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Abstract—Multi-channel distribution of Android apps offers
convenience to users, yet simultaneously introduces security con-
cerns. Although apps published on Google Play and third-party
markets share the same version code, differences in app content
may still arise. Notably, a recent incident involving the third-
party market version of Pinduoduo app containing malicious
code highlights the intentionally-differentiated implementations
of app functionalities by developers between Google Play and
third-party markets. The case of Pinduoduo may be just the
tip of the iceberg, underscoring the need for a comprehensive
investigation of the disparities between Google Play and third-
party market versions of apps.

In this work, we systematically analyze the differences in
security and privacy of cross-market apps that claim to share the
same version code. Specifically, we propose three research ques-
tions that cover differences in app protection, security threats,
and permission usage. To answer these questions, we constructed
a dataset containing 17,218 app pairs (filtered from 236,731
apps) and permission mappings (27,046 SDK mappings, 1,656
ContentProvider mappings, and 309 Intent mappings) for API
levels 16 - 33. This dataset enables us to perform a comprehensive
differential analysis. Consequently, our investigation unveiled
a series of captivating and insightful findings. Approximately
29.02% of apps show differences in one or all three aspects. For
example, the third-party market versions of apps often request
more permissions compared to their Google Play counterparts,
particularly among apps in the game category. Our work can help
developers and app store operators improve cross-market app
consistency, enhancing the quality of the Android app ecosystem
and user experience.

I. INTRODUCTION

The openness of Android’s app distribution channels is a
key feature that distinguishes it from other mobile OSes such
as iOS. Android developers can release their apps not only
through the official app store (Google Play), but also through
various third-party markets. While the multi-channel distribu-
tion offers convenience to users across different regions, it also
introduces security concerns. Apps distributed through Google
Play undergo a rigorous review process by the Google Play
team before being released to users. In contrast, the review
requirements in third-party markets are often not as rigorous as
those of Google Play. For purposes such as data collection and
advertising fraud, developers may thus opt to release their apps
on third-party markets to circumvent Google Play’s review and
restrictions. This practice increases the risk of downloading
malicious apps from third-party markets.

The case of Pinduoduo app [14], a popular mobile e-
commerce shopping platform with approximately 900 million
users, has demonstrated a real-world example of the risks
associated with third-party market distribution. A recent report
[13] revealed that its third-party market version contains
malicious code that can exploit the Android OS. This code
can potentially prevent users from removing the app from their
devices, and can even install malicious apps in the background,
remove other legitimate apps, and spy on users. In contrast,
there is no evidence suggesting that the Google Play version of
Pinduoduo contains malicious code. The Pinduoduo case may
only be the tip of the iceberg. It highlights that the differences
in implementation between the Google Play version and third-
party market version of apps could be considerably significant
(we will refer to Google Play as “GP”, third-party market as
“3rdPM”). In our study, we focus on analyzing cross-market
versions of apps that have the same version code, as such
versions are expected to maintain consistent security behaviors
across all distribution channels.

To the best of our knowledge, there is currently no sys-
tematic research on the differences between the GP and
3rdPM versions of Android apps. This may be due to two
difficulties in constructing the dataset: (1) Developers may
not publish apps simultaneously on both GP and 3rdPM or
maintain the same version. (2) Google Play currently only
supports downloading the latest version of apps, not a specific
version. The most relevant work was carried out by Wang
et al. [36]. Through a comprehensive comparative study of
GP and 3rdPMs, they pointed out that 3rdPMs have a higher
proportion of malware, frequent instances of fake and cloned
apps, and apps that often request excessive permissions and
lack timely updates. In contrast, we conducted a complemen-
tary study by exploring the differences in security between
the GP and 3rdPM versions of apps, such as permissions and
vulnerabilities, which have not been systematically studied.

Our Work. The Pinduoduo case highlights a potential in-
creased risk of security issues in the 3rdPM versions of apps.
Therefore, our research is driven by the need to understand the
variations in security and privacy between the GP and 3rdPM
versions of apps. Specifically, we explore these differences
across three key dimensions: app protection, security threats,



and permission usage. More precisely, our objective is to
answer the following three research questions:

⇒ RQ1 (app protection): Is there any difference in the
deployment of app protection measures between the GP and
3rdPM versions of apps?

⇒ RQ2 (security threats): Is there any difference in vul-
nerabilities and malicious behaviors between the GP and
3rdPM versions of apps?

⇒ RQ3 (permission usage): Is there any difference in
permission usage between the GP and 3rdPM versions of
apps?

The answer to RQ1 highlights differences in apps’ basic
protection capabilities. Furthermore, the answer to RQ2 re-
veals disparities in vulnerabilities and malicious behaviors.
These security threats may affect the security of the entire
Android OS. Finally, RQ3 explores variations in permission
usage, offering valuable insights into privacy risks and per-
mission management practices.

To answer these research questions, we first constructed
a dataset of 236,731 3rdPM apps, with 44,283 apps also
available on GP. From them, we filtered the apps of which
GP version and 3rdPM version have the same version code,
and 17,218 pairs of apps (i.e., GP and 3rdPM versions) were
kept for analysis. In our analysis, we first adopted a series of
heuristic methods to identify the differences in app protections,
such as packer and signature verification. Then, we used state-
of-the-art vulnerability detection tools (such as MobSF [10]
and AndroBugs [1]) to identify differences in vulnerabilities
among apps. In addition, we uploaded apps to VirusTotal
[17] to compare differences in malicious behaviors. Finally,
for the differences in permissions, we constructed permission
mappings for API levels 16 - 33 to identify SDK APIs,
Content Uris, and Intent Actions protected by permissions in
apps, including 27,046 SDK mappings, 1,656 ContentProvider
mappings, and 309 Intent mappings.
Key Findings. Although GP and 3rdPM versions of most apps
remain consistent in terms of security, those with differences
typically exhibit the following features.

• Protection Measures Degradation. Developers often
minimize certain security features like packers and signa-
ture verification in GP versions of apps due to stringent
security reviews. Conversely, they enhance protection in
3rdPM versions to boost app security.

• App Repackage. The differences in the certificate’s
Organization fields indicate that the 3rdPM version or GP
version of apps may be generated through repackaging,
suggesting the possibility of copyright violation.

• Enhanced Permission Requests. The 3rdPM version of
apps tends to request more system permissions, averaging
10 extra system permissions for each app. Our further
investigation found that excessive system permission re-

quests are caused by third-party libraries (TPLs for short)
rather than by developer code. Moreover, a significant
portion of these permissions remain unused in practice.

• Heightened Vulnerability and Malware Risks. Due to
excessive permission requests and the usage of TPLs, the
3rdPM version of apps is more susceptible to introducing
vulnerabilities and being flagged as malware.

Contributions. The main contributions of this paper are:
• Systematic Differential Study. We conduct the first

systematic study on the differences in security and privacy
between the GP and 3rdPM versions of apps from app
protection, security threats, and permission usage. In
particular, we proposed and answered three significant
research questions with sufficient supporting evidence.

• Practical Results. This work can enhance the overall
security and transparency of the mobile app ecosystem.
Furthermore, it provides valuable insights for app devel-
opers and store operators regarding app development and
the regulation and governance of the mobile app market.
This work can also enhance users’ awareness of security.

• Open Data Sharing. The raw measurement data for each
research question, as well as the permission mappings we
generated for Android API levels 16 - 33, are available
at https://doi.org/10.5281/zenodo.13232037. The permis-
sion mappings will contribute to the research community,
facilitating studies on apps’ privacy compliance checks
and malicious behavior analysis.

II. BACKGROUND

In this section, we provide the necessary background of the
Android permission mechanism and app protection measures.

A. Android Permission Mechanism

The permission mechanism is an Android OS-level security
mechanism designed to manage the access permissions of apps
to system resources and sensitive data [12]. It is based on
the Linux access control model and ensures that apps can
only access specific functions and data with authorization by
allocating and managing permissions. In Android, permissions
are categorized into different groups, each representing a
specific set of system functionalities or sensitive data. For
instance, permissions can control whether an app can access
the camera, location information, contacts, etc. In contrast to
system permissions, custom permissions are used to protect
the data generated by apps and are applied to the four major
components of apps.

The permissions for Android are divided into three levels:
normal, dangerous, and signature. Normal-level permissions
typically involve the basic functionalities of apps, and users do
not need to provide explicit authorization. Once apps request
these permissions, they are automatically granted. Dangerous-
level permissions involve sensitive data and system function-
alities, requiring user authorization at runtime. Signature-level
permissions require the requesting app to be signed with the
same digital certificate as the app declaring the permission,
ensuring that the permissions are used by legitimate apps.



B. App Protection Measures

Packer. App packer refers to hiding the original DEX file of
the app so that the actual DEX file within the app is the packer
code [38]. During app runtime, packer code often customizes
the Application class to achieve the decryption and restoration
of the original DEX files, as this class serves as the entry point
of the app. Typically, developers will use security vendors’
packer products rather than attempting to implement their
own, as the packing process entails intricate technicalities and
specialized expertise. Security vendors’ products can deliver a
heightened level of professional assurance. Therefore, detect-
ing whether an app is packed mainly involves detecting which
packer products the app has used.
APK Signature. Signatures are primarily used to verify the
authenticity and integrity of content. APK typically includes
two types of signatures [16]: (1) Signature of the developer
certificate: The developer certificate primarily includes core
information such as the certificate holder, issuer, and public
key, all formatted according to the X.509 standard. If two
apps are published by the same developer, then the certificate’s
signature or holder is usually the same. (2) Signature of APK
content: Developers sign the APK using a private key and
embed the corresponding public key within the developer
certificate. When users install or update an app, the Android
OS utilizes public key to verify the APK’s signature, ensuring
the app has not been tempered.
Anti-Analysis Techniques. Anti-debugging, anti-VM, and
anti-root are used to enhance the security of apps [21]: (1)
Anti-debugging is used to prevent malicious attackers from
using debuggers to analyze the operation of apps, modify code,
or obtain sensitive information. (2) Anti-VM aims to detect
whether apps are running in a virtual environment to prevent
attackers from executing malicious operations or analyzing the
behavior of apps. (3) Anti-root aims to detect whether a device
has been rooted to prevent attackers from using root privileges
to modify, tamper with, or access sensitive data in apps.

III. METHODOLOGY AND DATASET

This section illustrates our measurement approach and con-
structed datasets to answer the proposed research questions.

A. Methodology

As illustrated in Figure 1, on a high level, our measurement
contains three main steps, as follows:

• App Collection. First, we constructed the app dataset for
differential analysis used in this study, including the GP
and 3rdPM versions of apps.

• Permission Mappings Generation. Next, we generated the
permission mappings for subsequent permission differen-
tial analysis, including SDK mappings, Intent mappings,
and ContentProvider mappings.

• Differential Analysis. Based on the constructed app
dataset and permission mappings, we employ a combined
dynamic and static differential analysis approach to an-
swer the proposed research questions.

B. App Collection

Collection of 3rdPM Version of Apps. To gather as many
apps as possible published on both GP and 3rdPM, we first
built a large dataset from ten popular 3rdPMs, including F-Dro
id, 9apps, 360, 2265, Anzhi, LapTopPCAPK, Lenovo, Leyou,
Mdpda, and Uptodown. For each app market, we launched
multiple processes in parallel to crawl apps simultaneously
and used the app name as an identifier to determine whether
it had already been crawled. As developers may upload apps
to multiple 3rdPMs, we calculated the MD5 value of each app
to remove duplicate apps. Furthermore, to guarantee that each
app in the 3rdPM dataset possesses a unique version, we re-
moved apps that shared same package names but had differing
version codes. Some corrupted apps were also excluded. As a
result, we obtained a total of 236,731 apps.
Collection of GP Version of Apps. After constructing the
3rdPM dataset, we checked whether these apps were published
on GP. The URL of the app’s detail page on GP includes an id
parameter, and the value of id parameter is the app’s package
name1. Therefore, we obtained the package names of all apps
in the 3rdPM and constructed the corresponding URLs to send
HTTPS requests to the GP server. If the status code of HTTPS
response is 200, the app exists on GP. Among the 236,731
apps from the 3rdPM dataset, 44,283 apps are also published
on GP. After obtaining the list of apps available on 3rdPM
and GP, we also recorded the version code of each app.

Since Google Play no longer provides an API for bulk
downloading apps, we used Raccoon [15] to download apps
from GP. Since GP cannot be accessed anonymously, we
need to use a Google Account to log in to Raccoon before
downloading apps. Raccoon will mimic a high-end smart-
phone through the device profile, connect to the GP server,
and download apps. All communications between Raccoon
and GP adhere to Google’s privacy statement [20], ensuring
compliance with GP’s guidelines and avoiding any breach of
their policies. Raccoon also supports downloading historical
versions of apps by specifying the package name and version
code. However, Raccoon can only download one app at a time,
so we must use a script to automate the apps’ downloading
process. Although 44,283 apps are available on both 3rdPM
and GP, developers may release different versions on 3rdPM
and GP. For example, developers may release version 001
of an app on 3rdPM and version 002 on GP, meaning not
all 44,283 apps will have the same versions available on
GP. Based on the recorded package names and version code
of the 3rdPM version of apps, we use Raccoon to send
download requests to GP for all 44,283 apps one by one.
After completing the download of a certain number of apps,
Raccoon may become unresponsive, which leads to us having
to restart it periodically. Therefore, the downloading process
is not continuous but has been intermittently ongoing for
approximately ten days. We can only download 17,218 apps
in ten days as the 3rdPM versions of many apps do not have
matching versions available on GP.

1URL: https://play.google.com/store/apps/details?id="package name"
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Apps Filter. We determine if two APK files are exactly the
same by calculating their MD5 values. Apps with the same
hash values are assured of having the same content. Since this
work primarily focuses on apps with the same version code
but exhibit differences in content, we must remove the GP
and 3rdPM versions of apps with the same MD5 value from
the dataset. First, we calculated the MD5 value of the GP and
3rdPM versions of APK files. Among 17,218 app pairs, the MD5
values of 33.85% are the same. As APK files are essentially ZIP
compressed packages, we calculated the MD5 value of each file
in APK for comparison. 37.13% of app pairs have different
MD5 values of APK files but the same MD5 value for all their
internal files. In this case, it may be because these two apps
used different packaging methods, such as packaging tools,
packaging options, or signing methods. After removing the
app pairs with the same MD5 value, our dataset is left with
4,997 app pairs for subsequent differential analysis.

C. Permission Mappings Generation

In Android, permissions are typically mapped to three
entities: API Calls, Intent Actions, and Content Uris. During
the permission differential analysis, we need to use permission
mappings to determine whether the extra requested permis-
sions are actually used. Although Axplorer [5] provides
permission mappings for API levels 16 - 25, Axplorer is no
longer maintained. As a result, we cannot obtain permission
mappings for API levels 26 - 33. Therefore, we must construct
the latest permission mappings.
Permission Annotation and Comments. Since Android 6.0
(API level 23), Google officially records permission mappings
in two ways: (1) Using Java annotation @RequiresPermissio
n("PermissionName") to associate API with permissions. (2)
Using @link android.Manifest.permission#"Permission
Name" to describe the permissions required to call this API in
the comments.
SDK Mappings Generation. To determine whether the SDK
APIs called within the apps are protected by permissions, we
need to construct the API to permission mapping. Each API
level corresponds to a version of the Android OS and provides
a specific set of APIs for app development. Therefore, we
downloaded the source code of Android 8 - 13, which includes
eight Android versions: 8.0, 8.1, 9.0, 10.0, 11.0, 12.0, 12.1,
and 13.0, corresponding to API levels 26 - 33, respectively. To

facilitate the subsequent extraction of SDK mappings through
annotations and comments (abbreviated as A&C), we extracted
the SDK source from each of the above Android versions.

The permission mappings provided by Axplorer are incom-
plete, lacking some permission mappings, such as CAMERA and
INTERNET. In addition, the SDK mappings extracted through
A&C for API levels 26 - 33 may also be incomplete. There-
fore, we generate complete SDK mappings for API levels 16
- 33 by merging the SDK mappings generated by A&C with
those generated by Axplorer. We use the SDK mappings
generation for API level 26 as an example to explain how
we generate complete SDK mappings for API levels 16 - 33,
as shown in Figure 2:
(1) SDK Mappings Generation by Axplorer. First, we gener-
ated partial SDK mappings for API level 26 based on the SDK
mappings provided by Axplorer for API level 25. We need to
check whether the APIs in the SDK mappings for API level
25 exist in the SDK source of API level 26 and whether they
are deprecated. If an API is marked as deprecated, it may be
removed in future Android versions but is still usable in the
current version. Google usually offers alternative APIs in the
deprecated API’s comments. Invoking alternative APIs usually
requires the same permissions as the deprecated APIs.

• If APIs in SDK mapping for API level 25 do not exist
in the SDK source of API level 26, we will not perform
any operation (path: 1 → 3 ).

• If APIs in SDK mappings for API level 25 exist in the
SDK source of API level 26 and are not deprecated, we
will add them to the SDK mappings for API level 26
(path: 1 → 2 → 4 → 6 ).

1 /⁎⁎ ... @deprecated Use (@link getImei}
which returns IMEI for GSM or (@link
getMeid} which returns MEID for CDMA.
... ⁎⁎/

2 @Deprecated
3 @RequiresPermission(android.Manifest.

permission.READ_PHONE_STATE)
4 public String getDeviceId () { .... }

Listing 1: Example of deprecated getDeviceId().

• If APIs in SDK mappings for API level 25 exist in the
SDK source of API level 26 but have been deprecated,
we will add APIs and the alternative APIs to the SDK
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mappings for API level 26 (path: 1 → 2 → 5 → 7 ). For
example, as shown in Listing 1, the getDeviceId() was
deprecated in API level 26. Google recommends using the
getImei() or getMeid() as alternative for getDeviceId
() (line 1). Calling getImei() or getMeid() requires the
same permission as getDeviceId(). Therefore, we will
add the getDeviceId(), getImei(), and getMeid() to
the SDK mappings for API level 26.

(2) SDK Mappings Generation and Supplement through A&C.
Next, we also extract partial SDK mappings for API level
26 from the SDK source of API level 26 through A&C. If
APIs in SDK mappings for API level 26 exist in the SDK
source of API levels 16-25. Also, these APIs do not exist in the
SDK mappings for API levels 16 - 25 provided by Axplorer.
We will add these APIs to the SDK mappings for API levels
16 - 25, thereby enriching the SDK mappings supplied by
Axplorer. (path: 9 → 10 → 12 → 15 ). Otherwise, we will not
perform any operation (path: 9 → 10 → 13 or 9 → 10 → 12 → 14 ).

(3) Complete SDK Mappings Generation. Finally, we will gen-
erate the complete SDK mappings for API level 26 by merging
two partial SDK mappings: (a) SDK mappings generated by
API level 25 ( 1 → 2 → 4 → 6 → 8 ∪ 1 → 2 → 5 → 7 → 8 ). (b)
SDK mappings extracted from the SDK source of API level
26 through A&C ( 9 → 11 ). In addition, we will remove some
duplicate SDK mappings from two partial SDK mappings.

We supplement and generate complete SDK mappings for
API levels 16 - 33 by iterating the above steps. Notably, when
using comments to extract SDK mappings, permissions may
appear in the comments of APIs, but calling APIs may not
require those permissions. We manually verified and excluded
these APIs from the SDK mappings.
ContentProvider Mappings and Intent Mappings Gen-
eration. To determine whether the Content Uris and Intent
Actions used in apps are protected by permissions, we need
to construct ContentProvider mappings and Intent mappings.

Axplorer provides ContentProvider mappings for API lev-
els 16 - 25. To obtain ContentProvider mappings for API
levels 26 - 33, we retrieved all system ContentProviders
protected by permissions from the source code of Android
versions 8 - 13. For these ContentProviders, we extracted
Content Uris and their corresponding permissions. Further-
more, we also extract Intent mappings from the source code
of android.content.Intent class through A&C. This class
contains all Intent Actions along with required permissions.

D. Differential Analysis

After constructing the app dataset and permission mappings,
the App Selector will perform differential analysis by selecting
the GP and 3rdPM versions of apps. Below is an overview of
our differential analysis steps, while a more detailed explana-
tion can be found in Section IV.

• For RQ1, we adopted a combined dynamic and static
differential analysis approach to analyze the differences
in app protection measures.

• For RQ2, we employed state-of-the-art vulnerability scan-
ning tools (MobSF and AndroBugs) and uploaded apps to
VirusTotal to compare the differences in vulnerabilities
and malware.

• For RQ3, we investigated the differences between the
system and custom permissions used in the manifest files
of apps. Furthermore, we conducted an in-depth analysis
of the sources of these differing permissions and whether
they are actually used.

IV. FINDINGS

This section summarizes our empirical research results on
the research questions proposed in Section I.

 RQ1. Is there any difference in the deployment of app
protection measures between the GP and 3rdPM versions
of apps?

This question primarily explores the differences in apps’
ability to resist reverse engineering and tampering, highlight-
ing the variations in their basic protection capabilities.
Packers. APKiD [4] is based on Yara rules [18], which can
identify packer products in apps efficiently, so we deployed
APKiD to detect whether apps are packed. Furthermore, we
also added some custom rules to increase the number of
packers that can be detected. Among 4997 app pairs, 6.48%
of 3rdPM apps are packed, compared to only 1.40% of GP
apps being packed. Moreover, 5.12% of apps are exclusively
packed in their 3rdPM versions, while a negligible 0.04% of
apps are packed only in the GP version. The GP version
of apps is more likely to reduce protection than the 3rdPM
version, possibly attributable to GP’s review policies. Google
requires that apps must provide a unique user experience
and cannot duplicate existing apps. Therefore, apps similar
to existing apps on GP will be rejected from publication [8].
Packer will hide the original code of apps and only leave the
packer code, which often has a high similarity across packer
apps. Therefore, to publish apps on GP, developers may need



TABLE I: Distribution of selected packer products between the GP and 3rdPM versions of apps.

3rdPM
GP None DexProtector APKProtect AppSealing AppGuard Jiagu Bangcle Ijiami Tencent SecNeo Baidu Alibaba UUSafe YiDun

None∗ 0 0 0 0 0 0 0 0 1 1 0 0 0 0
DexProtector 0 11 0 0 0 0 0 0 0 0 0 0 0 0
APKProtect 1 0 0 0 0 0 0 0 0 0 0 0 0 0
AppSealing 2 0 0 0 0 0 0 0 0 0 0 0 0 0
AppGuard 0 0 0 0 1 0 0 0 0 0 0 0 0 0
Jiagu 131 0 0 0 0 31 0 0 1 0 0 0 0 0
Bangcle 38 0 0 0 0 0 0 0 0 0 0 0 0 0
Ijiami 2 0 0 0 0 0 0 1 0 0 0 0 0 0
Tencent 73 0 0 0 0 2 0 0 19 0 0 0 0 0
SecNeo 2 0 0 0 0 0 0 0 0 1 0 0 0 0
Baidu 4 0 0 0 0 0 0 0 0 0 0 0 0 0
Alibaba 1 0 0 0 0 0 0 0 0 0 0 0 0 0
UUSafe 1 0 0 0 0 0 0 0 0 0 0 0 0 0
YiDun 1 0 0 0 0 0 0 0 0 0 0 0 0 1

∗: "None" indicates that no packer product was used.

to add additional features to differentiate them from other
packed apps. However, this also opens another avenue for
attackers. When the 3rdPM version or the GP version of apps
are packed, they can find an unpacked version from them to
crack. Despite potential variations between the two versions,
the core functionality of the app usually remains consistent.

The distribution of selected packer products for the GP
and 3rdPM versions of apps is shown in Table I. The rows
of the table represent the packer products used in 3rdPMs,
while the columns represent the packer products used in GP.
For example, "131" represents 131 apps that used Jiagu in
the 3rdPM version, but were not packed in the GP version.
Among these packer products, the most popular ones are
Jiagu, Tencent, and DexProtector on GP and 3rdPM. Although
many apps use Bangcle on 3rdPMs, no apps use Bangcle
on GP. Google imposes clear transparency and compliance
requirements for apps published on GP [19]. If GP’s security
policy deems that apps packed by certain packer products may
contain malicious behavior or hidden features, these apps will
be rejected from publication. This can lead to differences in
the selection of packer products between the 3rdPM and GP
versions of apps.
Certificate Signature. We extracted the SHA-1 signatures of
the developer certificates from the GP and 3rdPM versions of
apps and compared them. Among 4,997 app pairs, 63.3% of
app pairs have the same SHA-1 signature, meaning that the
GP and 3rdPM versions of these apps were developed by the
same developers. 36.7% of the app pairs have different SHA-1
signatures of certificates. The Subject field is used to identify
the certificate holder’s information, which includes an Organi-
zation field to indicate the certificate holder’s organizational
name. Therefore, we thoroughly analyzed the Organization
fields for these apps with different SHA-1 signatures. Among
the 1,834 app pairs with different SHA-1 signatures, 1,205 apps
have the Organization field of certificates set concurrently in
both the GP and 3rdPM versions. For 99.67% of apps, the
Organization field of certificates differs between the GP and
3rdPM versions. This could involve two potential scenarios:
(1) Developers use different certificates in different markets.
For example, the Organization field in the 3rdPM version of the
Wireguard app2 is fdroid.org, while the GP version is Google

2Package: com.wireguard.android, Version Code: 491.

Inc. (2) Apps on 3rdPM or GP may be generated through
repackaging. For example, Organization field in the 3rdPM
version of the Supersolid app3 is Unknown, while the GP
version is Supersolid.

Signature Verification. Signature verification means that apps
check their content for tampering by verifying signatures. If
the content has been tampered with, it is typically designed to
interrupt the operation of apps upon launch (pops up an error
message box or crashes to the home screen). Furthermore,
the code for app signature verification may exist within either
the Java layer or the native layer, rendering it challenging to
detect through static methods. Therefore, to analyze signa-
ture verification differences, performing dynamic testing by
installing apps on the device is necessary. We excluded some
apps that would crash upon launch, either the GP or 3rdPM
version, and left 2,926 app pairs for subsequent analysis. For
the detection of signature verification, we employed a script
that automatically repackaged apps, applied signatures, and
installed them on the device. The script will open an app
and wait for 8 seconds, then use the adb (Android Debug
Bridge) command to retrieve the current top element of the
Activity stack. If it identifies an error prompt box or the home
screen, we consider that the app has implemented signature
verification.

Among 2,926 app pairs, 4.38% implement signature ver-
ification consistently across both GP and 3rdPM versions.
Moreover, an exclusive adoption of signature verification in the
3rdPM versions is observed in 13.87% of apps. In contrast, a
minimal fraction, accounting for only 0.58%, enforce signature
verification solely within the GP version. It may be because
GP includes code similarity checks, and repackaged apps are
prohibited from publishing. Some 3rdPMs lack this check,
making it essential for developers to add signature verification
to protect the integrity of their apps. Furthermore, an alarming
81.17% of apps do not implement signature verification on
both GP and 3rdPM versions, suggesting these apps are at
significant risk of repackaging.

Anti-Analysis Techniques. We adopted APKiD to detect the
deployment of anti-debugging and anti-VM in apps. Addition-
ally, we used MobSF to evaluate anti-root deployment. Due

3Package: com.supersolid.honestfood, Version Code: 1000904904.



TABLE II: Vulnerability list for differential analysis.

Owasp-Mobile Vulnerability Name Description Tools
M1: Improper

Platform
Usage

android_webview
Insecure WebView Implementation. Execution of user-controlled code in WebView is a critical
Security Hole. MobSF

android_webview_debug Remote WebView debugging is enabled. MobSF

M2: Insecure
Data Storage

android_temp_file App creates temp file. Sensitive information should never be written in a temp file. MobSF
android_insecure_file_mode Use insecure file mode (MODE_WORLD_READABLE or MODE_WORLD_WRITABLE). AndroBugs

android_keystore_protection
The Keystores are not protected by password or use "byte array" or "hard-coded cert info"
to do SSL pinning. AndroBugs

M3: Insecure
Communica-

tion

android_insecure_ssl
Insecure Implementation of SSL. Trusting all certificates or accepting self-signed certificates
is a critical Security Hole. MobSF

android_webview_ignore_ssl
Insecure WebView Implementation. WebView ignores SSL Certificate errors and accepts any
SSL Certificate. MobSF

android_http URLs that are NOT under SSL. AndroBugs

M5:
Insufficient

Cryptography

android_insecure_random The App uses an insecure Random Number Generator. MobSF
android_sha1 SHA-1 is a weak hash with hash collisions. MobSF
android_md5 MD5 is a weak hash known to have hash collisions. MobSF
cbc_padding_oracle This configuration is vulnerable to padding oracle attacks. MobSF
android_aes_ecb The App uses ECB mode in the encryption algorithm. MobSF
android_weak_ciphers Weak Encryption algorithm used. MobSF

M7: Client
Code Quality android_sql_raw_query

App uses SQLite Database and execute raw SQL query. Untrusted user input in raw SQL
queries can cause SQL Injection. MobSF

M9: Reverse
Engineering

android_hardcoded Files may contain sensitive hardcoded information such as usernames, passwords, and keys. MobSF
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Fig. 3: Differences in the use of anti-analysis techniques.

to the need for static code analysis for anti-debugging, anti-
VM, and anti-root detection, we exclude packed apps. The
deployment differences of anti-debugging, anti-VM, and anti-
root between the GP and 3rdPM versions of apps are shown
in Figure 3. Most apps show consistency, with percentages of
99.25%, 99.60 %, and 98.77%, respectively. These apps either
simultaneously deploy protection measures in both the GP and
3rdPM versions, or they are not deployed. Particularly in the
case of the anti-VM, 95.98% of apps have adopted this pro-
tection on both the GP and 3rdPM versions. Running apps on
a virtual machine is often the first step in performing specific
app analysis, such as debugging apps, so this protection is
commonly deployed in apps.

 RQ2. Is there any difference in vulnerabilities and ma-
licious behaviors between the GP and 3rdPM versions of
apps?

This question primarily focuses on exploring the differences
in vulnerabilities and malicious behaviors within apps, signif-
icantly impacting the security of the entire Android OS.
Vulnerabilities. Apps on 3rdPM may be more prone to contain
vulnerable code implementations, as the review measures of
3rdPM might not be as rigorous as GP. However, it remains
unknown whether there are differences in the vulnerabilities

contained in the GP and 3rdPM versions of apps. The auto-
mated mobile app security evaluation framework, MobSF [10],
is designed to conduct thorough security scans on apps. To
investigate the differences in vulnerabilities, we primarily
utilized MobSF for detecting vulnerabilities. It categorizes de-
tected vulnerabilities according to severity levels such as High,
Warning, and Info. We mainly focused on the vulnerabilities
classified as High and Warning levels since they pose higher
security risks. Similar to MobSF, AndroBugs [1] is also a
security evaluation framework. We deployed AndroBugs to
complement our detected vulnerabilities. By combining the
detection results from MobSF and AndroBugs, we mapped the
identified vulnerabilities to six categories of the OWASP Top
10 Mobile Risks [11], as shown in Table II. Notably, security
risks in other categories are not caused by app code. This work
primarily focuses on security risks caused by app code.

The "Vulnerability Differences" of Table III illustrates the
differences in vulnerability contained between the GP and
3rdPM versions of apps. Most apps exhibit consistency for
each vulnerability. Whether the 3rdPM or GP versions of apps,
they either both contain vulnerabilities or neither contains vul-
nerabilities. We have discovered some common vulnerabilities,
including android_http, android_insecure_random, and an-
droid_hardcoded. More than 80% of apps contained these vul-
nerabilities on the GP and 3rdPM versions. This is mainly due
to some TPLs. For example, in the case of android_http, many
apps use TPLs that include code implementations for cleartext
traffic communication, such as com.google.android.gms and
org.openxmlformats.schemas. Although GP employs a more
rigorous security review process, most developers do not
address the security vulnerabilities of the 3rdPM versions
when publishing the GP versions of apps. Meanwhile, the
occurrence rates of some vulnerabilities are relatively low,
such as android_insecure_file_mode, android_insecure_ssl, an-
droid_webview_ignore_ssl, android_aes_ecb, and android_wea



k_ciphers. More than 80% of apps on both the GP and 3rdPM
versions do not contain these vulnerabilities.

For each vulnerability, a small portion of apps exhibit
differences, meaning that the vulnerabilities are present only
in the GP or 3rdPM version. The proportion of differences in
vulnerability contained between the GP and 3rdPM versions of
apps ranges from 0.39% - 2.53%. The android_webview_debug
vulnerability exhibits the smallest difference, while the an-
droid_md5 vulnerability exhibits the largest difference. For the
M2, M3, M5, M7, and M9 in the OWASP Top 10 Mobile
Risks, if there are differences in the vulnerabilities contained
in the 3rdPM and GP versions of apps, the 3rdPM version
is more likely to contain vulnerabilities. However, M1 shows
differences, and the GP version is more prone to contain
vulnerabilities than the 3rdPM version.

To understand the causes behind the differences in vulnera-
bilities, it’s crucial to determine the source of the vulnerabil-
ities—whether they stem from developers’ coding practices
or the integration of TPLs. We mainly used Libd [29] to
identify TPLs. Additionally, we used the TPL feature files
provided by LibRadar [31] and manually added some TPLs
to the feature file to supplement the number of TPLs we
can identify. This is outlined in the "Responsible Party" of
Table III. The differences in vulnerabilities contained in the
3rdPM and GP versions of apps are primarily caused by
TPLs, and developers rarely actively introduce vulnerabilities.
In the case of android_aes_ecb, the two versions of apps
exhibited the largest difference. In the 3rdPM version of apps,
only 0.83% of vulnerabilities were introduced by developer
code, whereas in the GP version, 22.22% of vulnerabilities
were introduced by developer code. After conducting reverse
engineering on apps, the primary reason is that apps added
BLE (Bluetooth Low Energy) related functionalities in the GP
version, such as device discovery and connection management.
However, the AES algorithm with ECB mode was used for
communication encryption.
Malicious Behavior. VirusTotal [17] is an online malware
detection service incorporating dozens of antivirus engines, so
we uploaded apps to VirusTotal to obtain the differences in
malware. If any antivirus engine identifies apps as malicious,
then we consider apps to be malicious. 17.19% of the 3rdPM
version of apps are identified as malicious, while the GP
version is benign. Only 0.94% of the GP versions of apps are
identified as malicious, while the 3rdPM versions are benign.
6.27% (293) of the GP and 3rdPM versions of apps are both
identified as malicious. Among these 293 apps, the 3rdPM
version is typically identified as malicious by an average of
six antivirus engines, whereas the GP version is identified as
malicious by an average of two antivirus engines. Malware
detection discrepancies between the GP and 3rdPM versions
of apps are notably greater than vulnerability detection. 3rdPM
versions are more frequently identified as malicious or flagged
by more antivirus engines. Thus, integrating specific TPLs or
requesting excessive permissions (described in RQ3) in the
3rdPM version of apps is more likely to be recognized as
malware by antivirus engines.

 RQ3. Is there any difference in permission usage be-
tween the GP and 3rdPM versions of apps?

This question primarily focuses on whether apps request
extra permissions in the 3rdPM or GP versions and whether
these permissions are actually used. It offers valuable insights
into privacy risks and permission management practices.
System Permissions. Firstly, we extracted the manifest files of
the GP and 3rdPM versions of apps for differential analysis.
Among 4,671 app pairs, 13.17% of apps in the 3rdPM version
request system permissions that are not present in the GP
version, averaging 10 extra system permissions for each app.
0.64% of apps in the GP version request system permissions
that are not present in the 3rdPM version, averaging 2 extra
system permissions for each app. 0.56% of apps requested
unique permissions in both the GP and 3rdPM versions.
Many apps request more system permissions in the 3rdPM
versions compared to their GP versions, likely due to Google’s
permission declaration form mechanism [6]. Developers must
submit a permission declaration form to the GP team when
publishing apps on GP. If any requested permissions are not
listed on this form, the app cannot be published. The GP
team reviews each app’s core functionalities to ensure that all
requested permissions are necessary for their intended usage,
avoiding unnecessary permissions. On the other hand, 3rdPM
may enforce more relaxed scrutiny on permissions.

To confirm whether the differences in permission requests
are related to the category of apps, we used the google-play-
scraper [7] to retrieve metadata for these apps that exhibit
differing permission requests from GP. The category distri-
bution for these apps is illustrated in Figure 4. Whether in
3rdPM or GP, apps categorized as game tend to request more
permissions. Game apps may need to access various hardware
resources on the device, such as camera, microphone, and
storage. These permissions enable features such as augmented
reality, voice chat, and game recording, enhancing the gaming
experience. Retaining excessive permissions in benign apps
can be exploited by malicious apps. Therefore, game apps
should require more attention and scrutiny regarding security
and privacy, especially permission control.
Sources Analysis. Since many 3rdPM versions of apps request
more system permissions than the GP version, we primarily
focus on two questions: (1) Do the extra requested permissions
in the 3rdPM version actually get used? (2) If the extra
requested permissions are used, who uses them – developer
code or TPLs?

After extracting permission mappings (Section III-C), we
performed a static analysis on the 3rdPM version of apps that
request extra permissions using AndroGuard [2]. We retrieved
the SDK APIs, Intent Actions, and Content Uris used in
these apps and recorded their usage locations. Notably, apps
typically use Content Uris in two ways: (1) Directly using
the Content Uris string. (2) Utilizing pre-defined Content Uris
constant provided by the Android OS. For the recognition of
Content Uris constants, we need to pre-extract the mappings
of Content Uris constant to Content Uris string from the



TABLE III: Differences in vulnerabilities and their responsible parties between GP and 3rdPM versions of apps.

Owasp-
Mobile

Vulnerability Name Vulnerability Differences Responsible Party (3rdPM) Responsible Party (GP)
Both∗ 3rdPM∗ GP∗ Neither∗ TPLs Developer Code TPLs Developer Code

M1 android_webview 54.74% 0.24% 0.36% 44.66% 92.86% 7.14% 96.88% 3.12%
android_webview_debug 29.29% 0.15% 0.24% 70.33% 81.82% 18.18% 91.67% 8.33%

M2
android_temp_file 53.86% 1.18% 0.21% 44.74% 96.00% 4.00% 92.86% 7.14%
android_insecure_file_mode 15.69% 0.82% 0.19% 83.30% 95.31% 4.69% 100% 0%
android_keystore_protection 22.33% 1.22% 0.17% 76.28% 100% 0% 90.0% 10.0%

M3
android_insecure_ssl 18.37% 1.24% 0.11% 80.28% 100% 0% 100% 0%
android_webview_ignore_ssl 8.57% 0.77% 0.04% 90.62% 100% 0% 100% 0%
android_http 90.92% 0.75% 0.13% 8.20% 96.02% 3.98% 100% 0%

M5

android_insecure_random 80.48% 1.52% 0.21% 17.79% 90.51% 9.49% 85% 15%
android_sha1 68.44% 0.75% 0.24% 30.57% 97% 3% 100% 0%
android_md5 63.65% 2.27% 0.26% 33.82% 95.25% 4.75% 94.12% 5.88%
cbc_padding_oracle 33.87% 2.16% 0.06% 63.9% 98.28% 1.72% 100.0% 0%
android_aes_ecb 11.90% 1.84% 0.13% 86.13% 99.17% 0.83% 77.78% 22.22%
android_weak_ciphers 9.21% 1.11% 0.04% 89.64% 90.16% 9.84% 100% 0%

M7 android_sql_raw_query 73.6% 0.75% 0.15% 25.5% 98.83% 1.17% 100% 0%
M9 android_hardcoded 80.28% 1.97% 0.09% 17.66% 98.94% 1.06% 91.23% 8.77%

∗: "Both" indicates that both the GP and 3rdPM versions contain vulnerabilities, "3rdPM" indicates that only the 3rdPM version has vulnerabilities, "GP"
indicates that only the GP version has vulnerabilities, and "Neither" represents that neither version has vulnerabilities.
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Fig. 4: Category distribution of apps that requested extra permissions in the GP or 3rdPM version.

SDK source. Then, using these mappings, we can convert
Content Uris constant into the corresponding Content Uris
string. Subsequently, to determine whether the SDK APIs,
Intent Actions, and Content Uris used in apps are protected
by permissions, we selected the corresponding API level
permission mappings based on each app’s targetSdkVersion
for comparison.

To determine the caller (developer code or TPLs) of SDK
APIs, Intent Actions, and Content Uris, we must identify
the TPLs used in apps through Libd and LibRadar. For
each 3rdPM version of the app, we extracted lists of extra
requested permissions, permissions used by developer code,
and permissions used by TPLs. By comparing these three
lists, if an app’s extra requested permissions are not present in
either the permissions list requested by developer code or the
permissions list requested by TPLs, we consider permissions
to be over-claim, indicating that permissions are requested but
not used. The percentage of extra requested permissions in
3rdPM versions of apps introduced by developer code, TPLs,
and over-claim, as shown in Figure 5. This figure primarily
explains the sources of the extra requested permissions in the
3rdPM versions, which can be attributed to developer code,

TPLs, or over-claim. For example, "579" indicates that 579
apps added extra permissions in the 3rdPM version, with only
0 - 10% of these permissions introduced by developer code
in each app. Therefore, among 579 apps, most of these extra
requested permissions are introduced by TPLs or over-claim.

The CDF (cumulative distribution function) of the usage
count of extra requested permissions in the 3rdPM version
of apps among developer code, TPLs, and over-claim is
illustrated in Figure 6. The CDF also reveals that in the 3rdPM
version of apps, the extra requested permissions are seldom
introduced by developer code. The distribution of permissions
introduced by developer code ranges from 0 to 5. In 89.86%
apps, developers introduce 0 permissions. The distribution of
permissions introduced by TPLs ranges from 0 to 10. In
73.01% of apps, the number of permissions introduced by
TPLs is less than or equal to 5. The distribution of permissions
for over-claim from 0 to 21. In 92.67% of apps, the number
of over-claim permissions is less than or equal to 11.

87.83% of apps have over-claim permissions. Also, the
protectionLevel for most over-claim permissions fall under the
normal and dangerous, accounting for approximately 71.42%.
Furthermore, a portion of over-claimed permissions with pro-
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Fig. 6: CDF of the usage count of extra requested permissions in the 3rdPM version of apps.

tectionLevel is categorized as Signature or SignatureOrSystem,
accounting for approximately 29.58%. Although many 3rdPM
apps request these permissions, they usually cannot obtain
such permissions.

Custom Permissions. Among 4,671 app pairs, 1.28% of
apps declare custom permissions in the 3rdPM version that
are not present in the GP version, averaging 2 extra custom
permissions for each app. 0.15% of apps in the GP version
declare custom permissions that are not present in the 3rdPM
version, averaging 1 extra custom permissions for each app.
0.09% of apps declare unique custom permissions in both the
GP and 3rdPM versions. As the prefix of custom permissions
typically corresponds to the package name of apps, we have
removed the package name prefix of custom permissions. In
the 3rdPMs versions of apps, the names and counts of the
top 5 extra defined custom permissions are: (PUSH_PROVIDER,
24), (PUSH_WRITE_PROVIDER, 24), (PROCESS_PUSH_MSG, 24),
(TT_PANGOLIN, 19), and (C2D_MESSAGE, 7).

These extra defined custom permissions are required mainly
by third-party push services. App developers must declare
these custom permissions in the manifest file; otherwise,
they cannot use these third-party push services. To attract
more users and increase the app’s exposure, the 3rdPM may
encourage developers to use push services to regularly send
users notifications, reminders, and promotional information,

thereby increasing the app’s user activity and retention rate.
For example, the 3rdPM version of Italki app4 uses two push
services, JPUSH [9] and C2DM [3], while the GP version does
not use any push service.

V. DISCUSSIONS

A. Cross-Market App Consistency

Our differential analysis results indicate that the GP and
3rdPM versions of most apps maintain consistent security fea-
tures, with differences primarily arising from varying review
policies across markets. Due to the relaxed review policies of
3rdPMs, developers may integrate more push and advertising
libraries into the 3rdPM versions of apps to obtain profit. These
TPLs introduce extra permissions and vulnerabilities, making
the 3rdPM versions more likely to be flagged as malware.
However, since Google Play implements a stricter review
process that prohibits the release of such apps, developers have
to remove the aforementioned TPLs and permissions when
publishing the GP versions. However, a stricter review process
also often leads app developers to minimize the protection
measures of the GP versions. For example, developers usually
avoid packing the GP versions because Google Play might
consider packed apps to contain hidden malicious behavior,
which could lead to apps being rejected for release.

4Package: com.italki.app, Version Code: 21256.



B. Best Practices

End-users. The results of RQ2 and RQ3 indicate that the
3rdPM versions of apps are more prone to containing vulnera-
bilities and excessive permissions. When apps are temporarily
unavailable on GP (as GP regularly removes apps that violate
its policies), users should prioritize finding alternative apps on
GP instead of downloading them from 3rdPMs.
Store Operators. Based on the findings of RQ1, operators
of 3rdPMs and GP should refine their review processes to
accurately identify whether packed apps contain malicious
behavior. For GP operators, it’s also crucial to ensure that
benign packed apps can be successfully released on GP.
Derived from the results of RQ2 and RQ3, 3rdPMs operators
need to review whether apps are requesting extra permissions
and whether the additionally introduced TPLs contain vulner-
abilities, especially for game apps.
App Developers. Firstly, developers should not reduce the
protection measures for the GP versions simply because GP
has implemented stricter review processes (based on RQ1).
Secondly, when developers release apps on 3rdPMs, they
need to scrutinize the code they write and the TPLs to avoid
introducing additional security vulnerabilities (based on RQ2).
Lastly, developers need to maintain consistent security settings
between the GP and 3rdPM versions, such as the principle of
least privilege, to prevent privacy leaks (based on RQ3).

C. Threats to Validity

Internal Validity. The major threat to the "Sources Analysis"
of RQ3 comes from the invocation of Non-SDK APIs within
the apps [37]. Calling a small subset of Non-SDK APIs
in developer code or TPLs may also require permissions.
Ignoring the invocation of Non-SDK APIs could lead to biases
in the Sources Analysis. Fortunately, Google has implemented
restrictions on access to non-SDK APIs in Android 9.0, which
may help reduce threats. In addition, during the differential
analysis, various static analysis tools were used, such as Libd
and MobSF. The code behaviors detected by static analysis
tools may not necessarily be triggered at runtime, leading
to false positives. This is a limitation of all approaches that
rely on static analysis. However, when performing comparative
analysis on numerous apps, using dynamic analysis presents
issues with code coverage and lacks scalability.
External Validity. Given hundreds of Android 3rdPMs, col-
lecting apps from all 3rdPMs is impossible. Performing a
differential analysis on apps with the same version code across
different 3rdPMs and GP might show minor differences. To
mitigate potential biases, we collected apps from as many
3rdPMs as possible and selected ten popular 3rdPMs. There-
fore, our findings can represent the overall differences between
the 3rdPM and GP versions of apps.

VI. RELATED WORK

Many works have focused on measuring the behavior of
apps and developers in the app markets. The most relevant
work was conducted by Wang et al. [36]. They compared 16

Chinese app markets and Google Play, revealing differences in
developer behavior across these app markets, including aspects
like code maintenance and the use of third-party services.
Viennot et al. [33] used PlayDrone to download over 1.1 mil-
lion Android apps from Google Play. They investigated four
valuable questions, demonstrating that PlayDrone can help
improve the quality of app content in Google Play. Chen et
al. [24] proposed AR-Miner to mine and analyze user reviews
from mobile app markets, which helps developers quickly
identify valuable feedback from a large number of comments.
Linares-Vásquez et al. [32] found that in 7,097 free apps
from Google Play, heavy use of fault- and change-prone APIs
could negatively impact app success. Hu et al. [27] developed
CHAMP, a tool using text mining and NLP to detect policy-
violating behaviors from user reviews in app markets. CHAMP
efficiently uncovers non-compliance, offering violation scores
and key comments for apps. Cai et al. [22] conducted a large-
scale, longitudinal study on 62,894 benign apps developed
over the past eight years to analyze the symptoms and causes
of compatibility issues in the Android ecosystem. Zhou et
al. [39] developed the DiehardDetector, finding that 21% of
80K apps from Google Play used diehard methods. Liu et al.
[30] introduced DAPANDA to automatically detect aggressive
push notifications in Android apps, identifying over 1,000
aggressive notifications across 20,000 apps from eight app
markets.

The deployment of app protection and the detection of
malicious behavior are also noticed by security researchers.
Berlato et al. [21] analyzed 38,323 apps on Google Play
and found that 59% of these apps neither implemented anti-
debugging nor anti-tampering protections. Dong et al. [26]
proposed the PackDiff, which through dynamic analysis ex-
posed issues with commercial app packers, revealing that most
introduced unnecessary sensitive data access and performance
issues. Chen et al. [23] measured method similarities within
apps using the centroid characteristics of dependency graphs,
efficiently and precisely detecting clones in over 150,000 apps
across five Android markets. Li et al. [28] developed IccTA
to detect data leaks between components in Android apps,
uncovering a significant number of privacy violations across
108 apps from MalGenome and 15,000 apps from Google
Play. Wang et al. [35] conducted a large-scale systematic
measurement study on four types of app signing issues. The
results revealed that in the 25 markets studied, 7% to 45% of
the apps contained at least one signing issue. Wang et al. [34]
proposed WuKong, a two-phase app clone detection method
that first identifies suspicious apps by comparing lightweight
static semantic features. Then, it conducts a fine-grained
comparison of more detailed features for apps identified in
the first phase. Experiments on over 100,000 Android apps
from five markets demonstrated the method’s effectiveness
and scalability. Dong et al. [25] created FraudDroid to detect
mobile ad fraud. By analyzing 12,000 apps from eight app
markets, FraudDroid confirmed and shared 335 cases of ad
fraud associated with ad networks.



VII. CONCLUSION

Even if Google Play and third-party market versions of
apps have the same version code, they might have differences
in implementations. In this work, we systematically analyzed
the differences in security and privacy between apps with the
same version code from three points of view, including app
protection, security threats, and permission usage. A series of
captivating and valuable insights have been revealed, which
can help developers and store operators provide improvement
directions and guidance, enhancing the quality of the Android
apps ecosystem and user experience.
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