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Abstract—Bluetooth is a widely used communication tech-
nology, especially under the scenarios of mobile computing and
Internet of Things. Once paired with a host device, a Bluetooth
device then can exchange commands and data, such as voice,
keyboard/mouse inputs, network, blood pressure data, and so on,
with the host. Due to the sensitivity of such data and commands,
some security measures have already been built into the Bluetooth
protocol, like authentication, encryption, authorization, etc.

However, according to our studies on the Bluetooth protocol as
well as its implementation on Android system, we find that there
are still some design flaws which could lead to serious security
consequences. For example, it is found that the authentication
process on Bluetooth profiles is quite inconsistent and coarse-
grained: if a paired device changes its profile, it automatically
gets trust and users would not be notified. Also, there is no strict
verification on the information provided by the Bluetooth device
itself, so that a malicious device can deceive a user by changing
its name, profile information, and icon to be displayed on the
screen.

To better understand the problem, we performed a systematic
study over the Bluetooth profiles and presented three attacks
to demonstrate the feasibility and potential damages of such
Bluetooth design flaws. The attacks were implemented on a
Raspberry Pi 2 device and evaluated with different Android OS
versions ranging from 5.1 to the latest 8.1. The results showed
adversaries could bypass existing protections of Android (e.g.,
permissions, isolations, etc.), launch Man-in-the-Middle attack,
control the victim apps and system, steal sensitive information,
etc. To mitigate such threats, a new Bluetooth validation mecha-
nism was proposed. We implemented the prototype system based
on the AOSP project and deployed it on a Google Pixel 2 phone for
evaluation. The experiment showed our solution could effectively
prevent the attacks.

I. INTRODUCTION

As a wireless communication technology, Bluetooth has
been adopted by a variety of electronic products including
personal computers, smartphones and IoT devices, because
of its technical advantages in short-range data exchange.
Especially, given the context of IoT, smart devices could be

connected with each other and controlled by a phone through
Bluetooth.

Bluetooth has also become a lucrative target for adversaries
due to its features like data sensitivity, transmission in the
open air, and data handling in the kernel space. Recent years
have seen lots of Bluetooth-related CVEs [11] resulting in
system crashes, information leakage or privilege escalation on
the target device. Besides the typical threats like data sniffing
and weak pairing pass/PIN code, many vulnerabilities are
caused by bugs in Bluetooth stacks, like kernel drivers, which
could lead to code injections, arbitrary code execution, remote
crash, etc [31], [38], [40]. There are also studies related to
privacy issues. For example, Naveed et al. [34] discovered that
an unauthorized app could steal sensitive data by connecting
wrongfully to a third-party Bluetooth device.

To get a deeper understanding of Bluetooth security, we
conducted a systematic study on Bluetooth at the logic level,
including the underlying assumptions of the adversary model,
device authentication, authorization, and security policies.
Particularly, we focus on the Android platform due to its
prevalence and its support of countless Bluetooth applications
and services. In the end, we identified several new Blue-
tooth vulnerabilities even in the latest Android version. These
vulnerabilities are mainly associated with Bluetooth profile,
which is a standard interface about a particular Bluetooth
functionality (e.g., audio transmission) but never thoroughly
evaluated from the security perspective. For example, we found
the current Android system assumes that a Bluetooth device
only would support a fixed set of profiles, but this assumption
is invalid because a malicious Bluetooth device actually can
change its claimed profiles dynamically. As a result, several
existing measures become insecure. For example, Android
system will not check and notify users about the changes of
device profiles, thus a device could first pair with the host using
a benign function/profile and then switch to another profile
and steal information without being identified. We also found
that the Bluetooth device authentication is too coarse-grained
and permissive, and most profiles, including the ones created
dynamically, will be trusted by default once the user chooses to
pair with that device. Even worse, the process of pairing with
the device could be fully hidden to the user (see Section III
for more details).

The newly discovered vulnerabilities can lead to severe
attacks on user’s privacy. To demonstrate the potential security
implications of these vulnerabilities, we devise several concrete
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attack examples under the name of BadBluetooth. In one
attack, a malicious Bluetooth device could switch from a
legitimate profile to the Human Interface Device (HID) profile
stealthily. With such an HID profile, the malicious device could
emulate the behavior of a Bluetooth keyboard and a Bluetooth
mouse by injecting keystroke and mouse movements and click
events. Consequently, it is able to change phone configurations,
bypass security protections, and install malicious apps without
being detected. In another attack, a malicious Bluetooth device
could change its profile to Personal Area Networking (PAN)
stealthily, then launch a Man-in-the-Middle attack to sniff the
network traffic or inject spoofing packets (like DHCP/DNS
replies pointing them to malicious servers).

Such vulnerabilities are not bugs caused by programming
mistakes. Instead, they are rooted from the incorrect perception
and assumptions on the Bluetooth communication. To mitigate
the security threats, we design a new validation mechanism
named Profile Binding. It enforces a fine-grained control for
the Bluetooth profiles and prevents the unauthorized changes of
profiles. We implemented and deployed our solution on Google
Pixel 2. The evaluation result showed that it can prevent the
BadBluetooth attack effectively with negligible overhead.

Contributions. We summarize the contributions of this paper
as follows:

• New vulnerabilities. We investigated the design and
implementation of Bluetooth on Android system and
identified several vulnerabilities, such as the wrong
assumptions on device profiles, coarse-grained device
authentication and authorization mechanisms, as well
as deceivable and vague user interface.

• New Attacks. To demonstrate the feasibility and secu-
rity implications of our newly discovered vulnerabili-
ties, we came up with several new attacks under real-
istic settings. These attacks can bypass existing data
isolation mechanisms of Android, causing information
leakage, changes of system security settings, etc. We
implemented and evaluated them on different Android
phones ranging from Android 5.1 to the latest Android
8.1.

• Defense and Evaluations. We proposed a fine-grained
device profile management mechanism to mitigate the
security threats. Also, we implemented it on Android
8.1 and demonstrated it could address the threats
effectively.

Roadmap. The rest of this paper is organized as follows.
Section II gives the necessary background about Bluetooth.
Section III describes the Bluetooth design flaws found in our
research. Section IV overviews the attacks against Android,
and Section V describes these attacks in details. We evaluate
our attacks under real-world settings in Section VI. Our
defense solution is presented in Section VII. Section VIII
discusses some advanced topics, and Section X concludes this
paper.

II. BACKGROUND

In this section, we introduce the relevant background about
Bluetooth. We first overview Bluetooth stack and describe

SDP

Host Controller Interface (HCI)

Bluetooth Controller

SCO/eSCO
(Audio)

RFCOMM ... GATT
ATT

L2CAP

Application

Fig. 1: Bluetooth Stack.

Bluetooth profile and connection mechanisms in details. Then,
we describe how Bluetooth functionalities are supported by
Android and how the risks are managed.

A. Bluetooth Overview

Bluetooth was proposed as a wireless technology standard
to enable short-range data exchange, which was invented two
decades ago. It has been gaining wide popularity among end-
users: the forecast shows near 10 billion Bluetooth devices
will be in use by 2018 [7], covering a variety of device types,
including PC, mobile phone, smartwatch, car, medical appli-
ances, etc. Comparing to another popular wireless standard,
i.e., Wi-Fi, which is designed for wireless local area network
(WLAN), Bluetooth is more user-centric, supporting wireless
personal area network (WPAN) and requiring minimum con-
figuration efforts. Currently, Bluetooth standard is managed
by the Bluetooth Special Interests Group (SIG), and the latest
specification is Bluetooth 5.0.

Bluetooth Stack. We illustrate the abstracted Bluetooth stack
in Figure 1. In essence, Bluetooth stack is a multi-layer
architecture including the lower physical and link layers, the
middleware layer and the application layer [6]. The lower
layers are implemented by Bluetooth chips, including radio
controller, baseband controller, etc. They communicate with
“host”, i.e., the operating system running on the device,
through Host Controller Interface (HCI). The protocols in the
middleware layer are all implemented by the host. Different
from other communication technology like Wi-Fi, Bluetooth
protocols do not rely on the widely adopted TCP/IP stack. The
base-level protocol for the middleware layer is Logical Link
Control Adaptation Protocol (L2CAP), which can be treated as
TCP for Bluetooth stack. It manages the connection between
two Bluetooth devices, which implements features like QoS,
flow-control, fragmentation and reassembly mechanisms. A
suite of application-oriented protocols are devised on top
of L2CAP. For example, Radio Frequency Communications
(RFCOMM) is used to generate the serial data stream, which
can replace the transmission of data over serial ports. Service
Discovery Protocol (SDP) broadcasts the services (e.g., headset
capability) supported by the host device and the associated
parameters (e.g., device identifier) to other devices, in order to
establish the connection. To enable more efficient data trans-
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mission, audio transport can be supported using Synchronous
Connection-Oriented (SCO) channel, without using L2CAP.
The application layer defines the functionalities offered to
users.

Starting from the Bluetooth 4.0, a technology named
Bluetooth Low Energy (BLE) was incorporated, which aims to
reduce the power consumption for new devices in healthcare
and home entertainment. New protocols like Generic Attribute
Profile (GATT) are included to facilitate BLE modes.

Bluetooth Profile. To regulate the communication between
heterogeneous Bluetooth devices manufactured by different
vendors, the concept of Bluetooth profile was proposed, which
is characterized by a general functionality of a device. Each
profile contains settings to bootstrap the communications, like
the formats of user interface and dependencies of protocols. So
far, there are more than 30 profiles standardized by Bluetooth
SIG [10]. The most commonly used profile is Headset Profile
(HSP), which specifies how a Bluetooth headset can be used
with mobile phones. It relies on SCO channel to encode the
audio and RFCOMM protocol to transfer AT commands [8] for
control capabilities like answering a call. A device can claim a
subset of profiles but the implementation must be compatible
with the standard.

Bluetooth Connection. Before the connection is established
between two Bluetooth devices, one device should be in the
discoverable mode, which can choose to respond to an inquiry
from the other nearby device with information like device
name, device class, list of services (profiles) and technical
information (e.g., manufacturer). Each device has a unique
48-bit MAC address but it is usually not used in the above
process. Instead, a friendly name defined by the manufacturer
or the user is displayed. However, if the inquiry initiator knows
the address of another device, the inquiry has to be answered.

After the information is exchanged, a pairing procedure
would be executed to authenticate the remote device and pro-
tect the communication against eavesdroppers. Pairing usually
involves certain user interactions to confirm the identity of the
remote device. Such a process could require a user to enter a
PIN presented by the remote device or compare the numerical
code on the displays of both devices, for example. If pairing
is successful, a shared secret named link key is created to
encrypt their communications, and both devices are said to
be bonded. If both devices memorize the pairing information
and the secret, they can connect to each other without going
through pairing again in the future.

One thing to pay attention is that the communication for the
two bonded devices is profile-centric: after retrieving necessary
information from SDP, one device has to take additional step
to connect to the profile of the other one before using its
functionality (the first becomes initiator and the latter becomes
acceptor). In addition, two devices can maintain multiple
channels under different profiles. For example, a user’s phone
could connect to the headset profile and the keyboard profile
of a single Bluetooth device at the same time.

B. Android Bluetooth

The early Android versions used Linux’s BlueZ stack as
its Bluetooth stack. Since Android 4.2, Google developed

its own stack, named Bluedroid or Fluoride. For normal
users, they could perform Bluetooth related operations through
Android Settings (a system app). To interact with Bluetooth
stack, both an Android third-party app and the Settings app
could invoke android.bluetooth APIs to communicate
with a system process, which is packaged as an app and
located at packages/apps/Bluetooth. This system app
implements various Bluetooth services and profiles. Receiving
the request from the upper-level Android app, it further invoke
into the native Bluetooth stack code, located at system/bt.

Bluetooth Permission. Since the Bluetooth communication
may involve sensitive data, the access to the Bluetooth
functionalities on Android is mediated by a set of
permissions. A third-party app can initiate the discovery
of nearby Bluetooth devices or change the Bluetooth
settings if the BLUETOOTH_ADMIN permission is granted.
Further, with BLUETOOTH permission, the app can perform
Bluetooth communication with another device, such as
requesting and accepting connections. The protection levels
for both two permissions are normal, which means any
third-party app claiming them will be auto-granted without
reminding users. Since Bluetooth discovery may reveal
the location of the user, from Android 6.0, if an app
requests to scan nearby devices, it has to declare either
the dangerous-level ACCESS_COARSE_LOCATION or
ACCESS_FINE_LOCATION permission. By default, the
pairing process needs the user’s interaction. However, a
system app can avoid this with a granted signature-level
permission BLUETOOTH_PRIVILEGED.

Note that, the BadBluetooth attack described in this paper
does not require any dangerous-level or signature-level
permissions (see details in Section IV).

III. DESIGN WEAKNESSES

The existing mechanisms around Bluetooth security focus
on proving the identity of the remote device (through pairing),
ensuring the confidentiality of the communication (through
encryption), and restricting the capabilities of the untrusted
apps on the host (through permission). These mechanisms
work under the assumption that the remote device is trust-
worthy, say, its manufacturer or the owner certifies the device
functionalities responsibly. However, such an assumption is
not always true. More specifically, our study reveals that an
adversary could manipulate the profiles on a remote device in
an unexpected way and use it as a stepping-stone to attack
the paired Android phone, casting severe threats to the phone
owner.

This new problem rises mainly because the security model
defined by the Bluetooth stack is coarse-grained, focusing on
the device level. The problem is further complicated due to
the issues underlying the design of the Bluetooth framework
on the host, e.g., Android. Below we list five key issues and
elaborate the potential security implications for each of them.

Weakness #1: Inconsistent Authentication Process on Pro-
files. Before two devices are bonded, a user could verify the
identity of the remote device with an array of measures, like
comparing the displayed PINs. However, the best practices
regarding how profiles should be verified are not clear, since
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they are never documented by Bluetooth core specifications.
As such, the device and host vendors have to come up with
ad-hoc ways for profile authentication, and mechanisms differ
significantly among these vendors or even profiles. Taking
Android as an example, the profiles are not listed during the
pairing process and are only visible to the user and adjustable
later (see Figure 2). If the device makes changes on the
profiles, it still gets trusted since pairing has already done,
and the user will not be immediately notified. Regarding how
the profile channels are set up, some require user interactions
(e.g., File Sharing) while some can be done silently through
an app (e.g., Internet Access). As such, a device can contain
adversarial functionalities without revealing them to the user
in the beginning. For instance, a headset re-programmed by
an adversary could enable Human Interface Device (HID)
profile after being paired with a phone and send unauthorized
keystrokes (see Section V-A).

Weakness #2: Overly Openness to Profile Connection. To
better align with the Bluetooth specifications, a Bluetooth stack
typically supports many profiles (e.g., 15 for Android 8.0 [2]).
What’s problematic here is that a pro-active approach is usually
taken by the host, like Android: once the bond is created, the
host will try its best to connect to all the profiles claimed by
the remote device, without explaining the risk to the user or
letting her vet the connections. Even though the user could
disconnect certain profiles later in the device detail menu (see
Figure 2), such a decision is not memorized by the host. The
connections will be re-established when the devices are paired
next time.

Weakness #3: Deceivable and Vague UI. When a user
browses the list of paired Bluetooth devices, he could see
the name and the icon of the device (example shown in
Figure 2), which is given by the device during the pairing
process. Though the information should be relevant to the
core functionality of the device, there is no way to certify
they are authentic. Previous research shows that a malicious
device can choose the same name as another validated device’s,
to trick the user during pairing [34]. In this work, we found
the icon can be manipulated as well for the same purpose.
In fact, Bluetooth specification has defined a list of Class
Device/Service (CoD) numbers [5] and each CoD number is
associated with one icon reserved by Android. By changing the
CoD number, the adversary can select the icon to be presented.
Another issue with Android UI is the lack of Bluetooth-
relevant information. For example, only two events relevant
to Bluetooth are prompted in the notification bar: one showing
that the Bluetooth of the host is turned on, and another showing
that a remote device is connected. None of them reveals the
status of profiles.

Weakness #4: Silent Pairing with Device. Pairing is supposed
to have user to verify device identity, unless the bond has been
successfully set up before. However, we found pairing can be
completely hidden to the user even for the first-time setup.
When pairing request is sent from the device side, Android
system will pop up the pairing dialog for user confirmation.
However, if the phone initiates this process, there might be no
notification presented. Specifically, when the device has neither
display ability nor input ability (e.g., headset), the pairing
falls into “Just Works” mode [6], because both numerical

Fig. 2: Bluetooth Menu of Android (Google Pixel 2). The area
in the red square shows the connection status - left one is
disconnected, right one is connected. The area in the purple
square lists the profiles currently in use, which can be adjusted
by the user.

comparison or PIN input method become impossible. In this
case, Android phone will not prompt to users. By manipulating
the device configuration, this feature could be leveraged to pair
with a Bluetooth device silently.

Weakness #5: No Permission Management for Profile. As
described in Section II-B, Android restricts whether an app can
access a Bluetooth device through a set of permissions. How-
ever, such a permission framework turns out to be too coarse-
grained and mis-aligned with profiles. In particular, not all
profiles are equally sensitive but which profile can be accessed
is not regulated under the current permission framework. For
instance, the profile regarding the Bluetooth keyboard (i.e.,
HID) should only be accessible to a system process. How-
ever, when a third-party app is granted BLUETOOTH_ADMIN
permission, the keyboard becomes accessible automatically.
Therefore, the app can further utilize the keyboard to inject
inputs and take control of the phone and we demonstrate a
working attack in Section V-A (the goal here is similar to
the attack proposed by Fratantonio et al. [25] but our attack
enables far more operations). So far, the protection on the
critical profiles relies on removing the relevant code from the
public APIs. However, we found a third-party app can still
access those profiles through Java reflection.

Though the issue of coarse-grained Bluetooth permission
has been mentioned by Naveed et al. [34], the focus is dif-
ferent. In particular, their work shows the permission does not
prevent an unauthorized app (Bluetooth permission granted) to
tamper the bond of an authorized device on the same phone.
The issue we studied here regards profile.

IV. ATTACK OVERVIEW

The goal of our research is to explore and understand
how the Bluetooth peripherals can gain high privileges and
compromise user privacy in smartphones. Particularly, we
focus on the Android platform due to its prevalence and its
support of countless Bluetooth applications and services. In
this section, we first introduce the adversary model in our
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attacks. Then we describe the attack primitives and procedures.
In Section V, we further explore how the attacks are achieved
in real-world scenarios.

A. Adversary Model

In this study, we make two basic assumptions. We first as-
sume a malicious app with Bluetooth permissions has been in-
stalled on the victim smartphone. Being granted with the Blue-
tooth permissions BLUETOOTH and BLUETOOTH_ADMIN
which are the standard and common permissions for typical
Bluetooth apps, the malicious app will be able to estab-
lish the bond and connecting the profiles with Bluetooth
devices stealthily. Note that, since both BLUETOOTH and
BLUETOOTH_ADMIN are just the normal-level permissions,
the OS or Google Play will grant them to the malicious app
without user confirmation. Therefore, this malicious app could
be disguised as any type of apps, not just a Bluetooth app. As
we will show later, such a malicious app can exploit the vul-
nerable designs in existing Android OS and Bluetooth devices
and elevate its capabilities. For example, without requesting
sensitive permissions or breaking the sandbox, it can capture
the UI of other apps and steal sensitive information.

We also assume a Bluetooth device has been compromised
and its firmware now contains malicious code. Adversaries
can achieve this goal in several different ways. For example,
they can first compromise the SDK of Bluetooth devices,
which is similar to the attack of XcodeGhost [49]. Besides,
Bluetooth devices may be hacked by previous owners, sellers
or during the shipping process. What is more, the adversaries
may be able to exploit the security weakness of Over-The-
Air upgrading mechanism [22], especially with the help of
the malicious app previously installed. We have studied the
technical documents of popular Bluetooth chip-sets, including
Nordic [37], Silicon Labs [32], TI [27], and found that their
firmware verification is mainly to guarantee the transmission
integrity (like CRC checksum, Hash values, etc), and there
is no integrity check based on digital signatures. For CSR,
another major Bluetooth chip-sets vendor, we do not have ac-
cess their technical document [43], but according to messages
from developers on GitHub [41], their OTA “protocol seems to
do challenge-response with a shared key rather than properly
signing the firmware”, which might be insecure if adversaries
could get the key via reverse engineering (and it would be left
for future studies).

A large number of previous works on Bluetooth security
focus on the vulnerabilities residing in the communication
protocols and implementation of the software stack. Different
to those works, we study the fundamental design flaws, which
are much more difficult to fix.

To notice, previous works attacking the design flaw of
Bluetooth stack or framework require the similar adversary
capabilities [34]. In Section VIII, we will discuss more about
the model and expansion of attacks.

B. Attack Procedure

Figure 3 illustrates the high-level attack procedures. We
assume the malicious app is running at the background on
user’s smartphone. The attack could be launched when the
screen is turned off, which indicates that the user is not around.

Detect phone status

Bluetooth 
Device

Bluetooth 
App (on the phone)

Android 
Phone

Inform peripheral 

Change profiles 
to malicious

Connect Connect

Launch attacks

Find suitable 
attack time

Change profiles 
to normal

Destroy the 
evidence 

Pair

Request pair

Perform connect

Fig. 3: Attack Flow. The existence of the dotted line depends. If
the device is not paired yet, the app can request pair stealthily.

Then, the app creates the bond with the malicious device and
set up the profile channel. After that, the app issues commands
to the device to carry on the attack. We carefully design the
attack flow to avoid any user interaction, making it hard to be
observed.

Attack Primitives. We first describe the four attack primitives
that enable our attack. The design weaknesses discussed in
Section III are listed along with each primitive.

• Changeable Profile (Weakness #1, #2, #3). To hide
certain profile from the user (e.g., HID profile), we
instruct the device to add the profile after pairing, and
remove it after the attack is completed. This could
be achieved by programing the device to broadcast
the service record related to the profile using SDP.
Realizing the change of profiles is difficult from
the user’s perspective: the device detail menu (see
Figure 2) would keep the same until the new profile
is connected or the bond is reset. In addition, which
profile is added is not shown in the notification bar.

• Changeable Icon (Weakness #3). Device icon is an
important indicator to help user know the functionali-
ties of the Bluetooth device. However, it can be easily
changed when the device modifies the CoD number.
Table I shows the icons we use to mislead user. The
CoD number is composed of two fields. The first field
describes the Major Device Class. And the second
field describes the optional Minor Device Class or the
Major Service Class, which can be set to all 0. If the
CoD number is not recognized by Android, a general
Bluetooth icon will be displayed.

• Silent Pairing (Weakness #4). Previous research [34]
and app developers [14] also constructed the
similar primitive. However, they rely on an
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TABLE I: Bluetooth Device Icons.

Icon CoD Class Description

0x100 Computer

0x200 Phone

0x404 Audio/Video-Wearable Headset

0x418 Audio/Video-Headphones

0x500 Peripheral

0x540 Peripheral-Keyboard

0x580 Peripheral-Pointing device

0x600 Imaging

0x000 General Bluetooth

API (setPairingConfirmation()), which
is protected with the signatured permission
BLUETOOTH_PRIVILEGED since Android 6.0.
In contrast, our attack does not require such API
use. As described before, we configure the remote
device to work under the “Just Works” pairing
mode. Then, the app can invoke just one API named
createBond() using the identifier (MAC) of the
device. Therefore, there is no manual confirmation
involved.

• Connecting Sensitive Profile (Weakness #5). Our
attack relies on exploiting sensitive profiles on the
phone, which are supposed to be hidden from a third-
party app. However, those profiles can be still ac-
cessed regardless of the protection. Normally, Android
assumes the app creates a proxy class to operate
on a profile, which encapsulates the IPC binder to
the Bluetooth system process. The proxy classes of
the sensitive profiles are not public, but when we
program our app using framework.jar from a real
phone instead of android.jar from Android SDK
[1], we can directly use the non-public classes and
methods, including the proxies of the hidden profiles.
For example, as shown in the following code snippet,
we invoke getProfileProxy() with a profile
type INPUT_DEVICE as its parameter. If succeed,
we can receive the proxy object whose class is
BluetoothInputDevice. This class is non-public
and has a method connect(). Our app could invoke
this method to establish a channel to the input profile
of the remote device.

1 final BluetoothDevice mDevice =
mBtAdapter.getRemoteDevice("MAC");

2 private BluetoothInputDevice mProfile;
3 mBtAdapter.getProfileProxy(this,new

BluetoothProfile.ServiceListenner()
4 { @override
5 public void onServiceConnected(int

profile,BluetoothProfile proxy){
6 mProfile=(BluetoothInputDevice)

proxy;
7 mProfile.connect(mDevice);
8 }
9 ...

10 },BluetoothProfile.INPUT_DEVICE);

Attack Phases. To deceive the user that the device is innocu-
ous when pairing, the device can pretend to be a smart speaker
or temperature sensor by using related icons and friendly
names. The whole pairing process could also be completed
stealthily. To communicate with the app, the device could use
RFCOMM (regulated by Serial Port Profile), which is widely
adopted by app-device communication and no profile will show
up in the menu of device details. Below we elaborate our attack
flow.

1) After the malicious app starts, it runs as an
Android background service or a scheduled job.
This service waits until the user is not around, by
checking whether the phone screen is off through
PowerManager or whether the time is at midnight.

2) If needed, the app will turn on Bluetooth through
the API BluetoothAdapter.enable()
and search for the other malicious device. After
Android 6.0, such scanning process requires
ACCESS_COARSE_LOCATION permission.
However, it’s not compulsory for our attack
because the app could use the pre-stored device
address directly and this will not result in Bluetooth
scanning. As a result, the app could do silent pairing
to stealthily create a bond.

3) Now the device is waiting for the commands from the
app. Those commands are transmitted either through
an in-band channel (e.g., Bluetooth RFCOMM chan-
nel) or an off-band channel (e.g., an Internet server
connected by both).

4) Once receiving the commands, the device enables the
attack-specific profile. Since the corresponding profile
on the phone is sensitive, the app can use the profile
connection primitive to establish the profile channel.
In some scenarios, the device can take the first action
to initiate the connection, and we discuss them in
details in Section V. The malicious device and the app
then leverage the capabilities of the enabled profile
to attack the victim, like exfiltrating sensitive data.

5) Finally, the device could disable the used profile or
terminate the connection. Moreover, the app could
also unpair with the device using removeBond()
API to avoid the victim’s attention.

V. ATTACKS

In this section, we explore what kinds of attacks could
be achieved under the general attack model described in the
previous section. First we overview the supported Bluetooth
profiles on Android and the ones we exploit. Then we demon-
strate three types of concrete attacks through profile abuse.

Exploited Profiles. Table II lists the profiles supported by
Android [2] with the corresponding usage scenarios. We do
not list the transport-layer profiles like Bluetooth Network
Encapsulation (BNEP), Object Exchange (OBEX) in this table
since they are used to support other profiles and do not directly
handle user information. In the list, Health Device Profile
(HDP) and Serial Port Profile (SPP) are used to carry data
for normal user apps, which can not be leveraged to attack the
phone directly. Device ID Profile (DIP) helps SDP broadcast
extra device information. The remaining profiles are evaluated
for conducting our attack, and we identify three profiles which
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TABLE II: Android Supported Profiles

Name Description Usage

HID Human Interface Device Keyboard
PAN Personal Area Networking Network Hotspot

HFP/HSP Hands-Free/Headset Wireless Headset
SAP SIM Access Car Kit
MAP Message Access Car Kit
PBAP Phone Book Access Car Kit
OPP Object Push File Transfer

A2DP Advanced Audio Distribution Wireless Speaker
AVRCP Audio/Video Remote Control Remote Media Controller

DIP Device ID Extra Device Information
HDP Health Device Blood Pressure Kit
SPP Serial Port App-specific

Bluetooth 
App

Connect

Inject input eventsApps Apps

Mouse/Keyboard

Privacy

Android OS

Fig. 4: HID Attack. The external device can inject input events.
The malicious app could steal sensitive data with the help of
the device.

could be leveraged – Human Interface Device (HID), Personal
Area Networking (PAN), and Hands-Free/Headset (HFP/HSP).
In the following, we introduce their capabilities and the attack
scenarios enabled by abusing them.

Demo. The following attacks are demonstrated with demos
posted at https://sites.google.com/view/bluetoothvul/. We used
Google Pixel 2 equipped with Android 8.1 in the demo.

A. Human Interface Device

The Human Interface Device (HID) Profile enables the
functionality of input devices like keyboard or mouse connect-
ing to a phone. It is designed to facilitate the user to operate her
phone with an external input device. For example, some people
may project their phones to an external monitor and type text
on it. With this capability equipped, a Bluetooth device is able
to perform nearly any operations a real user can do on the
phone. More specifically, Android provides the fully functional
keyboard and pointing device (e.g., mouse) support through
HID [3], and we can construct a input sequence equivalent to
any user action (e.g., mouse click can be treated as user touch).

Figure 4 illustrates the flow of our attack. The Bluetooth
device plays the acceptor role which is responsible for broad-
casting SDP services. The installed malicious app initiates the
connection process to connect the HID profile on the remote
device. After the connection is established, this device gains
full control over the input channel by sending HID reports.
To notice, the input from the device is global to the Android
phone, meaning that any running app and home screen can

TABLE III: HID Report Format

Keyboard Modifier Key Regular Keys
Mouse Button Array X Relative Y Relative Wheel

receive the input and handle it. As such, our attack breaks the
app sandbox mechanism.

HID Report. When advertising the HID service, the SDP
record contains a particular attribute - HID descriptor which
tells the client (i.e., the phone) how to parse the payload packet.
After the connection is established, the device could send a
certain type HID report to generate a global input event on
the phone.

In our attack, we leverage the HID descriptor to support
standard mouse and keyboard functions on attack device. The
corresponding HID report data format is shown in Table III.
In a HID report, the header specifies the report type, and
the remaining bytes are the payload. For keyboard data, the
payload has several key bytes and one byte bit-array for
modifier keys like “Right Control” key. For mouse data, the
payload contains X-Y axis, wheel movement data and an
extra button bit-array. Later on, we can specify these fields
to perform our attacks.

Attack Strategy. Next, to construct a real attack, we still need
to address some technical challenges. Below we describe the
challenges and our strategies to tackle them:

• Adaptive Attack. To position the mouse precisely on
the targeted item, a challenge here is to determine
the position of mouse pointer. Since different phone
brands and Android versions usually have different UI
layout, in attack phase 3, the malicious app will also
collect the UI information via android.os.Build
and notify the device to activate the matched payload.
On the other hand, the attack device itself can also
retrieve phone related information (e.g., phone brand)
through the SDP record of the phone. Moreover, due to
the uncertainty of initial pointer position, we move the
pointer to left-bottom as the origin point by sending
enough mouse movement reports.

• Input Capability. By constructing the HID input
report, we can freely move the mouse or inject
a key event on the phone. What’s more, we
found that Android defines various functional
keys [4] like “Home”, “Back”, and “Volume
Control” besides normal letters. So it is possible
to utilize these keys to enhance our attacks. In
detail, when the phone receive the HID report, it
will first parse the report payload into a Linux
input event based on the previous provided HID
descriptor. Then, for keyboard, there exists an
mapping relationship between Linux input key code
and Android defined key event, which can be found in
/frameworks/base/data/keyboards/Generic.kl
of Android source code. We then adjust our HID
descriptor to enable these special keys usage. We
summarize some functional keys which can be
applied in our attack in Table IV [4]. What is more,
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TABLE IV: Android Functional Keys

Linux Key Code Name Description (effect on Android)

KEY ENTER Enter Key (click)
KEY TAB Tab Key (select item)
KEY SYSRQ Screenshot
KEY COMPOSE Menu Key (open menu for current app)
KEY POWER Power Key (open/close screen)
KEY WWW Explorer (launch browser app)
KEY PHONE Call (launch phone app)
KEY MAIL Envelope (launch mail app)
KEY ADDRESSBOOK Contacts (launch phone book app)
KEY HOMEPAGE Home Key
KEY BACK Back Key

common shortcuts like copy (KEY CTRL+KEY C)
and paste key (KEY CTRL+KEY V) combination
are available as well. And we also found that even
without the mouse capability, we can simulate the
moving or clicking task by sending KEY TAB to
select a certain item on the screen and KEY ENTER
to perform the click operation. This approach could
make our attack stealthier and quicker.

• Output Capability. Keyboard and mouse only pro-
vides input ability. However, if the attacker wants to
do more advanced attacks, output ability is neces-
sary. In other words, if we can obtain the view of
phone’s UI, we can simulate full interaction capability
of a user. Indeed, we found that there is a key
named KEY SYSRQ which stands for screenshot in the
standard key code scheme, which will truly capture
the phone screen on Android. Thus, we can inject
this key to Android phone resulting in generating a
global screenshot. Besides, another way to capture
output is to select the texts on some views and
then send “copy” shortcut to copy the text. Next,
the app can read the text from system clipboard by
using ClipboardManager. The limitation of this
method is that not all the texts are selectable and
the information can be gathered is much less than a
screenshot image.

As a result, with these abilities, the attack could introduce
severe consequences to the victim. We summarize them with
three high-level categories as follows.

Attack: Information Stealing. Since we can capture screen-
shot globally, which can cover any foreground application in
the screen, we can steal very sensitive information from normal
or system app like private emails and messages, phone books,
etc, and send them out of the phone. For example, we can
grant our app the WRITE_EXTERNAL_STORAGE permission
using the input ability and fetch the screenshot then send them
out via Internet (a normal permission). Or we can use input
ability to transfer them through another app like Web Browser
(open a malicious uploading website) or Email. Finally, the
app can delete the screenshot to destroy the evidence.

Attack: App and System Controlling. Most security mech-
anisms on Android phone are enforced with user’s involve-

ment. For example, after Android 6.0, all dangerous-level
permissions should be granted at runtime by user confirmation.
And many security and privacy policies are controlled by the
system settings. There is no way for a normal app to modify
the critical settings or perform a cross-app operation. However,
by equipping with an external HID device, we can arbitrarily
control what we want just like normal user interaction.

For example, we can grant all the dangerous permissions
to our app thus causing continuous damage when the device is
disconnected. And we can invade other apps by force stopping,
uninstalling, or injecting input events on them. Moreover, we
are able to install another malicious app. Modifying the critical
system setting preferences is easy as well. Before the attack,
we could choose the proper payload which contains the UI
layout and item position information based on the Android
version and phone brand. However, the user may personalize
their phone and legitimate apps may have various appearance.
To handle this problem, we could use the previous attack to
get the screenshot and perform the image analysis locally or
remotely to get the precise layout in order to attack them
accordingly.

And through our experiment, we could even shutdown or
reboot the phone by simulating the click of the power button.
In detail, if we send KEY POWER and wait a short period
till sending the button release event, which simulates the long
press of power button, the power manage menu will pop up.
After that, we can select the shutdown or restart menu item.

Attack: Beyond the Phone. Besides being the interface to help
the user process the daily tasks, the phone can also be used
as data vault, keeping user’s identity information or storing
the token for many applications. Therefore, if the attacker
takes control of the phone, he may steal stored token like
a verification code in a text message or log himself into a
website through remembered password. He may also abuse the
victim identity like sending spam emails. He can even open the
camera and capture the surrounding environment thus severely
breach the victim’s privacy.

Limitations. Some attack operations, like capturing the screen-
shot of foreground apps, will fail when the phone is securely
locked (for locking without PIN/Pattern, the attack still works
through simulating swiping screen). Though our attack can
inject keyboard and mouse input, unlocking the phone would
be impossible if the user chooses PIN code that we do not
know beforehand or enables other strong login mechanisms.
A subset of operations are still effective under the locking
scenario, like powering off the phone and turning on the
camera. To notice, the following two attacks are still effective
even when the phone is securely locked.

B. Personal Area Networking

Next, we investigate how the network communication can
be tampered by exploiting the Personal Area Networking
(PAN) profile, which manages the networking functionality
through Bluetooth channels. This profile relies on BNEP
protocol and defines 3 roles - Network Access Point (NAP),
Group Ad-hoc Network (GN), and PAN User (PANU). A
common use case is that one device who has an additional
network resource like smartphone can act as a NAP to forward
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Fig. 5: PAN Attacks. Figure (a) shows that the device can sniff
and spoof traffic of the phone. Figure (b) shows the device can
consume the host network bandwidth without permission.

Ethernet packets and provide DHCP service usually at the
same time. The other device will be the PANU to share the
network bandwidth of the NAP. Both roles are supported by
Android but there is no protection mechanism in place to
prevent a malicious app or device from abusing these roles.
We construct two attacks as shown in Figure 5.

Attack: Network Sniffing and Spoofing. Since the phone
could access Internet via the Bluetooth device, it is possible
to provide the NAP service on the device side and do the
network Man-in-the-Middle attack. In this attack, we enable
the standard NAT service on the device and wait for the
connection from the phone. Once the phone is connected, the
Bluetooth device would receive all the Ethernet packets carried
by BNEP from the phone and pass it to a pre-build virtual
bridge. The bridge can then forward the traffic to a remote
entity if the device has its own Internet access component.
Then we can intercept all the traffic on that bridge. Note that
accessing Internet can be achieved via a embedded sim card
(cellular network), wired or wireless Internet connection of the
device itself. Many IoT devices like smart speakers have built
in such capability. And for the case that the device itself cannot
access the Internet, it can still sniff a part of traffic like login
request which contains sensitive information.

After establishing the Bluetooth network connection, the
phone (PANU) will query for the networking settings from
the NAP. The DHCP server on the virtual bridge can listen for
this query and return a malicious DNS server address. This
DNS server could be a public server owned by the attacker or
just built upon the device.

A mechanism we want to mention here is the network
resource priority on Android. As we know, the Android phone
can use Wi-Fi and cellular network to access Internet beyond
Bluetooth. So if multiple network sources appear, Android will
automatically choose one through an internal ranking scheme.
Through our investigation, we found Bluetooth network has
the highest base score than other frequently used network types
(Wi-Fi and cellular data). What is more, Android will conduct
a connectivity testing (e.g., ping a google website) before the
final decision and deduct points if the testing fails. So we
can easily manage the network to select our Bluetooth NAP
as long as the testing is passed, which naturally holds if the
device owns Internet access ability.

The whole process can be done in the background even
when the phone is securely locked. And we noticed that even
when the phone is unlocked and used by the user, our attack
only introduces an inconspicuous change in the notification
bar, if a Wi-Fi connection has been established (a small mark
on Wi-Fi icon). If the phone does not use Internet initially, we
can enforce it as well. In summary, through this attack, we can
force all the Internet traffic on the phone to go through our
device. As a result, we can intercept sensitive information or
do the spoofing attack.

Attack: Network Consumption. From another angle, the
phone can also act as a NAT and share its network resource
via Bluetooth. So in this attack, the device claims its iden-
tity as a PANU and try to connect and share the phone’s
network. Ideally, Android ought to forbid such connection
by default and require user interaction. In reality, opening
the Bluetooth tethering could be easily done by an app
without any privileged permission granted. The API we used is
setBluetoothTethering() of BluetoothPan class.
To notice, this setting is global which is effective for all the
external devices as well. Again, this implies the problematic
implementation of Bluetooth management on Android.

As a result, once the app enables that setting, the device can
try to connect to the phone NAT. With that, the device could
send out collected information or receive data for firmware
updating. Besides, the device can consume the network mali-
ciously to cause extra data usage.

C. Hands-Free

Bluetooth supports audio transmission in two means. As
shown in Section II, the first one is to transfer the audio
signal natively by SCO channel. The latter one utilizes packets
to distribute the audio data (Advanced Audio Distribution -
A2DP). Headset Profile (HSP) and Hands-Free Profile (HFP)
are two typical profiles relying on SCO channel, while we
focus on HFP since it supports more features than HSP and
has been widely adopted nowadays. A headset device imple-
menting HFP allows user to perform operations (e.g., make
phone calls) by issuing the commands without touching the
phone. Also, the device could receive the telephony audio and
answer phone calls using HFP. Therefore, when a malicious
device implements HFP, it will be able to manipulate the audio
input and receive the audio output of the phone. Figure 6 shows
how an attacker can abuse these profiles to compromise user’s
privacy.
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Fig. 6: HFP Attack. After connection, the Bluetooth device
can control the incoming and outgoing calls. Also, it can inject
voice command if Google Assistant is enabled.

Attack: Telephony Control. HFP defines two roles - Audio
Gateway (AG) and Hands-Free Unit (HF). AG like a cellular
phone can transfer the telephony status and open SCO con-
nection for streaming the voice to HF (typically a headset).
And the HF could issue several commands like accepting,
rejecting an incoming call or terminating the current call, etc.
In this attack, the device will claim the HF role, and wait for
connection from the phone. Initially, AG and HF will establish
a RFCOMM channel to exchange the handshake message and
phone status using various AT Command. Then based on the
telephony situation, the device may send command to answer,
reject or terminate an incoming call. What is more, the device
is able to dial arbitrary number resulting in a outgoing calls.

All the functions mentioned above could be done on
a locked Android phone. Under our attack model, we can
successfully force the phone to connect to the HFP-enabled
device thus taking over the telephony function. For example,
the device can record an incoming call and answer with
prepared voice file.

Attack: Voice Command Injection. Besides the telephony
function, we found the HFP can also trigger the Google Voice
Assistant. And by default, this Google service will allow
Bluetooth headset to send voice command even when the
phone is securely locked. In the attack, we first trigger the
assistant and open the audio connection. Then we can inject
any voice command it supports. However, we found the voice
feedback is carried by A2DP rather than HFP SCO channel.
So the device could claim the A2DP profile at same time and
once connected, the phone will send the voice feedback to
the device. As a consequence, the attacker is able to inject
commands and steal information through the voice channel
stealthily.

D. Other Profiles

Besides the profiles we tested above, SIM Access (SAP),
Message Access (MAP), Phone Book Access (PBAP) and
Object Push Profile (OPP) are potential targets. However, those
profiles require the Bluetooth device to be the initiator and
the phone to be the acceptor, which is opposite to the attack
flow described before (see Section IV-B). As a result, the
user will be notified when the Bluetooth device requests to
connect under those profiles and the request has to be approved
manually, making the attack less stealthy.

Fig. 7: Experimental Devices.

VI. IMPLEMENTATIONS AND EVALUATIONS

In this section, we introduce the technical implementations
of our attacks and discuss its scope.

Hardware Setup. We used a Raspberry Pi 2 (900MHz quad-
core ARM CPU with 1GB memory) as the attack device, as
shown in Figure 7. It runs Raspbian, a customized Linux OS.
Also, a CSR8510 Bluetooth USB dongle is attached because
no built-in Bluetooth chip is on Raspberry Pi 2. In practice, a
bare-metal device equipped with low-cost Bluetooth chip [9]
is sufficient to launch our attacks. The smartphone used as the
host is Google Pixel 2 equipped with Android 8.1.

Implementations. We implemented a prototype of attack
program (for Raspberry Pi 2) with around 1,100 Python lines
of code. Our implementation was mainly based on the Py-
Bluez [16] package which encapsulates the build-in BlueZ [12]
(Linux Bluetooth protocol stack) of Raspbian and could man-
age the system Bluetooth resources. The main feature provided
by PyBluez is to establish an L2CAP or RFCOMM connection.
Also, some open-source softwares or libraries are integrated
into our attack program for specific purposes. In details, the
HID attack was implemented utilizing raw L2CAP channel
directly. To the PAN attack, tcpdump [18] and dnsmasq [13]
are used to sniff network traffic and set up DHCP/DNS servers.
In the HFP attack, we used pulseaudio [15] to handle the
audio processing and ofono [17] to verify the feasibility of this
attack. In the real attack, we used raw RFCOMM to achieve
it.

Besides, a malicious Android app is needed to assist
launching the BadBluetooth attack. Its functionality is simple,
mainly for connecting to the Bluetooth device. We invoked
Android hidden APIs to implement such a requirement, as
illustrated in Table V.
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TABLE V: Attack Implementations on Android

Attack Invoked APIs
HID BluetoothInputDevice.connect()

PAN BluetoothPan.setBluetoothTethering()
BluetoothPan.connect()

HFP BluetoothHeadset.connect()

TABLE VI: Attack Results

Phone Brand OS Vulnerable

Google Pixel 2 AOSP Android 8.1 Yes
Google Nexus 6 AOSP Android 7.1 Yes‡

Google Nexus 6 AOSP Android 6.0 Yes‡

Sony Xperia XZs Sony Official Android 8.0 Yes‡

Samsung Galaxy S7 Samsung Official Android 7.0 Yes‡

Huawei P10 Huawei Official Android 8.0 Yes‡∗

Meizu M3 Note Meizu Official Android 5.1 Yes‡∗

‡:Exclude Network Consumption Attack
∗:Exclude Voice Command Injection Attack

Scope of Attacks. To evaluate the scope of our attacks, we
selected the other 6 Android phones equipped with different
Android OSes (from Android 5.1 to the latest Android 8.1)
and tested the attacks against them. In our experiment, Google
Voice Assistant is only available on the phones equipped
with Google Service Framework (GSF). Therefore, the voice
command injection attack was not tested on Huawei P10 and
Meizu M3 Note. Besides, we found the WRITE_SETTINGS
permission is needed to launch network consumption attack
except Google Pixel 2 (Android 8.1). Except for the above
two attacks, all the other attacks were successfully launched
on all phones as listed in Table VI.

VII. PROFILE BINDING FOR ANDROID

The design flaws of the Bluetooth stack and the BadBlue-
tooth attacks described in this paper should be fixed timely. In
this section, we propose a lightweight solution named Profile
Binding for Android, which provides a fine-grained control for
the Bluetooth profiles and better visibility of profiles to user.

A. Overview

The high-level idea of our protection mechanism is to
enhance the control of Bluetooth profiles and prevent the
unapproved changes of profiles. In particular, we bind the
device with a permitted profile list and prohibit other profile
connections. In practice, when processing a pairing request, the
system will prompt a selection list containing the advertised
profiles of the external Bluetooth device for the user to
approve. After that, the system will create a binding policy
based on the user’s selection, and further mediate every profile
connection intent to enforce the policy checking.

As a result, this mechanism could let user vet the device
profile and prevent unnoticed profile changing. Meanwhile,
the silent pairing weakness is immediately addressed since the
pairing process could not be hidden to the user anymore.

Third-party 
Apps

Bluetooth 
Stack Kernel

Bluetooth 
Process

App 
Framework

Settings App

                 
Binding Policy 

DB

Adapter 
Service

Pairing 
Monitor

...
PAN

Profile 
Service

Connection 
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HID

Fig. 8: Overview of the Profile Binding mechanism. The black
lines show the original communication flow, while the white
blocks and blue lines represent our defense framework.

Architecture. Figure 8 illustrates the updated architecture of
the Android Bluetooth subsystem that deploys our defense
framework. This framework contains three main modules:
Binding Policy DB, Pairing Monitor and Connection Con-
troller. In the original design of the Bluetooth subsystem,
any upper-layer apps including Settings app (under user’s con-
trol) could communicate with the Android Bluetooth process
through IPC requests. For example, an app can initiate the pair-
ing using AdapterService.createBond() or establish
the profile connection through various ProfileService.

After deploying our defense, any unauthorized pairing
and connection intent will be prohibited. The pairing mon-
itor module integrated into AdapterService will create
binding policies for Bluetooth devices. Then the connec-
tion controller module performs a policy validation in each
ProfileService.

Note that, all three defense modules are integrated within
the Android Bluetooth process, which ensures every pairing
or connection intent from upper layer will be checked. All
Bluetooth Java APIs regarding pairing and profile connecting
will finally fall into this system process. Though there exist
native Bluetooth functions like createBondNative() and
connectHidNative(), it is still impossible to bypass our
defense through native code. According to our investigation as
well as mentioned in [34], only the Bluetooth process has the
privileged permission to access the underlying Bluetooth stack
directly, which is protected by the Linux user-based access
control mechanism.

Workflow. The defense is implemented around the binding
policy which is generated in the Bluetooth pairing phase.
As described before, either the phone or the device could
initiate the pairing. For the former case, both third-party
apps and the user (through Settings app) will finally in-
voke the API AdapterService.createBond() with
the target device’s MAC address. In the latter case, when
the Android Bluetooth process receives an external pairing
request, the callback function sspRequestCallback() or

11



pinRequestCallback() of AdapterService will be
called.

For both pairing cases, our defense framework will pop up
a dialog showing the profiles declared by the Bluetooth device
(extracted from its SDP records). After the user selects the
permitted profiles manually, a policy record which binds the
user’s choice (a profile list) with the device (MAC address)
will be inserted into the policy database. Therefore, our
scheme supports the user to vet the device explicitly and
prevents the silent pairing behavior. The policy associated with
each device will be validated whenever ProfileService
receives a connection intent. If the profile type indicated by
the connection appears in the policy record of the target
device, this connection request will be approved and sent to
the Bluetooth stack. Otherwise, this connection request will be
rejected. As a result, the BadBluetooth attack will be prevented
because a malicious device could not hide or change its profile
without user permission.

B. Implementation

Our proposed defense solution could prevent the BadBlue-
tooth attacks and address the current Android Bluetooth weak-
nesses in the meantime. In the following parts, we describe
the improvements to each weakness and the corresponding
technical implementations of each module.

Pairing Monitor (Weakness #1, #2, #4). The pairing monitor
module inspects both the incoming and outgoing pairing
requests. Then it fetches the device SDP to generate the profile
candidate list. After that, as shown in Figure 9, it presents a
multi-choice dialog for user confirmation. We also remove the
original system dialog (if it exists) and merge with ours to
enhance the user experience. Finally, we save the permitted
profiles as a bitmap associated with the device using the
Settings.Secure storage, which cannot be modified by
third-party apps. Through this approach, we prevent silent
pairing and provide a fine-grained control method for users.

Connection Controller (Weakness #1, #2, #5). This module
locates profile by ProfileService to enforce the policy
validation. We adopt the whitelist approach to restrict the
connection. Specifically, only if the device (MAC address) is
registered in the policy database and the desired profile is set
to be allowed, this connection could pass through. Otherwise,
it gets denied immediately. Moreover, to unpair a device, the
Adapter.removeBond() will be invoked. In this case, we
will remove the device policy record accordingly.

Settings App (Weakness #1, #3). To enhance the usability
for users, we also create the updateProfile method on
the policy database and only expose it to the Settings app
(protected by privileged permission). Therefore, the user could
adjust the profile preference (binding policy) later. Moreover,
to provide more meaningful information and reveal potential
risk, we modify the Bluetooth icon mechanism. In our scheme,
the device icon is chosen by its “behavior”. Specifically, it is
always the job of supporting profiles of a device to determine
the icon. If a device claims more than one profile, the most
“dangerous” one will be presented. We define the danger level
as: HID > PAN > HFP > Others.

Fig. 9: Pairing dialog example of our defense. This dialog is
shown when a pairing process happens.

C. Defense Coverage

As discussed in Section V-D, for some profiles like OPP,
the device may initiate the connection without broadcasting
in SDP. It is out of the scope of our defense, because, in the
original mechanism of the Android Bluetooth stack, it will
notify the user appropriately. Alternatively, our scheme can
unify all profiles by showing them together at the pairing (no
matter the device claims or not). However, such design is not
user-friendly as a long list will be shown to the user every
time. So, we did not follow this approach.

D. Evaluation

To evaluate the defense effect and corresponding overhead,
we conduct several experiments on Google Pixel 2, which has
a 2.35 GHz processor and 4GB memory with our modified
AOSP Android 8.1.

Effectiveness. To examine the effectiveness of the profile
binding mechanism, we launched all the attacks described in
Section V on the phone. We found that all the pairing process
is monitored and prompted to users, and only explicitly granted
profiles can be connected. Therefore, the BadBluetooth attack
is completely mitigated by our defense framework.

Performance. Pairing to an external device is adjusted to be
noticed by the user, and our system should not cause prominent
delay of UI-transition. In the meantime, the performance of
normal operations should not be impacted. Given that the
policy validation is supposed to be most time-consuming
among all the introduced components, we instrumented the
connect() methods and measured the execution time delay
for certain profile connection (HID, PAN, and HFP). Our
measurement process excludes the native function execution.
For each profile connection, we conducted the test 10 times.
The results are shown in Table VII. We can see the delays
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TABLE VII: Profile connection evaluation. (mean/std)

ProfileService Class Original
(µs)

Defense
(µs)

Delays
(µs)

Total∗
(µs)

HidService 494.9/63.0 605.5/49.0 110.6 2546.0/589.4

PanService 235.8/45.8 460.4/43.1 224.6 1890.5/420.5

HeadsetService 473.5/62.4 522.2/66.5 48.7 2359.3/326.1

∗:From upper-layer API call to connection completion (original Android
OS).

are from 48.7µs to 224.6µs, which is hardly perceivable.
Comparing with the total time cost (from upper layer API
calls to connection completion), the delay is less than 12%.

VIII. DISCUSSION

We first discuss the limitations of our attack in this section.
Then we describe other adversary models to be considered
to expand BadBluetooth attack. In addition, we believe the
weaknesses we discovered are not just limited to a single
device or a single OS. Therefore, in the long run, the protection
should not only rely on the platform-specific implementations
but also need to reconsider the design of Bluetooth stack.

Responsible Disclosure. Before the submission, we have
reported our findings to the Android security team responsibly.
They acknowledged the problems and are developing the
corresponding solution. We will work further with them to
better understand the issues underlying Bluetooth design and
develop new defense mechanisms accordingly.

Limitations and Extensions of BadBluetooth. Our adversary
model requires both a malicious device and a colluded app to
successfully launch the BadBluetooth attack. Here we discuss
other scenarios when some components are not controlled
by attacker initially. If we assume only the malicious app is
installed on the victim smartphone, then the app is able to
discover and exploit nearby devices through Bluetooth channel.
For example, a vulnerable Bluetooth device (e.g., has Blue-
tooth driver or application code bugs) may be compromised
to install malicious profiles or remotely controlled by the app.
In another example, the firmware updating process could be
leveraged to compromise a Bluetooth device (as mentioned in
Section IV). As a result, the attack is still feasible when there
are vulnerable Bluetooth devices.

We implemented the attacks using Raspberry Pi 2, a dedi-
cated device as the Bluetooth peripheral. However, we found
the host like smartphone itself could also be programmed like
an external device since its underlying Bluetooth controller has
the same capabilities. The difference is that an app located in
the user space can only access limited APIs provided by the
OS. Through taking advantage of smartphone Bluetooth stack,
attacks are still possible without a physical device, which leads
to a more general threat model. For example, we note that
future Android version plans to bring the HID device ability
to normal app [26]. As a result, an app might be able to make a
phone behave like a mouse or a keyboard. Therefore, it brings
the risk that a malicious app controls its host phone to attack
another connected phone through the Bluetooth channel.

Future Directions. Firstly, we plan to investigate the attack
feasibility of above mentioned app-based BadBluetooth. Be-
sides, Bluetooth firmware updating is also an appropriate entry
point to study Bluetooth security. We will consider them as
future directions.

In this work, we mainly focused on Android platform.
However, the exposed weaknesses and problems may still
exists on other OS platforms like iOS, Windows or Linux. For
example, through a preliminary study on these platforms, we
found none of them provides a good solution to the UI issue.
Windows relies on the CoD number instead of the real profiles.
iOS does not display icons when scanning nearby devices, and
some Linux versions use a unified Bluetooth icon for all types
of devices. Therefore, users may have to face difficulties in
figuring out the real identity of a Bluetooth device. What is
more, the profile authentication problems could still exist due
to the vague Bluetooth specifications. Similar to the attacks on
Android, a malicious insider could leverage the potential flaws
to launch attacks. The complete attack implementations rely
on the specific Bluetooth resource management mechanisms
on different platforms. Therefore, it would also be a potential
research direction to study in the future.

Bluetooth Design. Though the concrete attacks could be
mitigated, the fundamental design weaknesses discovered in
this paper cannot be addressed by Android itself. We believe
these design weaknesses should be fixed on Bluetooth specifi-
cations in the long run. Looking through the whole Bluetooth
specification, it puts many efforts to the functional diversity,
transmission performance, and so forth. However, the security
requirement is neglected to some extent and mainly relies on
the implementation of device vendors.

We believe it is not a correct understanding that the
Bluetooth device or host should be treated as one single
entity in the current Bluetooth standard. The reason is that the
modern smart device like smartphone involves multiple parties
and could play a role of the platform for the installed apps
which could share all Bluetooth resources. Also, we believe
the profile-level authentication is necessary, and some kinds
of standard verification procedure should be added.

Moreover, the device name and displayed icon is usually
the only indicator for end users to distinguish the device. As a
result, users may naively trust a device based on such indicator
when doing pairing or connection operations. However, neither
the device name nor the icon is reliable. The OS usually shows
the icon just based on the claimed device type no matter what
profiles it contains. Therefore, we think there should be a better
mechanism to help users to verify the device.

IX. RELATED WORK

In this section, we review the previous studies about the
security issues on Bluetooth and peripheral devices.

Bluetooth Security. The early works on Bluetooth security
focused on the vulnerabilities underlying the protocols and
implementations. The early versions of Bluetooth have been
found to suffer from attacks like sniffing [40], man-in-the-
middle attack [31], PIN cracking [38], etc. On the Android
platform, Naveed et al. [34] discovered the security issue
of external device mis-bonding. The issue could enable an
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unauthorized app downloading sensitive user data from an
Android device. The similar vulnerabilities also exist on the
iOS platform [21]. Different from them, our attacks aim to
break Android system by abusing various Bluetooth profiles.
BlueBorne [19] is an attack vector discovered in 2017 which
contains 8 zero-day Bluetooth vulnerabilities across multiple
platforms. This attack could penetrate and take control over
targeted devices, even without pairing to the attacker’s device.
While, our attacks don’t rely on any software bugs.

Some recent research concentrated on the security of
Bluetooth Low Energy (BLE). For exmaple, Kolias et al. [29]
indicated that BLE Beacon devices are susceptible to a variety
of attacks, including Beacon hijacking, user profiling, presence
inference, etc. Sivakumaran et al. [39] found some BLE
devices allow unauthenticated reads and writes from third
party devices. Also, Sławomir et al. [28] demonstrated several
possible attacks on the GATT (Generic Attribute Profile) layer
of the Bluetooth stack, and Ryan et al. [36] presented several
techniques for eavesdropping BLE conversations.

In addition, some research has demonstrated the feasibility
of user tracking exploiting Bluetooth. Das et al. [23] found
majority of the fitness trackers use unchanged BLE address
while advertising, making it feasible to track users. Korolova
et al. [30] achieved cross-app user tracking through advertising
packets broadcasted by nearby BLE-enabled devices. As a
defense, Fawaz et al. [24] proposed a new device-agnostic
defense system, called BLE-Guardian, that protects the pri-
vacy (device’s existence) of the users/environments with BLE
devices/IoTs.

In this paper, we target the latest Bluetooth stack and
discover several high level design weaknesses which could lead
to attacks causing severe consequences. These design flaws are
not bounded to a specific platform or OS version.

Peripheral Devices and Security. In addition to Bluetooth,
previous works also reveal that many other peripheral devices
can be exploited to attack their host computers easily, with
USB peripherals gaining the most attention. Wang et al. [48]
introduced attacks targeting the physical USB connectivity
between a smartphone and their computers. Maskiewicz et
al. [33] presented a case study of the Logitech G600 mouse,
demonstrating the feasibility of attacking airgapped periph-
erals. More recently, Su et al. [42] exploited the electrical
properties of USB hubs and achieved crosstalk leakage attacks.

In 2014, Nohl et al. [35] proposed a comprehensive USB
attack vector named BadUSB. They showed by registering a
BadUSB device with multiple device types, it is possible to
take any action on the host without authorization. To address
this issue, Tian et al. [47] presented a defense solution named
GoodUSB. They designed a permission model and a mediator
to manage the risks during the enumeration phase of the
USB protocol. This model is based on the insight that a
device’s identity should rely on the end user’s expectation
of the device’s functionality. A series of research on the
attack and defense of USB peripherals are conducted following
this direction, including USBFILTER – a packet-level USB
firewall [45], and ProvUSB – an architecture for block-
level provenance for USB storage devices [44]. Also, Angel
et al. [20] proposed a virtualization-based solution, which
attaches peripheral devices to a logically separate, untrusted

machine. Recently, Tian et al. [46] carried out a comprehensive
survey on the research in USB security. The study suggests
most of the USB attacks abuse the trust-by-default nature
of the USB ecosystem and only a comprehensive defense
solution expanding multiple layers would success in practice.
We believe many issues residing in USB ecosystem also
exist in the Bluetooth ecosystem in similar fashions, and the
research in the Bluetooth domain could leverage the outcomes
from the USB domain.

X. CONCLUSION

Bluetooth is an essential technique for short-distance and
low-power communications and becomes more popular with
the advent of the Internet of Things. The security of Bluetooth
devices plays a critical role in protecting user’s privacy
and even personal safety. In this paper, we performed a
systematic study over the Bluetooth profiles and discovered
five design weaknesses. We further presented a series of
attacks to demonstrate the feasibility and potential damages
of such flaws on Android, including stealing information,
app controlling, network sniffing, voice command injection,
etc. Besides, we designed a defense solution on Android to
effectively prevent such attacks. Moreover, we believe these
newly discovered flaws are not just limited to a specific OS
version. Broad Android versions are vulnerable, from 5.1 to the
latest 8.1, and similar problems may also appear on other OS
platforms. These flaws are rooted from the widely incorrect
understandings and assumptions on the Bluetooth stack. We
believe they should be just the tip of the iceberg, and the
Bluetooth standard still needs a thorough security review.
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[31] D. Kügler, ““Man in the Middle” Attacks on Bluetooth,” in Financial
Cryptography, 7th International Conference, FC 2003, Guadeloupe,
French West Indies, January 27-30, 2003, Revised Papers, 2003.

[32] S. Labs, “An1045: Bluetooth over-the-air device firmware update
for efr32xg1 and bgm11x series products,” https://www.silabs.com/
documents/login/application-notes/an1045-bt-ota-dfu.pdf.

[33] J. Maskiewicz, B. Ellis, J. Mouradian, and H. Shacham, “Mouse Trap:
Exploiting Firmware Updates in USB Peripherals,” in Proceedings of
the 8th USENIX Workshop on Offensive Technologies, WOOT ’14, San
Diego, CA, USA, August 19, 2014., 2014.

[34] M. Naveed, X. Zhou, S. Demetriou, X. Wang, and C. A. Gunter, “Inside
Job: Understanding and Mitigating the Threat of External Device Mis-
Binding on Android,” in Proceedings of the 21st Annual Network and
Distributed System Security Symposium (NDSS), San Diego, California,
USA, February 23-26, 2014, 2014.

[35] K. Nohl and J. Lell, “BadUSB–On accessories that turn evil,” Black
Hat USA, 2014.

[36] M. Ryan, “Bluetooth: With Low Energy Comes Low Security,” in
Proceedings of the 7th USENIX Workshop on Offensive Technologies
(WOOT), Washington, D.C., USA, August 13, 2013, 2013.

[37] N. Semeconductor, “Updating firmware over the air,” http://infocenter.
nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.tools%
2Fdita%2Ftools%2FnRF Connect%2FnRF Connect DFU.html,
August 2018.

[38] Y. Shaked and A. Wool, “Cracking the Bluetooth PIN,” in Proceedings
of the 3rd International Conference on Mobile Systems, Applications,
and Services (MobiSys), Seattle, Washington, USA, June 6-8, 2005,
2005.

[39] P. Sivakumaran and J. B. Alı́s, “A Low Energy Profile: Analysing
Characteristic Security on BLE Peripherals,” in Proceedings of the
Eighth ACM Conference on Data and Application Security and Privacy
(CODASPY), Tempe, AZ, USA, March 19-21, 2018, 2018.

[40] D. Spill and A. Bittau, “BlueSniff: Eve Meets Alice and Bluetooth,” in
Proceedings of the First USENIX Workshop on Offensive Technologies
(WOOT), Boston, MA, USA, August 6, 2007, 2007.

[41] P. Stone, “Consider blocklisting qualcomm csr firmware update service,”
https://github.com/WebBluetoothCG/registries/issues/20, March 2017.

[42] Y. Su, D. Genkin, D. C. Ranasinghe, and Y. Yarom, “USB Snooping
Made Easy: Crosstalk Leakage Attacks on USB Hubs,” in Proceedings
of the 26th USENIX Security Symposium (USENIX-SEC), Vancouver,
BC, Canada, August 16-18, 2017., 2017.

[43] C. Support, “Cs-327746-rp-1-training and tutorials - csr over-the-
air-update,” https://www.csrsupport.com/download/49800/CS-327746-
RP-1-Training%20and%20Tutorials%20-%20CSR%20Over-the-Air-
Update.pdf, March 2017.

[44] D. J. Tian, A. M. Bates, K. R. B. Butler, and R. Rangaswami, “Provusb:
Block-level provenance-based data protection for USB storage devices,”
in Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (CCS), Vienna, Austria, October 24-28, 2016,
2016.

[45] D. J. Tian, N. Scaife, A. M. Bates, K. R. B. Butler, and P. Traynor,
“Making USB Great Again with USBFILTER,” in Proceedings of the
25th USENIX Security Symposium (USENIX-SEC), Austin, TX, USA,
August 10-12, 2016., 2016.

[46] D. J. Tian, N. Scaife, D. Kumar, M. Bailey, A. Bates, and K. Butler,
“SoK: “Plug & Pray” Today – Understanding USB Insecurity in
Versions 1 through C,” in Proceedings of the 39th IEEE Symposium
on Security and Privacy (Oakland), San Francisco, CA, USA, May 21-
23, 2018, 2018.

[47] J. D. Tian, A. M. Bates, and K. R. B. Butler, “Defending Against
Malicious USB Firmware with GoodUSB,” in Proceedings of the
31st Annual Computer Security Applications Conference (ACSAC), Los
Angeles, CA, USA, December 7-11, 2015, 2015.

[48] Z. Wang and A. Stavrou, “Exploiting Smart-Phone USB Connectivity
For Fun And Profit,” in Proceedings of the 26th Annual Computer
Security Applications Conference (ACSAC), Austin, Texas, USA, 6-10
December 2010, 2010.

[49] C. Xiao, “Update: Xcodeghost attacker can phish passwords and open
urls through infected apps,” http://researchcenter.paloaltonetworks.com/
2015/09/update-xcodeghost-attacker-can-phish-passwords-and-open-
urls-though-infected-apps/, September 2015.

15


