are closely related to

label 𝑦 = 0. Similar to function filtering, we calculate the ratio

𝑟 = 𝐼 (𝑦 |𝑏𝑟 𝑗 ,
ˆ𝑡ℎ𝑑)/𝐻 (𝑦) and filter out basic block whose 𝑟 is less than

0.8. The 𝑟 value is set higher than the 𝑟 of function filtering because

the selection on basic blocks is more fine-grained. In the end, we

obtain the trace with selected basic blocks: 𝐵𝑣 = (𝑏𝑣1 , 𝑏𝑣2 , ..., 𝑏𝑣𝑁𝑣
)

where:

𝑏𝑣 = {𝑏 |𝑏 ∈ 𝐵𝑟 ,
𝐼 (𝑦 |𝑏𝑟 𝑗 ,

ˆ𝑡ℎ𝑑)

𝐻 (𝑌 )
> 0.8} (21)

4.3 Fault Localization

After filtering irrelevant functions and basic blocks, the size of

traces has been largely reduced, which becomes suitable to feed

neural networks. In the fault localization module, we leverage the

neural network to identify the root cause’s basic blocks. The basic

blocks in the short traces have a high value of mutual information

to label 𝑦 = 1. However, so far, they still cannot be regarded as the

root cause because some basic blocks that are not the root cause

but near the root cause also get high mutual information values.

The fundamental cause is that basic blocks’ statistical information

does not contain sequence information in its execution trace. With

all existing approaches fail to recover the sequence information in

execution traces, especially when handling the dependence in long

sequences, we leverage LSTM with the attention mechanism to

model and capture the sequence information about the root cause.

More specifically, we have the dataset D =< B𝑣,Y >, where B𝑣 is

the set of execution traces composed of sequences of selected basic

blocks andY is the set of corresponding labels. This module utilizes

the neural network to calculate the relevance score of each basic

block to the crash. The root cause is the basic blocks that contribute

to the crash, which is indicated by the relevance score (i.e., the
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higher relevance score of a basic block indicates more contribution

to the crash).

Input and output of neural network. The data used for training

the network are the shortened basic blocks. The positive samples

are the shortened crashing traces and negative samples are the

shortened non-crashing traces. We use one-hot vectors to encode

the input: denoting the number of basic block 𝑏𝑣𝑖 in trace 𝐵𝑣 as 𝑛𝑏 .

Then basic block 𝑏𝑣𝑖 ∈ 𝐵𝑣 is represented as �𝑥𝑖 with �𝑥𝑖 = {0, 1}𝑛𝑏

and
∑𝑛𝑏
𝑗=0 |𝑥𝑖 𝑗 |

2
= 1. The input is �𝑋 = ( �𝑥1, �𝑥2, ..., �𝑥𝑛). Since the

length of the input varies, we choose the longest 𝐵𝑣 as the input

length and pad the short inputs with zero vectors whose magnitude

is 𝑛𝑏 . Every basic block is independent with each other in the input.

The sequence information about root cause among basic blocks

needs to be recovered through weight assignment of the neural

network. The output of neural network is the boolean value that

represents whether a crash is triggered or not. Besides, we use

the up-sampling [4] to balance the negative samples and positive

samples in the dataset.

Network structure. The network structure is the classic LSTM

network with attention mechanism. After one-hot encoding, we

send execution trace 𝐵𝑣 to the LSTM network, the output of the

LSTM network is: 𝑜𝐿𝑆𝑇𝑀𝑖 = 𝑓𝐿𝑆𝑇𝑀 ( �𝑥𝑖 , 𝑜
𝐿𝑆𝑇𝑀
𝑖−1 ). In the output of the

LSTM network, the 𝑖th element is related to all the previous 𝑖 − 1

elements. We then send �𝑜𝐿𝑆𝑇𝑀 to the 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 layer, and get:

𝛼𝑖 =
𝑒𝑜

𝐿𝑆𝑇𝑀
𝑖

∑𝑛
𝑗=0 𝑒

𝑜𝐿𝑆𝑇𝑀
𝑗

(22)

In the end, we multiply vectors �𝛼 and �𝑋 in the fully-connected

layers and get the final output:

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑓𝑑𝑒𝑛𝑠𝑒 (�𝑣)

�𝑣 = 𝛼1 ∗ �𝑥1 + 𝛼2 ∗ �𝑥2 + ... + 𝛼𝑛 ∗ �𝑥𝑛,
(23)

In the 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 layer, we have
∑
𝑖 𝛼𝑖 = 1 and 𝛼𝑖 > 0. Also ,the

output is of the form 𝑦 = 𝑓 (𝛼1 ∗ 𝑥1 + 𝛼2 ∗ 𝑥2 + ... + 𝛼𝑛 ∗ 𝑥𝑛). Thus,

�𝛼 is the relevance score vector (i.e., the weight vector), and 𝛼𝑥𝑖
represents the contribution of 𝑥𝑖 to the output 𝑦.

Calculation of relevance score. After network training, we get

the relevance score vector �𝛼𝑖 for positive sample 𝐵𝑣𝑝𝑖 in the dataset.

The relevance score of basic block 𝑏𝑣𝑗 in 𝐵𝑣𝑝𝑖 is 𝑟 𝑗 =
∑
𝑖 𝛼

𝑖
𝑣𝑗 . For all

the basic blocks in the positive samples, we need to categorize them

into two groups: one group includes basic blocks that are believed

to be the root cause; the other group includes the rest of the basic

blocks. The criterion for categorization is that, in each group, the

variance of relevance scores of basic blocks is the smallest. The

detailed algorithm is described in Algorithm 4.

5 EVALUATION

We implemented a full-featured prototype of DeFault. To evaluate

its efficacy and performance, we conducted comprehensive real-

world experiments. In this section, we present and discuss the

corresponding experiment results.

Algorithm 4 Selection of Root-Cause Basic Blocks

Require: 𝑟 𝑗 ← relevance score of basic block 𝑏𝑣𝑗
𝑛 ← amount of basic blocks

𝜇 ← variance

Ensure: 𝑠𝑐𝑜𝑟𝑒 ← threshold of relevance score

1: 𝑠𝑜𝑟𝑡 (�𝑟 )

2: 𝑚𝑖𝑛 ← 𝜇 (𝑟0) + 𝜇 (𝑟1, .., 𝑟𝑛−1)

3: 𝑠𝑐𝑜𝑟𝑒 ← 𝑟0
4: for 𝑖 ∈ [0,n) do

5: 𝑡𝑚𝑝 ← 𝜇 (𝑟0, .., 𝑟𝑖 ) + 𝜇 (𝑟𝑖+1, .., 𝑟𝑛−1)

6: if 𝑡𝑚𝑝 <𝑚𝑖𝑛 then

7: 𝑚𝑖𝑛 ← 𝑡𝑚𝑝

8: 𝑠𝑐𝑜𝑟𝑒 ← 𝑟 𝑗
9: end if

10: end for

5.1 Experimental Setting

Target programs and testing environment. We evaluated our

tool with 20 programs, including 8 CGC programs and 12 real-

world programs. To reasonably choose the programs, we select

the programs that have known crashes4 and belong to different

software categories from the CGC program repositories and the

CVE list, without examining the details of crash and program

internals. The functionalities of the programs include image

processing, document parsing, compilation, and audio processing.

The experiments run in Ubuntu 18.04, with Intel i9 7900X, 48GB

DDR4, and RTX 2080Ti (11GB VRAM). The version of AFL is 2.52b.

TensorFlow and Keras are used for neural network training.

Triggering crashes. The crashing inputs are produced with afl-

fuzz. With sufficient fuzzing time (one week), afl-fuzz reproduced

crashes in all 8 CGC programs that we selected. However, we

also selected 16 real-world programs, and afl-fuzz only reproduced

crashes in 12 of them (with some initial seed inputs). On average,

each program contains 2.15 faults. After fuzzing, the average

amount of crashes is 516.6 for each program fault.

Neural network setup. The parameter of the neural network,

LSTM (256 units) with attention mechanism. The mean square

error is used as the loss function, and the Adam optimizer is used

with an initial learning rate 10−6. We stop the training when the

fitting rate becomes 99% or when the iteration round reaches 100.

Ground truth. To obtain the ground truth, we manually inspect

each crashing trace backward from the crashing point to the root

cause and record the crashing point (one single basic block) and

the root cause (multiple basic blocks), by debugging and reverse

engineering. Specifically, For crash de-duplication, we used scripts

to determine whether a crashing input would satisfy the constraints

(that we manually written after examining the root cause) to trigger

the bug. For fault localization, we manually determined the root-

cause basic blocks after manual inspection. The root causes of CGC

programs are publicly available. For the real-world buggy software,

we also refer to the bug report from the CVE reference. If the root

cause of two different crashing traces is equivalent, we categorize

them into the same group, no matter how diverse are their crashing

points.

4For real-world programs, the crashes have been fixed in new versions.
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(a) False positive rates in crash deduplication (b) Time cost in crash deduplication

Figure 3: Accuracy and performance of crash deduplication.

(a) False positive rate for fault localization (b) Time for fault localization

Figure 4: Accuracy and performance of fault localization.

5.2 Crash Deduplication: Efficacy and Accuracy

Comparison with existing tools. Regarding crash deduplication,

we compared our approach with Semantic Crash Bucketing (SCB

for short) [37], afl-fuzz’s deduplicator [49], and Honggfuzz’s

deduplicator [2]. In particular, SCB achieves crash deduplication by

automatically fixing bugs, which identifies crashes belonging to the

same bug. This approach is relatively accurate but only targets two

types of bugs, namely buffer overflows and null pointer dereference,

which is less applicable to general bugs. Afl-fuzz’s deduplicator is

commonly used in industry. It first reduces the crashing trace using

afl-tmin [1] and then calculates the hash of the crashing path. Crash

bucketing is achieved by comparing the similarity of the hashes. On

the contrary, Honggfuzz’s deduplicator compares the similarity of

call stack hashes, working at function call level. In the experiment,

since afl-tmin’s reduction on a single crashing trace introduces time

overhead, we run afl-tmin in parallel with 20 cores.

False negatives. As can be seen from Table 1, there is no false

negative given by DeFault. Neither SCB nor afl-fuzz’s dedupli-

cator produces any false negatives. However, after investigating

Honggfuzz’s deduplication results, we still found one case of false

negative: in the software listswf, when multiples root causes exist

in the same function, their execution traces are the same at the

function level. Given that Honggfuzz’s deduplication categorizes

crashes based on the execution traces at the function call level, it is

unable to identify and differentiate two different kinds of the root

cause that occur in the same function and therefore misses some

crashes that have been triggered by the fuzzer.

False positives. We show the false positive rate of all the tools in

Figure 3a. Overall, DeFault outperforms all three tools by giving

less false positives on 19 cases. SCB’s high false positive rate can

be attribute to its limited support of bugs, namely buffer overflows

and null pointer dereference. For Afl-fuzz’s deduplication, given

that afl-tmin’s reduction cannot completely remove redundant

paths and one single bug can be triggered from multiple paths,

afl-fuzz also gives high false positives. Similarly, when a bug can be

triggered frommultiple paths, the call stack hashes are also different.

Therefore, Honggfuzz’s deduplicator also gives false positives.

Particularly, for case 18 and case 20 where DeFault gives false

positives, the crashes are caused by use-after-free vulnerabilities.

The root cause of the vulnerabilities is typically the misuse of

free() operation, while the crashing point could be large variant

based on different runtime memory layouts. Since the use-after-

free vulnerabilities are triggered but do not cause any crashes in

some positive samples, the basic blocks of root cause also appear

in positive samples, which leads to low mutual information values

and causes false positives.

5.3 Crash Deduplication: Performance

The number of crashing trace for each program is 1110 on average.

Processing 1110 traces takes DeFault 19 seconds. With the same

workload, SCB, afl-fuzz and Honggfuzz takes 168 seconds, 595

seconds and 24 seconds, respectively. The time cost of DeFault is

only 11.3%, 3.1%, and 79% of that of SCB, afl-fuzz and Honggfuzz,

respectively.

The comparison of DeFault and other three tools’s time cost is

shown in Figure 3b. As can be seen, to process execution traces, afl-

fuzz’s deduplicator takes much more time than DeFault. The main

reason is that afl-fuzz’s deduplication is based on the comparison

among execution traces. The time cost increases exponentially

as the amount of the traces grows, because each trace needs to

be compared with all other traces. On the contrary, DeFault

analyzes the statistics of basic blocks, and the computation of

mutual information values only involves some of the basic blocks.

The values of mutual information are stored and indexed from hash

tables. As such, it takes much less time for DeFault.

5.4 Fault Localization: Efficacy and Accuracy

Assessment of effectiveness. Traditional program spectrum-

based fault localization relies on the EXAM curve [17] to assess

effectiveness. A point (𝑥,𝑦) in the EXAM curve represents the

suspicious score of a basic block. However, such measurement
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Table 1: Overall Results

ID Program
Unique
Crash
by AFL

(#)

DeFault SCB

���afl-fuzz
��� Honggfuzz Aurora

Crash Deduplication Fault Localization Crash Deduplication Fault Localization

Time
(s)

Groups
(#)

Ground
Truth

F.P.
F.N.

Time
(s)

Basic
Blocks
(#)

Ground
Truth

F.P.
F.N.

Time
(s)

# of Groups
F.P.
F.N.

Time
(s)

Basic
Blocks
(#)

F.P.
F.N.

1 cflow 441 20 2 2 0/0
1560 5 5 0/0

188

���467
���40 2

���9
���42 0/0

���7/0
���40/0 3720 50 45/0

1680 6 6 0/0 3900 50 44/0

2 mp3again 329 22 2 2 0/0
2400 4 4 0/0

189

���387
���32 2

���8
���21 0/0

���6/0
���19/0 3420 50 46/0

2460 5 5 0/0 3300 50 45/0

3 jhead 408 8 1 1 0/0 2160 4 4 0/0 179

���365
���12 1

���12
���32 0/0

���11/0
���31/0 3660 50 46/0

4 listswf 1572 14 5 5 0/0

2220 6 5 1/0

223

���867
���32 117

���33
���12 112/0

���28/0
���4/3

4020 50 45/0
2220 6 6 0/0 4080 50 44/0
2280 7 5 2/0 4320 50 45/0
2220 6 4 2/0 3900 50 46/0
2280 5 5 0/0 4140 50 45/0

5 GraphicsMagick 760 19 2 2 0/0
2280 5 4 1/0

189

���687
���21 243

���21
���23 241/0

���19/0
���21/0 3420 50 46/0

2340 5 5 0/0 3540 50 45/0

6 jasper 479 23 1 1 0/0 2100 7 6 1/0 124

���398
���16 479

���15
���33 478/0

���14/0
���32/0 3900 50 44/0

7 pdftopng(xpdf) 981 16 1 1 0/0 2160 5 5 0/0 142

���431
���21 3

���12
���23 2/0

���11/0
���22/0 3360 50 45/0

8 nasm 3713 25 1 1 0/0 2340 14 12 2/0 171

���981
���31 1

���34
���42 0/0

���33/0
���41/0 2940 50 38/0

9 latex2rtf 1787 34 2 2 0/0
2520 6 6 0/0

112

���871
���34 2

���15
���22 0/0

���13/0
���20/0 3240 50 44/0

2280 9 8 1/0 3480 50 42/0

10 mruby 887 43 2 1 1/0 2640 18 15 3/0 112

���432
���23 1

���9
���11 0/0

���8/0
���10/0 4440 50 35/0

11 tiffcp(libtiff) 1092 9 3 3 0/0
2340 6 5 0/0

162

���562
���24 342

���18
���15 339/0

���15/0
���12/0

2880 50 45/0
2220 6 4 2/0 2700 50 46/0
2280 6 6 0/0 3300 50 44/0

12 pdfrescurrent 682 8 4 3 1/0
2520 8 8 0/0

184

���442
���17 112

���12
���27 109/0

���9/0
���24/0

3900 50 42/0
2640 5 5 0/0 3840 50 45/0
2520 4 3 1/0 3720 50 47/0

13 FileSys 1231 13 1 1 0/0 2100 6 6 0/0 165

���872
���24 1231

���1
���18 1230/0

���0/0
���17/0 2700 50 44/0

14
Street map
service

762 23 2 2 0/0
2220 5 4 1/0

187

���365
���18 4

���3
���12 2/0

���2/0
���10/0 2880 50 46/0

2160 8 6 2/0 3120 50 44/0

15
Kaprica Script
Interpreter

1208 15 6 6 0/0

2220 3 3 0/0

114

���762
���23 152

���17
���12 146/0

���11/0
���5/1

3420 50 47/0
2160 4 4 0/0 2700 50 46/0
2220 6 6 0/0 2580 50 44/0
2220 9 9 0/0 2880 50 41/0
2280 4 4 0/0 2580 50 46/0
2220 3 3 0/0 3060 50 47/0

16
simple integer
calculator

1082 13 4 4 0/0

2160 6 6 0/0

186

���671
���20 365

���9
���22 361/0

���5/0
���17/0

2700 50 44/0
2160 5 5 0/0 3240 50 45/0
2100 4 4 0/0 2640 50 46/0
2220 6 5 1/0 2460 50 45/0

17 CGCRPC_Server 1876 22 1 1 0/0 2100 8 8 0/0 199

���812
���29 1

���2
���3 0/0

���1/0
���2/0 2700 50 42/0

18
Shortest Path
Tree Calculator

365 16 1 1 0/0 2100 9 7 2/0 198

���231
���18 365

���10
���13 364/0

���9/0
���12/0 3960 50 43/0

19 SOLFEDGE 1763 24 2 2 0/0
2220 9 7 2/0

167

���761
���33 564

���8
���6 562/0

���6/0
���4/0 3240 50 43/0

2160 10 9 1/0 2940 50 41/0

20
User_Manager 798 13 2 2 0/0 1980 8 6 2/0 172

���541
���13 798

���6
���11 797/0

���5/0
���10/0 2640 50 44/0

does not make sense in practice, as analysts would wish a tool to

output exact results rather than the top 𝑛 suspiciousness rank of

the basic blocks. For example, when the root cause is ranked 9 and

10 within the top 10 suspicious basic blocks, analyzing the first

8 basic blocks does not help. As such, in our evaluation, we use

accuracy and false positive rate as indicators. For a given binary

program and a crashing input, the number of false positives is

𝐹 = 𝑁𝑢𝑚(𝑂) − 𝑁𝑢𝑚(𝑂 ∩ 𝐴), where 𝑂 is the set of basic blocks

reported by DeFault and 𝐴 is the set of basic blocks of the root

cause. The accuracy and the false positive rate are defined as

𝑓 𝑝 =
𝐹
𝐴 × 100% and 𝑓 𝑛 =

𝐹
𝑁𝑢𝑚 (𝑂)

× 100%, respectively.

False positives. We compare DeFault with Aurora [10], a recent

work that is based on analyzing the statistics of execution paths.

Aurora outputs top 50 basic blocks as its results of root cause

identification. On the whole, DeFault demonstrates relatively low

false positive rates in fault localization: the average false positive

rate on 42 crash cases is 9.2%. Note that no false negative occurs

in both DeFault and Aurora. Figure 4a shows the false positive

rate on 42 crash cases in detail. The average number of basic blocks

that are reported as false positives is 0.7. The presence of use-after-

free vulnerabilities causes false positives, but no crash is triggered.

Namely, in the presence of a use-after-free vulnerability, when there

is no memory operation on the piece of memory that is freed, no

crash would be triggered. The behaviors of the root cause and that

of the crash point are the same, which causes false positives on the

reported results.

5.5 Fault Localization: Performance

On average, the time cost of DeFault to locate each root cause is

37 minutes. For the mutual-information-based filtering, the time

consumption is highly related to the scale of execution trace,

including the length of execution trace and the amount of different

basic blocks. A longer execution trace with a large amount of

different basic blocks takes more time to process. For the neural

network module, the time cost is related to the size of the training

dataset, network input size, and the number of parameters. With
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the attention mechanism and the high-performance GPU, training

time and localization time are controlled within 6.6 minutes on

average. By that, time is mostly spent on recording execution traces.

Figure 4b shows the comparison of time cost for DeFault and

Aurora.

6 DISCUSSION

The proposed approach locates root cause at control flow level

and relies on the sequence information of execution traces and

whether the dataset contains rich samples. As such, our approach

is less effective when execution trace is relatively short and when

triggering the vulnerability depends on data flows. Fortunately, the

root cause of such vulnerabilities can be effectively identified with

taint analysis [52]. On the other hand, DeFault is not applicable

when triggering the vulnerabilities requires to solve complicated

constraints on their paths, especially for the programs with cryp-

tographic algorithms or checksum functions. The branches with

complicated constraints cannot be easily reached with the fuzzer’s

simplemutation strategies. This results in the fact that the inputs are

less explosive, which affects the accuracy of the neural network’s

fitting. To this end, as long as more diverse and adequate positive

samples are provided (more paths are explored), the network can

assign accurate weights to each basic block. Therefore, to improve

the fitting accuracy, the trade-off is to spend time and sufficiently

mutate and produce samples to train the network.

7 CONCLUSION

In this paper, we have presented DeFault, an end-to-end solution

for crash triage of general programs. The core insight of our solution

is to leverage mutual information of basic blocks to represent “crash

relevance”. Implementing the insights also involves a set of new

algorithms. In the evaluation, we compared DeFault with state-of-

the-art solutions, which demonstrates considerable time efficiency

and accuracy in both crash de-duplication and fault localization.
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