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Abstract—The Android OS, known for its openness and
flexibility, dominates the global smartphone market, enabling
the creation and distribution of a vast array of apps. However,
this openness also attracts malicious apps that threaten user
security. To counter these threats, static and dynamic analysis
techniques are employed. Despite these efforts, evasion techniques
such as code obfuscation and anti-debugging are increasingly
used to bypass these analyses.

In this study, we conduct a comprehensive review of current
evasion and anti-evasion techniques and assess their real-world
impact by analyzing 108,099 benign apps, 11,730 malicious apps,
and 11 online dynamic analysis platforms. Our findings reveal
that 68.1% of apps employ evasion techniques, with benign apps
using them more frequently than malicious ones. Malicious apps,
however, demonstrate more cautious behaviors when evading
dynamic analysis. Additionally, our evaluation of dynamic analysis
platforms shows that most evasion techniques, including simple
methods like checking fields in the Build class, successfully
evade detection, indicating a significant gap in current anti-
evasion capabilities. Our research provides critical insights into
the ongoing battle between Android app security and evasion
techniques, underscoring the need for improved countermeasures
to enhance user security.

I. INTRODUCTION

With the rapid progression of mobile technology, smart-
phones have become a fundamental component of our daily
lives. The Android OS, known for its openness and flexibility,
has achieved a dominant position in the global smartphone
market. It provides a comprehensive suite of APIs, enabling de-
velopers to create various apps that meet various market needs.
These apps are then distributed through Google Play [12] or
alternative third-party marketplaces, providing users worldwide
with easy access.

However, with the continuous development of the Android
system, malicious apps have also been increasing in its
ecosystem. These malicious apps not only degrade the user
experience but, more critically, threaten the security of user data.
To combat these threats, automated static and dynamic analysis
techniques are extensively employed by security analysts [27],
[37] or analysis platforms [21], [6]. Static analysis [40]
involves scrutinizing the app’s code without executing it, uti-
lizing decompilation and disassembly for security assessments.
Conversely, dynamic analysis [25] involves observing the
app’s behavior during execution, utilizing techniques such as
execution tracing with debuggers or monitoring in a controlled
sandbox environment to detect suspicious behaviors.

Evading Analysis. In response, malicious apps have developed
strategies to evade these analyses. To evade static analysis,
obfuscation and packer techniques are frequently adopted
as well-recognized standard measures [34]. Conversely, a
wider variety of techniques are employed to evade dynamic
analysis. Previous research [49], [44], [41], [38], [33], [31],
[50], [46], [39] has extensively documented evasion techniques,
highlighting that automated analysis systems are usually built
on emulators (virtual machines) for better isolation and behavior
monitoring. Similarly, benign app developers can use these
evasion techniques to protect intellectual property rights and
prevent unauthorized copying. This leads to a continuous
struggle between analysis tools and apps.

In contrast, relatively little work has focused on detecting
these evasion techniques. Afonso et al. [26] identified evasion
techniques by comparing the execution traces of apps on
physical versus virtual devices, successfully detecting a portion
of the evasion samples. However, this study examined only
a small number of malicious apps, and the limitations of
dynamic analysis could lead to missed identifications. Berlato
et al. [28] conducted a large-scale study of Android apps
but focused solely on anti-debugging and anti-tampering
protection techniques. Consequently, there is currently a lack
of a comprehensive large-scale evaluation of the use of evasion
techniques against dynamic analysis in Android.

Furthermore, as part of the ongoing cat-and-mouse game,
research has explored countermeasures against app evasion,
such as BareDroid, developed by Simone et al. [42]. BareDroid
is a bare-metal analysis framework for Android apps that
effectively counters evasion techniques. Dynamic analysis
platforms can employ these countermeasures to perform
effective analyses on malicious apps. However, it remains
uncertain whether online dynamic analysis platforms have
implemented the anti-evasion techniques proposed in these
countermeasures and whether they can address app evasion
issues as effectively in practice.

Our Work. To address the research gaps and fully understand
the current status of the dynamic evasion techniques compe-
tition in Android, we conducted a comprehensive literature
review, summarizing all current dynamic analysis evasion
techniques and anti-evasion measures for automated analysis
platforms. Building on this knowledge, we further examined
the real-world usage of dynamic analysis evasion techniques



in a large-scale study and evaluated the effectiveness of
current automated dynamic analysis platforms’ anti-evasion
technologies. Our large-scale measurement, covering 108,099
benign apps, 11,730 malicious apps, and 11 online automated
dynamic analysis platforms, focuses on answering the following
three questions:
RQ1 How do evasion techniques against dynamic analysis

deploy in the wild?
Most apps (68.1%) distributed through the Google Play
Market employ evasion techniques. App developers typi-
cally implement these techniques directly within the app’s
local Java / Kotlin code, prioritizing methods that are simple
to deploy and have minimal impact on app performance.

RQ2 What are the differences between evasion techniques
deployed by benign and malicious apps?
Only 15.8% of malicious apps use techniques to evade
dynamic analysis, a proportion significantly lower than that
of benign apps. The evasion behaviors of malicious apps
are often more cautious, with a common reaction being to
directly terminate the app.

RQ3 Can existing evasion techniques effectively evade the
detection of online automated dynamic analysis platforms?
Most evasion techniques, including some straightforward
methods such as checking fields in the Build class, can
successfully identify and evade these dynamic platforms.
This reflects the lack of effective anti-evasion measures in
current online dynamic analysis platforms.

Contributions. The main contributions of this paper include:
• Comprehensive Review. We conducted a comprehensive

review and summarized all current techniques for evading
dynamic analysis, as well as the corresponding measures
for countering evasion in automated analysis platforms.
This fills a critical knowledge gap in the field.

• Large-Scale Empirical Study. We performed a large-
scale empirical analysis involving 108,099 benign apps,
11,730 malicious apps, and 11 online automated dynamic
analysis platforms. This provides a panoramic view of the
deployment and effectiveness of evasion techniques in the
real world.

• Systematic Evaluations. We systematically evaluated the
differences in evasion techniques used by benign and
malicious apps, as well as the capabilities of current online
dynamic analysis platforms to counter these techniques.
This highlights the need for improved anti-evasion measures
in existing analysis platforms.

Data Availability. The raw measurement data is available at
https://doi.org/10.5281/zenodo.11192208.

II. BACKGROUND

In this section, we provide the necessary background
knowledge on automated analysis techniques and summarize
the techniques proposed in existing studies for Android apps
to evade dynamic analysis.

A. Automated App Analysis

Automated analysis techniques can be divided into static and
dynamic analysis techniques. These techniques play a crucial
role in software security, offering significant advantages over
traditional manual testing methods. They not only reduce the
workload of security analysts but also improve the efficiency
and accuracy of malware detection.
Static Analysis. Static analysis technique can be used to scruti-
nize the structure, content, and composition of an app’s source
code, bytecode, binaries, or even decompiled code without
running the program [40]. It includes various sophisticated
methods such as decompilation and data flow analysis [3].
Through static analysis, researchers can uncover vulnerabilities,
ensure compliance with coding standards, and assess the
security posture of apps by analyzing the code for malware
patterns or by evaluating the permissions requested by the app
against common misuse patterns.
Dynamic Analysis. Dynamic analysis technique can be used to
observe and evaluate the execution process of a program while
it is running [25]. It includes monitoring the running behavior
of apps, capturing logs, and using automated interaction tools
that simulate user operations to trigger and evaluate specific
functionalities of an app. Dynamic analysis is particularly
effective in assessing how apps respond to various operational
scenarios, such as their interactions with system components,
network communications, and user inputs.
Evading Analysis. Android apps, aware of scrutiny from
automated analysis, have developed various strategies to evade
detection. In the context of static analysis, developers might
use techniques such as code obfuscation, data encryption, and
dynamic code loading. These methods aim to obscure the app’s
logic, making it difficult for static analysis tools to interpret the
code and accurately identify potential security threats. Code
obfuscation and data encryption transform the code into a form
that is hard for humans and automated tools to understand,
while dynamic code loading allows parts of the app to be loaded
or modified during runtime, thereby evading static detection
mechanisms [34].

In the context of dynamic analysis, the Android community
has seen various evasion techniques emerge. These techniques
are designed to detect and respond to the presence of automated
analysis environments, thereby avoiding detection or altering
the app’s behaviors under scrutiny (e.g., not loading the
malicious payloads). Such strategies include environment
detection, where apps check for signs of being run in a simulator
or a sandboxed environment, and analysis obstruction, where
apps directly interfere with the normal operation of dynamic
analysis tools. The subsequent subsections will detail these
dynamic analysis evasion techniques.

B. Classifications of Evasion Techniques

To comprehensively cover existing evasion techniques against
dynamic analysis, we systematically scrutinize relevant lit-
erature. This process involved two sub-processes: literature
search and review. For the search process, we conducted a



systematic keyword search via Google Scholar. The keywords
are strategically selected to construct a comprehensive search
query. Specifically, we empirically summarized and heuristi-
cally identified commonly used keywords by analyzing several
relevant publications. Then, we manually verified and optimized
the keyword list during the literature review process, ultimately
determining the most suitable combination of keywords. The
keywords we used can be categorized into three groups, which
form our search queries in various combinations:

• G1 (Scenarios): Android, mobile, app, malware.
• G2 (Action): evade, evasion, bypass, hide, escape.
• G3 (Objective): dynamic analysis, sandbox, runtime, emu-

lat*, VM, virtual, detection.

For the review process, we carefully review the abstracts of
the retrieved publications to determine their relevance to our
research objectives. This preliminary filtering process ensured
that we only considered literature closely related to our research
focus. We listed these relevant publications in section VII.
By reading the full texts of these papers, we conducted a
comprehensive summary and classification of the techniques
proposed for evading dynamic analysis. Additionally, we refined
the search keyword list based on the insights gained during
this process.
Emulator Detection (ED). Security analysts typically run apps
in virtual machines, emulators, or sandboxes to conduct testing
and research safely in a controlled environment. However,
making simulated environments indistinguishable from real
devices is extremely difficult, so differences between simulated
environments and real devices still exist. Therefore, apps
can detect certain information that differs between virtual
environments and real devices, thereby identifying the virtual
environment and attempting to evade it.

• System Property (ED1). Apps can use the values of these
system properties to determine whether they are running
in a virtual environment [38], [44], [41]. For instance, the
property ro.product.brand identifies the device brand. If
this property’s value is "generic", it indicates a virtual
environment; otherwise, it suggests a real device.

• Hardware Component (ED2). Apps can identify simulated
environments by examining hardware-related information
such as CPU serial numbers, CPU frequency, sensors, and
battery details [49], [44], [41], [38], [39].

• Software Component (ED3). Apps can determine if they
are running in a simulated environment by detecting
the presence of real device-specific apps and supporting
software for Google Internet Services [49], [38].

• Network (ED4). Apps can detect simulated environments
by evaluating the device’s network address starting with
10.0.2/24 and checking whether a ping test is successful
in testing the ICMP communications [49], [44], [41].

• Traces of Usage (ED5). Apps can determine if they are
operating in a virtual environment by analyzing user usage
trace data. Real devices often show signs of "wear and
tear" due to user interactions, a feature typically absent in
most Android sandboxes [41], [31], [39].

• Specific Emulator Fingerprints (ED6). Apps can check
whether artifacts of common simulation environments exist
on the device [44]. For example, /sys/qemu_trace will
exist in the QEMU environment.

• Performance (ED7). Apps can test the device’s CPU
and graphics performance to determine whether they are
currently in a simulation environment [49].

Anti-Debugging (AD). Debuggers can be used to analyze apps
dynamically. To counteract this, app developers have imple-
mented anti-debugging strategies, which can be categorized into
two main approaches: anti-debugger mechanisms and detecting
the app’s debuggable state [30], [46], [48]1.
• Debugger Detection (AD1). There are two debugging

protocols in Android, and two debuggers can be attached
accordingly: one is the JDWP debugger, and the other is
the GDB debugger. App developers can evade dynamic
analysis by detecting both debuggers or preventing them
from running. For the JDWP debugger, app developers can
use the Debug.isDebuggerConnected API in Java code
to detect its existence. Besides, they can modify variables
related to the JDWP debugger in Native code to prevent it
from running normally. Specifically, in Dalvik, apps can
tamper with the pointer of the DvmGlobals structure in
Native code by modifying the global variable gDvm. In
ART, apps can override JDWP method pointers to achieve
the same purpose. For the GDB debugger, the app can
check whether there is an attached process by reading the
TracerPid value in the /proc/self/status file, or it can
attach a simulated debugger process to itself to prevent
being debugged by the real debugger.

• Debuggable Status Detection (AD2). If an attacker wants to
allow JDWP debugging, he must change the value of the
debuggable flag in the app manifest file. App developers
can check whether the value of this flag has been changed
through the ApplicationInfo.FLAG_DEBUGGABLE or
BuildConfig.DEBUG API. Moreover, if the device itself
is debuggable, the app can be debugged regardless of
its debuggable state. Apps can determine if the device
is in a debuggable state by checking the value of the
ro.debuggable system property.

Anti-Hooking (AH). Dynamic analysts can hook an app’s
API calls through the hook framework, such as Frida, to
insert custom functionality while the app is running [50],
[46]. For example, the hook technique allows developers
to modify a method’s parameters and return value or even
completely replace the method’s implementation. Currently,
anti-hook methods in apps can be implemented by detecting the
fingerprint of hook frameworks. At the Java code level, apps can
check the stack trace to check Xposed by throwing an exception
or traverse the list of running processes to check whether the
Frida server is running. Besides, a hook framework may modify
Java methods in an app to Native methods. Therefore, the app

1Given that some techniques of anti-debugging and anti-hooking are widely
known but not documented in formal literature, we sought and identified
relevant literature that mentions these techniques as references for our work.



can detect the presence of hook frameworks by checking if
the attributes of all Java methods have changed using the
Modifier.isNative method. At the Native code level, apps
can ping the TCP port 27047 used by the Frida server by default
to see whether it is open. In addition, apps can check whether
hook framework-related libraries are mapped in memory.
Turing Test (TT). To enhance the coverage of the execution
paths and thus more comprehensively test apps, some dynamic
analysis frameworks have adopted automated exploration
techniques, such as simulating UI interactions. However, there
are significant differences in how human users and machine
testers interact with apps, which allows the apps to detect
automated analyses. We liken this detection mechanism based
on interaction differences to a "Turing test," where an app
attempts to distinguish whether its interlocutor is human or a
machine.

• Monkey Detection (TT1). Monkey [16] is an automated
testing tool provided by Google that can generate pseudo-
random streams of user events. It can be identified by
calling the isUserAMonkey() API and checking its return
value.

• Simulated Event Detection (TT2). Some properties of
MotionEvent and KeyEvent can reflect the gap between
dynamic testing tools and humans. Additionally, dynamic
analyzers are identified by measuring the frequency of event
injection.

• UI Trap Setting (TT3). Apps can set UI traps that are
inaccessible to human users but indistinguishable from
dynamic analyzers, such as an unused but exported Activity
or a valid but "invisible" control.

III. METHODOLOGY

In this section, we present our methodology designed to
answer the research questions proposed in Section I. As
depicted in Figure 1, our methodology can be structured into
three distinct steps.

Step 1 Dataset Construction. Initially, we collected and sum-
marized dynamic evasion techniques used in Android
apps from current related publications and constructed
corresponding fingerprints for these techniques. Fol-
lowing this, we gathered both benign and malicious
APK datasets and preprocessed these apps to extract
their key components for further analysis.

Step 2 App Measurement Analysis. Based on the collected
datasets, we conducted an in-depth detection and anal-
ysis of the dynamic evasion techniques implemented in
Android apps, aiming to understand their usage status
and impact in the wild.

Step 3 Test of Online Automated Dynamic Analysis Plat-
forms. Finally, we evaluated the ability of online
automated dynamic analysis platforms to detect or
defend the evasive behaviors in apps and obtained
their overall strategies for combating dynamic analysis
evasion behavior.

A. Dataset Construction

We need to construct two types of datasets for this study,
as follows:

• Evasion Technique Fingerprint Dataset. As shown in
Section II, we systematically summarized all known evasion
techniques by conducting a comprehensive review of the
current literature on Android apps’ evasion against dynamic
analysis. Based on this, we constructed a corresponding de-
tection fingerprint for each evasion technique. We observed
that evasion techniques utilizing environment detection
are typically implemented through conditional statements.
Therefore, we constructed a fingerprint tuple for each tech-
nique, with two elements representing the values on either
side of the conditional statement. We call the first element
the analysis fingerprint, which signals us to conduct further
analysis when this element appears. We call the second
element the confirmation fingerprint, which, if used in
a conditional statement with the first element, indicates
the presence of an evasion technique. For example, if an
app detects whether it is running in a virtual environment
by checking if the BRAND field value of the Build class is
"generic" (ED1), the fingerprint of this evasion technique
is defined as (Build.BRAND (analysis fingerprint),
"generic" (confirmation fingerprint)). For tech-
niques that evade dynamic analysis by obstructing the
analysis process, like AD1, their mere presence indicates
evasion. Therefore, we only construct an analysis fingerprint
(which also serves as an identification fingerprint) for them2.

• APK Dataset. To address research questions RQ1 and RQ2,
we need to access a large-scale APK dataset. RQ1 focuses
on evaluating the current status of evasion techniques in
the wild, which requires us to observe across a broad
and authentic range of app scenarios. Within the Android
system, Google Play is not only the largest app distribution
channel but also covers the vast majority of Android users
globally and is the official app marketplace. By analyzing
apps on Google Play, we can obtain observations that are
close to real-world environments. For RQ2, our goal is
to explore the differences between benign and malicious
apps in evading dynamic analysis. The strict review process
of Google Play means that its apps are generally benign,
which facilitates our analysis of benign apps. Therefore, we
requested access to the AndroZoo [2] dataset, an extensive
archive of Android apps that has collected millions of
APKs from Google Play and other sources. Ultimately, we
successfully obtained a total of 108,099 apps from Google
Play and 11,730 malicious apps. Every app in the malicious
dataset has been identified as "malicious" by at least 35
antivirus engines. Subsequently, we extracted dex and so
files from these APKs and used dex2jar [4] to convert dex
files into jar files for further analysis.

2Due to the diverse and complex implementation of ED7 and TT3, we cannot
generate their standardized detection fingerprints. Therefore, our fingerprint
dataset does not include these two types.
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B. App Measurement Analysis

Based on the deployment location of the evasion techniques,
we divided the analysis of APKs into two layers: the Java /
Kotlin layer and the Native layer. At the Java / Kotlin layer, we
used the WALA [23] framework to analyze the extracted jar
files. Specifically, we performed data flow analysis to locate
and trace evasion techniques. At the Native layer, we built
Yara [7] rules based on the fingerprints of evasion techniques
to scan the extracted so files. These rules enable us to match
the corresponding evasion fingerprints.
Data Flow Analysis. Since evasion techniques based on detec-
tion are typically implemented through conditional statements,
the core of our data flow analysis is to locate the conditional
statements associated with these techniques accurately. This
process can be divided into the following three steps.
(1) Initial taint location. Firstly, to activate the whole analysis,
our analysis framework locates the initial analysis points
(taints) based on the analysis fingerprints of evasion techniques.
Depending on the types of evasion fingerprints, our analysis
framework categorizes initial taints into three types: field,
method, and constant.
• Field. An app implements an evasion technique by obtaining

a field value and making judgments based on it. For
example, an app checks whether the value of the DEVICE
field in the Build class is "generic" to determine if it is
running in a virtual environment. For this type, our analysis
framework traverses all statements in apps that obtain field
values. If a field is the analysis fingerprint in our evasion
fingerprint tuples, we will mark the variable to which the
field value is assigned as the initial taint.

• Method. An app implements an evasion technique through
the values returned by method calls. For this type, our
analysis framework traverses all invocation statements in
apps. If the method called is the analysis fingerprint in
our evasion fingerprint tuples, our analysis framework will
mark the return variable of this call as the initial taint.

• Constant. An app processes constant values for judgment to
implement an evasion technique. For example, an app might
retrieve system properties via reflection to make a judgment,
and the system property value is constant. For this type, our
analysis framework traverses all constants used in the app.

If a constant matches the analysis fingerprint, our analysis
framework will identify the variable where this constant
was assigned and consider it as the initial taint.

(2) Taint tracking. Secondly, to confirm whether the taint
involves evasion techniques, our analysis framework tracks it
to a conditional statement and performs fingerprint recognition
of the corresponding evasion technique. Our analysis frame-
work employs a two-tiered taint tracking strategy: intra- and
inter-procedural analysis, supplemented with Class Hierarchy
Analysis (CHA) to construct the app’s call graph.

Intra-procedural taint tracking. During this phase, our
analysis framework conducts a detailed analysis of each method
containing an initial taint. The initial taint might be located
through the initial taint location or propagated through inter-
procedural analysis. Our analysis framework uses a Control
Flow Graph (CFG) to trace the propagation of the taint among
statements within the analyzed method until it reaches a
conditional statement. Then, our analysis framework evaluates
the value on the other side of the condition to determine if
it matches the confirmation fingerprint, thus assessing if an
evasion technique is implemented.

Inter-procedural Taint Tracking. When a taint is passed to
a field, a return statement, or method parameters, it triggers
inter-procedural taint tracking. If a taint propagates to a field,
our analysis framework will search for all methods that access
this field and designate these methods as new analysis points,
with the variable at the field assignment as the new initial taint.
If a taint propagates to a return statement, the methods calling
the current method will be treated as new analysis points. The
return value at the point of the current method’s call is set as
the new initial taint. If a taint transfers to a method parameter,
the called method will become a new analysis point, with the
corresponding parameter as the new initial taint.
(3) Third-party library determination. Finally, considering
that evasion techniques might also be deployed in third-party
libraries, which may not necessarily be called, our analysis
framework identifies whether they are deployed in third-party
libraries and, if so, whether they are invoked by the APK’s
local code. This step can help us evaluate the actual usage
status and identify the usage patterns of evasion techniques
in apps. To achieve this, our analysis framework integrates



TABLE I: Statistics on Google Play apps using evasion techniques.

Evasion Techniques ED1 ED2 ED3 ED4 ED5 ED6 AD1 AD2 AH TT1 TT2 All∗

All 66,407 37,988 43,989 5,007 72,574 16,800 31,876 47,047 1,746 8,407 16,250 87,038
TiE⋆ 50/50 0/50 0/50 38/50 0/50 35/50 50/50 50/50 39/50 50/50 0/50 -
Java / Kotlin 62,219 - - 1,940 - 12,823 29,947 46,873 1107 8,407 - 69,212
Native 8,459 - - 2,016 - 3,198 2,567 670 201 - - 12,610
All (adjusted) 66,407 - - 3,950 - 15,745 31,876 47,047 1,283 8,407 - 73,607
Percentage 61.4% - - 3.7% - 14.6% 29.5% 43.5% 1.2% 7.8% - 68.1%

⋆: Techniques indeed Evading Dynamic Analysis in Practice
*: Some apps implement the evasion actions in both Java/Kotlin and Native code. Therefore, the [All] amount is not [Java/Kotlin] + [Native] directly.

LiteRadar [1], which is designed to inspect third-party libraries
in APK files.

Note that, as stated in Section III-A, some techniques evade
dynamic analysis by obstructing the analysis process, and we
only constructed their analysis fingerprints. Therefore, when
detecting such techniques, we can skip Step (2), which aims
at matching the confirmation fingerprint.
Yara Rules Scan. We constructed the corresponding Yara [7]
rules based on our fingerprints to scan the app’s native code.
Yara is a powerful open-source tool designed to help malware
researchers identify and classify malware samples. Using Yara
requires creating malware signature rules that contain text
or binary patterns. As shown in Listing 1, these rules are
formulated based on a combination of string sets and Boolean
expressions (Line 5, 8), effectively describing the characteristics
of malware. Specifically, the "condition" tag (Line 8) is used
to write Boolean logic expressions, serving as the core of the
rules to determine whether a file is considered a match. The
sequence of strings defined under the "strings" tag (Line 5)
is the basis for rule detection. By cleverly combining these
strings in the "condition" section, we can construct complex
and precise pattern-matching rules. We set the elements of the
tuple under the "strings" tag, combined them in "condition" to
form rules, and then scanned the extracted so files to match
our fingerprints.

1 //Check emulation through system property
2 rule check_build_description_native:anti_vm

property native
3 {meta:
4 description="ro.build.description check"
5 strings:
6 $prop="ro.build.description"
7 $str_1="release -keys"
8 condition:
9 ($prop) and $str_1}

Listing 1: Example of Fingerprint.

C. Test of Online Automated Dynamic Analysis Platforms

To evaluate the anti-evasion capabilities of current online
app dynamic analysis platforms, we developed a probe app
integrated with a comprehensive suite of evasion techniques
we collected. Our main goal is to verify whether this app can
accurately identify these platforms’ dynamic analysis behaviors
through one or more evasion techniques.

The criteria for selecting analysis platforms are 1) the
platform claims to support APK file analysis; 2) the platform
claims to support dynamic analysis; and 3) the availability of
the service for free use3 (i.e., allowing direct upload of samples).
Both academic and business platforms are considered.

Following these criteria, 11 online dynamic analysis plat-
forms were chosen for our experiments, including Sand-
Droid [19], Triage [6], VirusTotal [22], QAX Threat In-
telligence [18], MOBISEC [15], Koodus [14], MobSF [5],
Hybrid Analysis (CrowdStrike Falcon Sandbox) [13], Tencent
Habo [21], AppAudit [10], and Sixo [20].

Furthermore, our probe app does not contain malicious
content, ensuring it poses no risk to the analysis platforms.
Based on the reviewed evasion techniques (as summarized
in Section II-B), it only gathers data pertinent to dynamic
analysis behaviors and environment features. Then, if the
analysis platform is equipped with a visual interface, our probe
app will directly display the collected data on the interface; if
the platform does not support visual displays, the probe app
will send the data to our HTTP server hosted in the cloud for
more in-depth subsequent analysis.

IV. MEASUREMENTS AND FINDINGS

I RQ1. How do evasion techniques against dynamic
analysis deploy in the wild?

Based on the static analysis method described in Section
III-B, we conducted a large-scale detection of evasion tech-
niques against dynamic analysis used by Google Play apps to
investigate the deployment status of these techniques in the
wild. We provided a comprehensive overview of the deployment
status from two dimensions: 1) the types of evasion techniques
deployed in apps and 2) the locations of evasion techniques
deployed in apps. Further, we delved into the possible reasons
behind the deployment status.
Types of Techniques Deployed. We measured the number
of apps deploying each evasion technique summarized in
Section II-B, as shown in Table I. We found that evasion
techniques proposed in the literature are frequently deployed
in real-world apps, with their uses exceeding 80% (87,038 /
108,099). The ED5 technique is the most widespread, with

3Due to the limitation of research budget, some paid platforms and premium
features for dynamic analysis were not covered in this study, such as 360
Sandbox Cloud [8], App-Ray [9], Appknox [11], Nanminglihuo [17], and
WeTest [24].



the use of 83.4% (72,574 / 87,038). However, our further
investigation into the reason revealed that the popularity of
ED5 is mainly because it is frequently used for collecting user
information in practice, not for evading dynamic analysis. For
example, as demonstrated in Listing 2, the app checks whether
an SMS is empty before retrieving its details. Since the SMS
belongs to the trace of user usage in real devices, we detected
that this app used ED5 (traces of usage).

1 // Determine whether the message is empty
and then access the info.

2 Cursor cursor2 = contentResolver.query(Uri.
parse("content ://sms/inbox"), ...);

3 if (cursor2 != null) {
4 try {if (cursor2.moveToFirst ()) {...}
5 }catch (...) {...}}

Listing 2: Example of accessing SMS messages.

This observation made us question whether the techniques
proposed for evading dynamic analysis are actually used for
this purpose. In other words, do these techniques match their
intended use as stated in the literature? To clarify this, we
manually analyzed apps with evasion techniques to see if they
really aim to evade dynamic analysis. We randomly selected 50
APK files for each evasion technique and closely inspected their
implementations, such as evaluating the correlation between the
names of the methods that implement the evasion techniques
and the evasion action and checking if multiple evasion
techniques were used in the same method.

Our manual analysis results were listed in the third row
of Table I, which shows that ED2, ED3, ED5, and TT2 are
rarely used for evading dynamic analysis in practice. Their
primary usage is collecting and processing device or user
information. For ED4, ED6, and AH, some of their usages
are not for evading dynamic analysis as well. The ping
test in ED4 is used to check network connectivity, and the
Modifier.isNative method in AH is typically used to verify
whether a specific method is implemented as Native code.
Moreover, apps determine the presence of a navigation bar by
checking the qemu.hw.mainkeys property in ED6 in order to
perform the subsequent operations about the navigation bar.

Further, we explored the possible reasons for this phe-
nomenon. As stated in Section II-B, the ED2, ED3, and ED5
techniques evade dynamic analysis by detecting whether the
executing environment is virtual. For ED2 and ED3, which rely
on hardware and software component information, the detection
results may be affected by hardware and software compatibility
differences among devices, making the results inaccurate. For
ED5, it utilizes the traces of user usage in real devices. This
evasion technique may not work because virtual environments
can easily simulate the traces of usage. The TT2 technique
and the Modifier.isNative method in AH technique need to
detect whether Java methods have been converted to Native
methods. The implementation of this detection is complex and
time-consuming, which may affect the performance of the app.
As a result, these evasion techniques are hardly used for evading
dynamic analysis in practice under the consideration of app

TABLE II: Evasion techniques locations deployed in apps.

Location Usage Status App Count Percentage
Local Used 56,199 52.0%
Third-party
Library

37,272 34.5%
Unused 80,376 74.4%

performance, technical reliability, and difficulty in technique
implementation.

After excluding evasion techniques rarely used for anti-
dynamic analysis in real-world apps, the most common
technique is ED1 (61.4%), followed by AD2 (43.5%) and AD1
(29.5%). The least frequently used technique is AH (1.2%). The
high deployment rate of ED1 may be attributed to its ability to
retrieve system property information easily through simple API
calls without significantly affecting app performance. The AD1
and AD2 techniques are prevalent probably because debugging
techniques are quite common, and the AD techniques are simple
to implement. The low prevalence of the AH technique might
relate to its high deployment difficulty and the rarity of hooking
techniques, making AH mainly found in apps with stringent
security requirements.
Finding 1. Techniques proposed in the literature for evading
dynamic analysis are not always used for this purpose in real-
world apps. After identifying the techniques actually used for
evasion, we measured that 68.1% (73,607 / 108,099) of apps
have deployed evasion techniques. These apps predominantly
rely on ED1 and AD techniques to evade dynamic analysis
because these methods are easy to implement and widely
reliable and have little affection for app performance.
Locations of Techniques Deployed. Additionally, we investi-
gated the locations of evasion technique deployments in apps.
Firstly, we analyzed whether the evasion techniques were
implemented in the app’s local code (code built by the app
developers themselves) or in the third-party library code, and
if the latter, whether they can be invoked by the app’s local
code. As mentioned in Section III-B, the implementations of
evasion techniques in the app’s local code or the third-party
code invoked by the app’s local code indicate that the app
indeed used such techniques. According to the results shown
in Table II, a higher proportion (52.0%) of evasion techniques
were found in the app’s local code. On the other hand, the
number of apps containing evasion technique implementations
within third-party libraries reached 81,418 (75.2%). However,
most (74.4%) of them did not use these techniques (i.e., the
corresponding implementations were not invoked by the app’s
local code).

Further, as shown in Table III, we identified the top five third-
party libraries with the most evasion techniques and found that
none of them focused on evading dynamic analysis. The evasion
techniques deployed in third-party libraries are primarily for
the specific needs of the libraries themselves. Therefore, app
developers seem to prefer implementing evasion techniques
within the app’s local code.

Secondly, based on the code layers at which the evasion
technique is located, we categorized the evasion techniques into



TABLE III: Top 5 third-party libraries with evasion capability.

Third-party Library Type App Count
Lcom/google/android/gms Development Aid 72,045
Lcom/facebook Social Network 19,554
Lcom/google/firebase Development Aid 8,216
Lorg/apache/cordova Development Aid 6,940
Lio/fabric/sdk/android Development Aid 6,793

two layers: the Java / Kotlin layer and the Native layer. The
fourth row of Table I shows that evasion techniques are mainly
concentrated in the Java / Kotlin layer, accounting for 64.0%.
On the contrary, the Native layer only accounts for 11.7%. The
proportion of most evasion techniques in the Native layer is
much lower than that of corresponding techniques in the Java /
Kotlin layer, such as ED1 and AD2. This phenomenon may be
explained by the fact that the Android development environment
is mainly designed for Java / Kotlin, and developers are more
familiar with and proficient in these languages.
Finding 2. App developers tend to deploy evasion techniques
directly in their local code rather than using third-party libraries
and prefer implementing evasion techniques in Java / Kotlin
code. Most third-party libraries containing numerous evasion
techniques are not designed for evading dynamic analysis but
to meet their own evasion needs.

Answers to RQ1

68.1% of apps have deployed evasion techniques, with ED1
being the most commonly used. Moreover, app developers
tend to implement evasion techniques in Java / Kotlin and
within the app’s local code.

I RQ2. What are the differences between evasion
techniques deployed by benign and malicious apps?

As introduced in Section I, benign apps strive to evade
analysis by potential attackers to protect intellectual property
rights and prevent unauthorized copying. Whereas malicious
apps utilize evasion techniques to avoid being identified by
analysis platforms. These two kinds of apps have different
intentions to evade dynamic analysis. Hence, we devoted
particular attention to the discrepancies in evasion tactics
deployed by benign and malicious apps in the aspects of the
deployment status and evasion behaviors after identifying the
dynamic analysis scenarios.
Differences in Deployment Status. In our analysis, as
mentioned in Section III-A, we treated the collected Google
Play apps as benign apps, and the deployment status of dynamic
evasion techniques in them was analyzed in RQ1. Similarly,
we examined the deployment status of evasion techniques in
malicious apps. The results are shown in Table IV. Contrary
to our expectations, only 15.8% (1,848 / 11,730) of malicious
apps utilized such techniques, in comparison to 68.1% for
benign apps. This unexpectedly lower incidence of dynamic
analysis evasion in malicious apps compared to benign ones
suggests a high need for benign apps to protect their code and

49.0%

42.9%
8.2%

Benign Apps

44.0% 22.0%

34.0%

Malicious Apps

Store/Send
Restrict
Terminate

Fig. 2: Statistics on evasion behaviors of apps.

data. For example, banking apps often involve sensitive data
and place a higher emphasis on protective measures. On the
other hand, malicious app developers may be good at hiding
their behaviors and avoiding the detection of evasion techniques
they deploy.

As for the types of evasion techniques deployed, the most
popular evasion technique used in malicious apps is also
ED1, but compared to benign apps, which often use the
Build class in ED1, malicious apps are more inclined to use
the TelephonyManager.getDeviceId method in ED1. On the
other hand, the least commonly used technique in benign apps
is AH. While in malicious apps, it is TT1 (Monkey detection).
It reflects that most malware does not prioritize targeting users
of the Monkey testing tool, as their primary design is to
operate covertly and avoid detection. Specifically, detecting the
uncommon Monkey testing tool could increase the risk of the
malware being discovered.
Finding 1. Malicious apps generally deploy evasion techniques
less frequently than benign apps. Both kinds of apps use the
ED1 technique most commonly, but the specific technique
implementations are different. The least commonly used
technique is AH in benign apps and TT1 in malicious apps.
Differences in Evasion Behaviors. Furthermore, we inves-
tigated the differences between benign and malicious apps
in their evasion behavior patterns after identifying that they
are being dynamically analyzed. Given the complexity of
distinguishing specific behaviors, static analysis often falls
short of accurately discerning developers’ intentions. Therefore,
we manually analyzed the behaviors after evading dynamic
analysis in 50 benign apps and 50 malicious apps, respectively.

We found that the evasion behaviors of an app can be
classified into three principal patterns as follows:

• Store or send detection information: the app locally stores
the detection information that indicates whether it is being
dynamically analyzed. Or it sends this information to a
remote server.

• Restrict certain functionalities: the app changes the
execution path to restrict the implementation of original
functionalities.

• Terminate the running: the app kills the process or throws
an exception to terminate its running.

As shown in Figure 2, of the three evasion behavior patterns,
both benign and malicious apps prefer storing or sending
detection information. The difference is that benign apps tend



TABLE IV: Statistics on malicious apps using evasion techniques.

Evasion Techniques ED1 ED2 ED3 ED4 ED5 ED6 AD1 AD2 AH TT1 TT2 All∗

All 1,403 1,238 320 30 4,134 302 75 447 48 11 2 4,877
TiE⋆ 45/50 0/50 0/50 18/30 0/50 32/50 50/50 50/50 48/48† 11/11 0/2† -
Java / Kotlin 1,148 - - 18 - 82 59 419 25 11 - 1,475
Native 300 - - 0 - 158 16 32 26 - - 457
All (adjusted) 1,403 - - 18 - 239 75 447 48 11 - 1,848
Percentage 12.0% - - 0.2% - 2.0% 0.6% 3.8% 0.4% 0.1% - 15.8%

⋆: Techniques indeed Evading Dynamic Analysis in Practice
†: Less than 50 malicious apps are using AH / TT2 in our APK dataset.
*: Some apps implement the evasion actions in both Java/Kotlin and Native code. Therefore, the [All] amount is not [Java/Kotlin] + [Native] directly.

TABLE V: Experimental results for online dynamic analysis services.

Anslysis Platform ED1 ED2 ED3 ED4 ED5 ED6 ED7 AD1 AD2 AH TT1 TT2 TT3
SandDroid [19] ✓ ✓ ✓ ✓ ✓ ✓ − × ✓ × × − ×

Triage [6] ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓ ✓ × ✓ ×
VirusTotal [22] ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓ ✓ × ✓ ✓

QAX [18] ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓ ✓ × ✓ ×
MOBISEC [15] ✓ ✓ ✓ ✓ ✓ ✓ ✓ × × × × − ×

Koodus [14] ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓ × × ✓ ×
MobSF [5] ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓ ✓ × − ×

✓: This technique can effectively identify dynamic analysis platforms.
−: This technique has not been triggered.
×: This technique can not identify dynamic analysis platforms.

to store information locally, probably because benign apps
try to protect their privacy by minimizing external user data
transmission. On the contrary, malicious apps are apt to send
information to a remote server. It is possibly because malicious
apps want to conceal their negative intentions by performing
malicious decision-making processes on the remote server
based on the detected information. Additionally, malicious apps
are more inclined to terminate immediately after identifying
being dynamically analyzed, perhaps in order to hide their
subsequent malicious behaviors.
Finding 2. After identifying being dynamically analyzed, apps
may modify their behavior, terminate execution, or access
detection information to evade analysis. Malicious apps are
more likely to terminate execution or execute malicious logic
on a remote server to hide their malicious behaviors, whereas
benign apps are more likely to continue running normally
without disruption.

Answers to RQ2

The proportion of evasion techniques deployed in malicious
apps is lower compared to benign ones, at only 15.8%. Com-
pared to benign apps, malicious apps’ evasion behaviors
are often more cautious, such as actively hindering further
operations.

I RQ3. Can existing evasion techniques effectively
evade the detection of online automated dynamic
analysis platforms?

In this part, we discuss the effectiveness of evasion tech-
niques and the anti-evasion performance of online analysis
platforms. As mentioned in Section III-C, we developed a probe

app and uploaded it to 11 online malware detection platforms
that support dynamic analysis. Specifically, we incorporated
all known implementations of each evasion technique. If any
technique implementation successfully evades the analysis
platforms, we marked this evasion technique to be effective.

During the experiment, we were unable to obtain detection
results from four platforms, including Hybrid Analysis, Tencent
Habo [21], AppAudit [10], and Sixo [20], because they neither
sent responses to our server nor provided a visual interface
to view the data. Possible reasons are that these platforms
limit the app’s network access or do not actually perform
dynamic analysis. However, due to the black-box nature of
online platform operations, pinpointing the precise reason
remains challenging. Finally, data from seven platforms were
analyzed, including SandDroid, Triage, VirusTotal, QAX Threat
Intelligence, MOBISEC, Koodus, and MobSF. The cumulative
results are presented in Table V.

Effectiveness of Evasion Techniques. According to Table V,
most evasion techniques demonstrated efficacy in detecting
automated dynamic analysis environments. Notably, emulator
detection techniques (ED1 ~ ED7) were capable of identifying
nearly all platforms, indicating that the majority of these
platforms are developed based on emulator environments.
However, the techniques for detecting debugger (AD1) and
Monkey (TT1) did not succeed in evasion. This may be due
to the absence of Monkey and debugger deployment on these
platforms.

Finding 1. Except for AD1 and TT1, the evasion techniques
mentioned in the literature are able to evade most online
dynamic analysis platforms. It shows that the anti-evasion
capability of the current dynamic analysis platform needs to
be strengthened.



Anti-Evasion Strategies of Platforms. Although most types
of evasion techniques can effectively evade online dynamic
analysis platforms, our analysis results show that some mal-
ware detection platforms have actually deployed anti-evasion
strategies against specific implementations. For instance, Trige,
VirusTotal, Koodous, and MOBISEC have either obscured their
device information or utilized real devices in their analysis
processes. These anti-evasion measures can mainly be divided
into the following three categories:
System Property. Analysis platforms simulate the system
property of real devices or use the real devices as test devices.
For instance, we queried the system properties from the Koodus
platform (as shown in Listing 3) and found it simulates or really
uses a OnePlus 8 Pro phone. Nevertheless, Koodus and some
other platforms (e.g., Triage and VirusTotal) operate on multi-
device analysis frameworks and have not entirely succeeded
in camouflaging the specifics of each device. MOBISEC, built
on a single device, exhibits an imperfect disguise, exemplified
by a phone number beginning with 1555. Therefore, these
platforms still cannot resist the ED1 technique.

1 MODEL: OnePlus8Pro
2 BRAND: OnePlus
3 DEVICE: OnePlus8Pro
4 TAGS: release -keys
5 FINGERPRINT: OnePlus/IN2023/OnePlus8Pro :11/

QKR1 .191246.002/2006701342: user/release -
keys

Listing 3: System properties on Koodus.

Traces of Usage. Analysis platforms fake the traces of usage.
Using the Triage platform as an example, there exists a
device profile that nearly encapsulates all usage information,
as detailed in Listing 4. This profile encompasses fabricated
contacts, app packages, and even geographical coordinates
(latitude and longitude). However, due to the incompleteness
of the usage information, we still can evade Triage using the
ED5 technique.

1 Contacts: PhoneNumber :88001007337;
2 Latitude: 9.9139368
3 Longitude: 78.0911564
4 PackageName: com.google.android.apps.

inputmethod.hindi

Listing 4: Traces of usage on Triage.

Performance. Analysis platforms simulate the performance of
real devices or use real devices to test. For example, evidence
suggests that Triage likely employed at least one physical
device for testing, as indicated by a CPU computation time of
15 ms. In contrast, emulators typically demonstrate computation
times ranging from 2 to 3 ms.
Finding 2. Although some online dynamic analysis platforms
have deployed certain anti-evasion measures, which mainly
include simulating real attribute values, usage traces, and
performance characteristics. However, these measures are not
deployed comprehensively. Therefore, when an app is equipped

with sophisticated evasion techniques, these platforms can still
be effectively evaded.

Answers to RQ3

Evasion techniques can effectively detect automated analy-
sis environments, particularly through emulator detection
methods. Analysis platforms have implemented counter-
evasion measures, but the implementations are not enough.

V. SUGGESTIONS

Android Apps. The techniques that apps typically use to
evade dynamic analysis, such as ED1, mostly derive from basic
techniques proposed in literature years ago. Their widespread
use may be due to their ease of implementation and integra-
tion. However, as dynamic analysis platforms have gradually
developed countermeasures against these older techniques, we
recommend that benign apps deploy various evasion techniques
to enhance their ability to resist these countermeasures.
Automated Analysis Platforms. Existing dynamic analysis
platforms are almost defenseless, even against the most basic
evasion techniques. Take Koodus as an example. Although
it attempts to deploy anti-evasion mechanisms, its use of
multiple devices without ensuring comprehensive deployment
makes it vulnerable. Malicious app developers can easily make
local decisions and take appropriate actions when detecting a
virtual environment. This situation highlights that the current
technological abilities of online analysis platforms are nearly
ineffective against the evasion attempts of malicious entities.
Given the differences in how benign and malicious apps use
evasion techniques, platforms can design specific rules to
determine whether an app’s evasion behavior is motivated
by malicious intent. For instance, platforms could assess the
behavior patterns after evasion. Fine-grained judgment allows
analysis platforms not only to identify malicious activities
accurately but also to minimize undue harm to legitimate apps.

VI. THREATS TO VALIDITY

In this section, the potential threats to the validity of the
study are discussed.
Empirical Analysis Limitations. Some of the techniques pro-
posed in the literature, while usable for evading dynamic
analysis, are not always intended for this purpose in practice.
Therefore, we adopted a strict manual analysis approach to
exclude the techniques rarely used for evasion in real-world
apps. However, there may be apps in our APK dataset whose
behaviors do not align with the empirical conclusions drawn
from manual analysis, which could impact the accuracy of the
research results.
Static Analysis Limitations We observed that in most cases,
evasion techniques were not combined with anti-static analysis
techniques such as code obfuscation. However, there is still
a possibility that evasion techniques in a few apps may be
obscured by anti-static analysis techniques, which could lead
to deviations in our static analysis results.



Third-party Tools Error. This study relied on LiteRadar to
extract third-party libraries in apps. Although LiteRadar repre-
sents an advanced tool in its domain, its detection capabilities
of third-party libraries may not achieve complete accuracy.

VII. RELATED WORK

A lot of publications have extensively explored research on
evasion techniques against dynamic analysis in apps. These
publications can be principally divided into three categories:
the proposal of evasion techniques, the proposal of anti-evasion
techniques, and the detection of evasion techniques in apps.
Evasion Methods. The high-level idea of evasion techniques
is to identify the differences between the real user-end and
app analysis environments. Vidas et al. [49] first proposed a
method to detect Android runtime analysis systems. They detect
virtualized dynamic analysis platforms by analyzing differences
in behavior, performance, and system components caused
by design choices. Petsas et al. [44] proposed a technique
that utilizes static attributes, dynamic sensor information, and
complex information related to the Android virtual machine
to evade dynamic analysis. Maier et al. [41] developed
a tool called Sand-Finger, which can identify fingerprints
about Android analysis systems. Jing et al. [38] proposed
a framework called Morpheus, which analyzes and compares
artifacts retrieved from Android emulators and real devices
to generate heuristic detection emulator methods. Diao et
al. [33] proposed a new way to evade runtime analysis by
detecting differences in interaction patterns of machines and
human users. Costamagna et al. [31] have proposed detecting
emulation environments based on traces of device usage, such
as obtaining contacts and sms. Wan et al. [50] analyzed
several open-source Android hooking tools, which debug
apps through various hook points. They summarized these
points and effectively implemented anti-hooking by verifying
their integrity at runtime. Sihag et al. [46] investigated and
summarized the Android malware enhancement techniques and
conducted a detailed classification, including part of dynamic
analysis evasion technology. Kondracki et al. [39] developed
an "environment-aware" sandbox detection technique using
an Android app to collect API statistics on wear-and-tear
artifacts and hardware components. They compared data from
both sandbox environments and real devices and then built a
machine-learning classifier to distinguish between them.
Anti-Evasion Methods. The high-level idea of anti-evasion
techniques is to pretend the current app analysis environment
is a real user’s phone. Mutti et al. [42] proposed BareDroid
for bare metal analysis of Android apps. It can quickly revert
a real device to a clean snapshot and remain imperceptible
to malware. Rasthofer et al. [45] proposed HARVESTER,
which combines static and dynamic analysis to extract and
execute key code snippets, bypassing malware’s environmental
detection mechanisms. Ning et al. [43] developed NINJA, a
malware analysis framework using TrustZone technology for
transparent trace analysis, minimizing system performance
impact. Bordoni et al. [29] proposed Mirage, the first Android
malware sandbox architecture. It uses four advanced techniques

to prevent evasion. Firstly, it collects data from real devices
to create realistic simulations. Secondly, it expertly hooks and
alters the Android API return values to mirror those of real
devices. Thirdly, Mirage replays event streams from actual
devices to simulate their behavior accurately. Lastly, it ensures
the consistency of false data injected into the emulator and
records the analysis process to discover and respond to evasion
techniques. Song et al. [47] proposed VPBox, a new Android
operating system-level sandbox framework implemented based
on container virtualization. VPBox achieves transparent and
covert dynamic analysis of Android apps by combining kernel-
level and user-level device virtualization techniques, along
with device attribute and SELinux customization. Faghihi et
al. [35] introduce CamoDroid, which simulates real device
data, sensors, user input, static and network characteristics and
hides the existence of the analysis environment. Hayyan et
al. [36] proposed the Maaker framework, which uses model-
driven engineering to put humans in the loop and then uses
human knowledge to deal with different evasion behaviors. Cui
et al. [32] developed a framework called DroidHook that can
customize the monitoring API set and run on real devices.
Evasion Methods Detection Afonso et al. [26] proposed a
method called Lumus, which effectively identifies app samples
attempting to evade detection by comparing the execution
trajectories of malicious apps in bare-metal (i.e., physical
devices) and simulated environments. Berlato et al. [28]
conducted a large-scale study of Android apps to quantify
the actual app of anti-debugging and anti-tampering protection
techniques.

VIII. CONCLUSION

This study systematically investigates the evasion techniques
used by Android apps against dynamic analysis. We designed
three key research questions to analyze the real-world use of
evasion techniques, compare their use between benign and
malicious apps, and evaluate the effectiveness of current online
dynamic analysis platforms. Our large-scale empirical analysis,
covering 108,099 benign apps, 11,730 malicious apps, and 11
online automated dynamic analysis platforms, provided detailed
insights into the current state of Android dynamic evasion
techniques. Our findings show that many apps use evasion
techniques, with benign apps using them more frequently
than malicious ones. Additionally, we found that existing
dynamic analysis platforms often fail to counter these evasion
methods effectively. To address these challenges, we offered
recommendations for app and platform developers to help
combat malicious activities and protect legitimate apps. Our
research enhances the understanding of Android anti-analysis
techniques and offers valuable directions for future research.
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