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Abstract—Many new specialized hardware components have
been integrated into Android smartphones to improve mobility
and usability, such as touchscreen, Bluetooth module, and NFC
controller. At the system level, the kernel of Android is built
on Linux and inherits its device management mechanisms.
However, the security implications surfaced from the integration
of new hardware components and the tailored Linux kernel
are not fully understood. In this paper, we make the first
attempt to evaluate such implications. As a result, we identify a
critical information leakage channel from the interrupt handling
mechanism, which can be exploited to launch inference attacks
without any permission. On Android, all reported interrupts are
counted by Linux kernel and the statistical information is logged
in a system file /proc/interrupts, which is public to any
process. Such statistical information reveals the running status of
all integrated devices, and could be exploited by attackers to infer
sensitive information passing through them. To assess this new
threat, we propose a general attack approach – interrupt timing
analysis and apply it to interrupt logs. As showcases, we present
two concrete inference attacks against user’s unlock pattern
and foreground app status respectively. Through analyzing the
interrupt time series produced from touchscreen controller,
attacker’s chance of cracking user’s unlock pattern is increased
substantially. The interrupt time series produced from Display
Sub-System reveals unique UI refreshing patterns and could
be leveraged as fingerprints to identify the app running in the
foreground. Such information can serve as the stepping stone for
the subsequent phishing attacks. The experiment results suggest
our inference attacks are highly effective, and the risks should
be mitigated immediately.

Index Terms—hardware interrupt; timing analysis; procfs;

I. INTRODUCTION

Smartphone plays the important role of personal assistant

and data container in people’s daily life. Different from the

traditional desktop platforms, mobile OSes need to suffice

the new requirements of mobility and usability with limited

computing resources. New specialized hardware components,

e.g., touchscreen and NFC transmitter, are manufactured and

integrated to this end.

Previous research investigated the security threats coming

from particular hardware components, like accelerometer [1],

[2] and camera [3], [4]. These attacks are mainly based on

reading data directly generated by the targeted hardware.

However, none of them looked into the threats introduced

by the highly tailored software components, especially from

the angle of kernel. In this paper, we make the first attempt

to evaluate the security implications of the integration of

specialized hardware and tailored kernel on Android.

Hardware Interrupt. As the most popular mobile platform,

Android is built on Linux kernel and enhanced to adapt to the

requirement of mobility. Android also inherits the interrupt
mechanism from Linux, which is designed for the efficient

communication between the CPU and external devices. When

new hardware events (e.g., user touching the screen) come, the

corresponding hardware device (e.g., touchscreen controller)

sends a signal to ask OS for immediate processing. As a

response, the CPU alters the sequence of instructions in

execution to handle this event with high priority.

Our Findings. All reported interrupts are counted by OS,

and the statistical information is stored in a system file

/proc/interrupts (Fig. 2 shows an example), which

is public to any process. Such information reflects the real-

time running status of devices and it could be exploited by

attackers to infer information that passes through, including

user’s sensitive data and interactions with the devices. In

this paper, we propose a novel attack approach – interrupt
timing analysis. Through analyzing the time series of interrupts

occurred for a particular device, user’s associated sensitive

information could be inferred by the attacker without any

permission.

The root cause of this new security threat comes from the

ill-conceived integration of specialized hardware components

and tailored kernel. Unlike the traditional desktop platforms,

smartphone is equipped with many peripheral devices, such

as touchscreen, Bluetooth module, NFC controller. These

newly included devices usually interact with the user directly

and bring new kinds of interrupts, which means new attack

channels. However, Android still uses the built-in method of

Linux kernel for interrupt auditing without any change. The

interrupt information channel was once mentioned in previous

work [5], [6], but they doubted that it could be used for

effective attacks and no concrete attack method or result was

given. On Android, we present two concrete inference attacks
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through interrupt timing analysis, against user’s unlock pattern

and foreground app respectively.

Inferring Unlock Pattern. Touchscreen is an indispensable

component for nearly all smartphones. A lot of user’s sensitive

information passes to the system through the movement on

touchscreen. We use the Android graphical password scheme

– unlock pattern as an example to demonstrate the feasibility

of our proposed interrupt timing analysis. We find the finger

movements on the screen correlates to the amount of interrupt

occurred for touchscreen controller. Specific to unlock pattern,

the interrupt amount reflects the length of swipe line indirectly.

After gathering its time series, we leverage Hidden Markov

Model and probabilistic analysis to infer the possible unlock

patterns. Our experimental study shows, even without any

knowledge about the victim (i.e., the user could select any

pattern from all 389,112 combinations), our attack could

reduce more than 90 % search space for just one guess.

Inferring Foreground App. The information about app run-

ning in the foreground is quite sensitive and should be kept

away from unauthorized apps to prevent phishing attacks.

Starting from Android 5.0, Google has enforced a system-

level permission REAL_GET_TASKS [7] to prevent such

information leaking to third-party apps, which nonetheless can

be bypassed by our attack. We observe that, while launching

an app, the foreground UI is continuously refreshed. The

refreshing patterns of apps during launching could be used

to identify this app. Also, in the course of UI refreshing, the

interrupts for Display Sub-System (DSS) occur with the same

frequency. It motivates us to model the UI refreshing process

through interrupt time series and detect the foreground app.

Combined with machine learning techniques, we achieve such

attack without any permission, and the result shows an attacker

has 87 % success rate to identify the foreground app from a

set of 100 candidates within one attempt.

Contributions. We summarize this paper’s contributions as

below:

• New Attack Surface and Approach. We discover that the

interrupt log file (/proc/interrupts) of Android

could leak user’s sensitive information. To exploit such

information, we propose a new general attack approach

– interrupt timing analysis.

• New Inference Attacks. We present two practical inference

attacks to infer user’s unlock pattern and the app running

in the foreground. The attack channels are based on

the interrupt time series for touchscreen controller and

Display Sub-System.

• New Techniques. A set of novel schemes are developed

to model the inference target, including unlock pattern

modeling, gram transition inference, improved time series

similarity calculation, etc.

• Implementation and Evaluation. We implemented the

attack prototype apps and evaluated them under the real-

world settings. Our experimental studies demonstrate that

attacking through interrupt timing side-channel is feasible

and highly effective.

Roadmap. The rest of the paper is organized as follows:

Section II introduces the background of hardware interrupt

and explains why information could be leaked from interrupts

on Android. Section III outlines the high-level ideas of our

two concrete attacks. Section IV shows our attack on inferring

unlock pattern. Inferring the foreground app is introduced in

Section V. In Section VI, we discuss the leaks from other

interrupts and propose some defense solutions. Related works

are reviewed in Section VII. Section VIII concludes this paper.

II. BACKGROUND

Hardware interrupt was introduced as an efficient mech-

anism for the communication between high-speed CPU and

low-speed external devices since the early age of modern

computer. This mechanism is embraced by all mainstream

computing platforms, including the mobile ones like Android.

In this section, we briefly overview the design of hardware

interrupt and Android, and then explain why the leaks from

interrupts on Android could lead to inference attacks.

A. Hardware Interrupt

In modern computing architecture, CPU is responsible for

managing the connected hardware devices and initiating the

handling procedures defined by operating system (OS) for

different hardware events. Hardware interrupt mechanism is

proposed to enable timely event management when one CPU

has to serve many devices (e.g., mouse, keyboard, and network

card). When a device requires immediate attention from OS,

e.g., when the volume key is pressed or keyboard is typed, an

electronic signal will be emitted from the device [8]. Such

electronic signal is called Interrupt Request (IRQ) and is

passed to the corresponding programmable interrupt controller

(PIC) through IRQ lines. PIC is a hardware circuit which

bridges I/O devices and CPU. When it receives an IRQ, it will

notify CPU to process this IRQ immediately. In response, CPU

will halt the current execution thread, preserve the execution

context, and invoke the registered interrupt handler. Such a

process that alters the sequence of instructions executed by

CPU is called interrupt. When the execution of the interrupt

handler is completed, the preserved context is restored and

halted execution is resumed. This interrupt mechanism is

particularly useful for handling hardware I/O events which

are usually urgent but triggered nondeterministically [9].

B. Android Platform

In this work, we investigate the security issues regarding

hardware interrupt on Android platform. Android system is

built on Linux kernel, and new layers are introduced in

addition to suffice the functionality requirements for mobile

devices [10], [11]. The whole architecture can be sliced into

6 layers, which can be further classified into two categories

based on their degrees of dependence on hardware. Fig. 1

illustrates the layers of Android system, and the each layer is

briefly described below:
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Hardware Abstraction Layer
Graphics, Audio, Camera, Bluetooth, GPS...

Linux Kernel
Display Driver, Camera Driver, Bluetooth 

Driver, Shared Memory Driver...

Applications

Application Frameworks
 

Libraries

Hardware Devices
Touchscreen, LCD Panel, Accelerometer, 

Camera, Light Senser...

Hardware 
independent

Hardware 
dependent

Fig. 1. Android layered framework

1) Hardware Dependent Layers:
• Hardware Devices are the physical components of an

Android smartphone, including touchscreen, LCD panel,

camera, etc.

• Linux Kernel is the foundation of Android system.

Compared with the original Linux kernel, a set of “kernel

enhancements” are patched to provide tailored support for

Android system. For instance, an Android-specific mech-

anism Binder is integrated into the kernel to facilitate

interprocess communication [12].

• Hardware Abstraction Layer (HAL) defines the func-

tional interfaces that are required to be implemented by

hardware device drivers. Through this layer, applications

and system libraries can operate hardware devices man-

ufactured by different vendors using unified APIs.

2) Hardware Independent Layers:
• Libraries layer provides libraries written in native code

(C/C++) that directly access Linux kernel and HAL. In

addition, Android Runtime, including the mobile applica-

tion (app) container Dalvik VM, is implemented within

this layer.

• Application Frameworks include a set of system ser-

vices that can be shared and reused by mobile apps. For

example, Content Provider allows data publishing and

sharing between apps.

• Applications layer stacks the mobile apps. It comprises

both system apps which are shipped together with An-

droid OS and third-party apps installed by user.

Under the Android framework, hardware interrupt is raised

from the hardware devices layer and responded by the Linux

kernel layer. The interrupt flows initiated from specific devices

are shown in Section IV-A and V-A.

C. Information Leaks from Interrupts on Android

The framework for interrupt processing and auditing on

Android resembles other Linux-based systems. When an IRQ

is issued and handled by CPU, it is logged by a system

counter and the statistical information is stored in a system file

/proc/interrupts. The access attributes for this file is

-r--r--r--, which means it can be read by any process, no

matter if it belongs to system apps or third-party apps. Fig. 2

shows the partial content of the file dumped from Google

Nexus 6 with Android 5.1.1 installed. The first column lists

the unique IRQ (line) numbers. Each number is reserved by

OS for one type of event and is associated with one interrupt

handler. The following columns show how many interrupts

have been issued to each CPU core since the starting of system

(power on for Android). Since Google Nexus 6 is equipped

with a 4-core CPU (Qualcomm Snapdragon 805), the interrupt

counts are listed in 4 columns. The number of columns varies

depending on the number of active CPU cores. In general,

Linux kernel prefers to handle interrupts on the first CPU core

in order to maximize cache locality [8]. As shown in Fig. 2,

the column CPU0 has the largest interrupt count for most IRQ

numbers. The penultimate column shows the name of PIC

assigned for handling one type of IRQ. One PIC could be

shared by multiple devices for transmitting IRQ. The devices

that send out the specific IRQ are listed in the last column.

Since the statistical information of interrupt reflects the

running status of devices and is also public, it could be abused

by attackers to infer the user’s actions on targeted devices,

causing information leaks. Previous research has mentioned

the potential privacy risks related to interrupt [5], [6], but none

of them presented concrete attacks leveraging this channel.

In particular, Jana et al. [5] stated that “the feasibility of this
attack remains open”. For the traditional desktop environment,

though more than 10 different types of interrupts can be

monitored, most of the associated devices do not directly

interact with users, e.g., system timer. For the remaining ones,

the information leaked is rather limited. As an example, the

interrupt from audio codec could leak whether an earphone

is plugged, which, however, cannot be used to infer more

sensitive information - the played sounds. What’s more, the

interrupt counter is used globally rather than dedicated to a

single process, which makes the sensitive information hard to

be discerned.

The development of modern mobile phones, however, offers

new alternatives to exploit interrupt information for attacks.

The set of integrated peripheral devices on smartphones keeps

growing to meet user’s new expectations, and each new device

brings in new kind of interrupt (e.g., NFC controller). For

the Google Nexus 6 phone we tested, already more than 100

IRQ numbers are reserved by OS. Most of the newly included

devices directly interact with the user, and the potential attack

surface is significantly broadened. Another favorable condition

for attacks is that applications run less parallel in mobile

system than in desktop system. Especially for Android phones,

only one application is allowed to run in the foreground.

Therefore, the signals from user’s actions or applications of

interest are more distinguishable. As shown in our concrete

attacks, inference attack abusing leaks from interrupt is not

only feasible on Android but can also lead to grave security

and privacy issues, i.e., leaks of unlock patterns and applica-

tion running status.
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           CPU0       CPU1       CPU2       CPU3        
 20:      29825       9674       8921       8102       GIC  arch_timer 
 25:          0          0          0          0       GIC  MSM_L1 
 33:       2258          0          0          0       GIC  bw_hwmon 
 34:          0          0          0          0       GIC  MSM_L2 
 35:          0          0          0          0       GIC  apps_wdog_bark 
 39:       2722       1754       1635       1389       GIC  arch_mem_timer 
 61:         80          0          0          0       GIC  mxhci_hsic_pwr_evt 
 64:       5573          0          0          0       GIC  xhci-hcd:usb1 
 65:       4519          0          0          0       GIC  kgsl-3d0 
 74:          0          0          0          0       GIC  msm_iommu_nonsecure_irq 
 75:          0          0          0          0       GIC  msm_iommu_secure_irq, msm_iommu_secure_irq 
 76:        548          0          0          0       GIC  msm_vidc 
 
... (Omit some lines) 
 
436:          0          0          0          0   msmgpio  bluetooth hostwake 
437:         22          0          0          0  qpnp-int  smb135x_chg_stat_irq 
438:          1          0          0          0   msmgpio  max170xx_battery 
439:        129          0          0          0   msmgpio  atmel_mxt_ts 
440:         48          0          0          0   msmgpio  bcm2079x 
 
... (Omit some lines) 

PIC name Device name 

The amount of interrupts occurred 

IRQ number 

Fig. 2. Example of /proc/interrupts, dumped from Google Nexus 6.

Interrupt on Other Platforms. To fully understand the attack

surface, we also investigate the attack feasibility on other

platforms. In Mac OS X / iOS environment, a similar interrupt

mechanism is implemented, but the statistical information of

interrupts is not exposed to the processes (no public /proc
filesystem is available due to the different kernel-level imple-

mentation derived from BSD) [13]. On Microsoft Windows

platforms (both desktop and mobile), the design principle of

interrupt handling is similar, but the implementation is quite

different. For instance, the Trap Dispatching mechanism [14]

is incorporated to achieve more flexible interrupt processing.

On the other hand, different from Mac OS X / iOS platforms,

the statistics of interrupt are public. Command-line tools such

as Xperf [15] can be used to retrieve such information, which

is usable for the interrupt attacks.

Software Interrupt. Another kind of interrupt is software

interrupt, which is used by programs for immediate com-

munication with CPU. Software interrupt is triggered under

two scenarios [9]: 1) an exception (or trap) which cannot be

handled by the program alone is raised. 2) special instruction

causing interrupt is executed (e.g., to request data from disk

controller). The corresponding statistics are logged in a public

file /proc/softirqs. Yet, whether software interrupt can

be used for inference attacks is unclear, since the information

is more coarse-grained (aggregated from all processes) and

less user-centric. Therefore, we focus on hardware interrupt

in this work.

III. ATTACK OVERVIEW

Through examining the interrupt statistics on Android, we

identified two types of interrupts that are both tied to user’s

behaviors and showing distinguishable patterns according to

different user’s actions. The first type is produced from

touchscreen when pressed and released by the user, while the

second one is generated accompanying with UI refreshing. By

continuously monitoring these interrupt statistics, we show it

is feasible to infer user’s unlock pattern and the app started by

user. In this section, we introduce the mechanisms regarding

unlock pattern and UI refreshing together with the high-level

ideas of our attacks.

A. Inferring Unlock Pattern

Touchscreen becomes an indispensable component for

nearly all smartphones today. A large amount of user’s sen-

sitive information passes through the touchscreen, including

text messages and unlock pattern. The secrets can be indirectly

inferred from the interrupt emitted from touchscreen, and we

use unlock patterns as an attack showcase.

Android Unlock Pattern. Unlock pattern is incorporated into

Android as an alternative to overcome the usability issue

involving traditional authentication schemes, like text-based

password. When a user intends to unlock her phone, a 3× 3
matrix (totally 9 dots) is displayed on the screen, and the user

is required to draw her unlock pattern through a series of lines

which connect the dots in a certain order (we call them swipe
lines). Compared to the traditional authentication schemes,

unlock pattern is easier to remember and input. Therefore,

it is widely adopted by customers [16]. Fig. 3 shows the lock

UI on Android 5.1.1 (AOSP) and one unlock pattern.

Each dot in the lock UI is mapped to a number (see Fig. 4),

and the number sequence for an unlock pattern is called

pattern password. For instance, the pattern password of the

unlock pattern illustrated in Fig. 3 is 41235789. For the

same geometric shape of unlock pattern, drawing in different

directions (e.g., 14789 v.s. 98741) results in different pattern

passwords.

A valid pattern lock should satisfy 4 requirements below:

1) At least 4 dots must be used.

2) At most 9 dots can be used.
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Fig. 3. UI for inputting unlock
pattern on AOSP Android 5.1.1.

1 2 3

4 5 6

7 8 97 8 9

1

4

77 x

y

Fig. 4. Unlock pattern modeling.

3) No dot can be used more than once.

4) Only straight line is allowed and the dots not visited

before cannot be jumped over.

Even after the above restrictions are applied, there still

exist 389,112 valid combinations [17], making the chance for

successful brute-force attacks very low. Android also enforces

strong protection mechanisms to keep the pattern password out

of the reach of adversary. The pattern password is stored at

/data/system/gesture.key and is only accessible to

the OS itself (file attribute: -rw-------). The raw data of

user’s touch traces are recorded in /dev/input/deviceX
(X is an integer and varies for different phones). This file is

only open to system-level processes belonging to the input
user group. Therefore, it is impossible to directly steal the

password unless the root privilege is obtained. Instead, our

attack aims to infer the user’s unlock pattern through a zero-

permission third-party app which is much stealthier.

Unlock Pattern and Interrupt. When user’s finger touches

and swipes on the screen, a sequence of interrupts will be

produced, which is similar to moving the mouse on desktop.

Particularly, in this case, different lines could result in different

interrupt sequences and a gap could be observed between

lines’ interrupts. As an example illustrated in Fig. 5, when

drawing the pattern 41235789, the amount of interrupts

observed from the line 3 to 7 is more than other lines, and

gaps occur at dot 1, 3 and 7.

The correlation between interrupts and finger movement

motivates us to model unlock pattern through interrupt timing

analysis. When the interrupt time series is gathered, we first

seek to segment it into sequences of incessant interrupts. For

each sequence, we look into the observed amount of interrupts

and map it to one type of swipe line (e.g., short v.s. long). By

combining the inferred swipe lines, we are able to recover the

pattern password with decent probabilities.

B. Inferring foreground app

The information about the app running in the foreground

(or foreground app) should be kept away from unauthorized

apps to prevent phishing attacks. However, the name of the

foreground app can be speculated through interrupt timing

analysis. Furthermore, we found certain app’s activity exhibits

distinctive interrupt pattern, causing privacy leaks.

0 500 1000 1500 2000 2500 3000 3500
Time (millisecond)

1

Am
ou

nt
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f i
nt

er
ru

pt
 o

cc
ur

re
d

gap

7 to 93 to 71 to 34 to 1turn on the screen

swipe to enter unlock pattern

Fig. 5. Interrupt time series for pattern 41235789 inputted by a participant.
Within 1 ms, at most 1 interrupt can be observed.

Foreground App Detection. The information of foreground

app is considered sensitive. If leaked, malicious apps can

exploit it for phishing attacks. For example, when a ma-

licious app identifies that an e-banking app is started, it

can immediately pop up a phishing window covering the

foreground with the same UI as the login page of the e-

banking app and fool the user to type her credentials in the

fake UI [18], [19]. To mitigate this threat, Google mediated

the access to such information through permissions. For the

early versions of Android, an app with GET_TASKS permis-

sion granted can invoke the getRunningTasks() API to

learn the foreground app. Since Android 5.0, Google replaced

the GET_TASKS permission with a nonpublic system-level

permission REAL_GET_TASKS [7], which blocks the access

from third-party apps.

UI Refreshing and Interrupts. When an app is launched

by the user, a system service ActivityManagerService
will start the default main activity of this app and then the

functions onCreate(), OnStart(), and OnResume()
are executed sequentially for app loading. The process also

happens for Activity transition after running. At the low

level, the foreground UI is continuously refreshed during these

processes. An app could choose the way UI is refreshed, and

we elaborate three popular UI refreshing related techniques

below:

• Splash Screen. It is usually shown when an app is started

by the user. In most cases, a splash screen displays the

promotion information (e.g., logo) or running status (e.g.,

network connectivity or data loading progress).

• Asynchronous Loading. When large data is being loaded

from remote servers or internal storage during UI transi-

tion, asynchronous loading technique is leveraged, which

separates UI rendering and data loading into isolated

threads. Therefore, UI is continuously updated instead

of being blocked during data loading process.

• Animation. App developers can choose animation ef-

fects during activity switching. Popular effects include

fading in, zooming, wiping, etc. Besides, the anima-

tion is also used for rendering control objects such as

ImageButton.

Fig. 6 shows the launching process of a popular file sharing

app SHAREit [20]. The app first displays a splash screen and
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Fig. 6. The launching process of SHAREit. The interrupt time series is shown
in the left top of Fig. 7.

the gradually transit the UI to the main Activity with fading

animation effect.

In the course of UI refreshing, Display Sub-System (DSS)
keeps notifying Android system through sending IRQs, and

our observation suggests the UI layout and refreshing strate-

gies usually yield distinct interrupt time series. One example

is splash screen, for which showing static image will generate

much fewer interrupts than showing animation. An app doing

asynchronous loading usually refreshes UI more frequently,

which leads to continuous occurrences of interrupts.

Fig. 7 shows the interrupts patterns for 6 apps during

loading (including e-banking, anti-virus, system pre-installed

apps, etc.). The x-axis is the time sequence with 50ms as the

interval. The y-axis is the aggregated amount of interrupts

observed during the 50ms interval. Their patterns can be

told apart even just through human eyes. This phenomenon

motivates us to model the UI refreshing process through

interrupt time series and detect the foreground app.

C. Adversary Model

We assume the adversary here has tricked the victim to

install the malicious app targeting secret unlock pattern or app

UI information. The malicious app requires “zero permission”

from system for the inference attacks, as reading interrupt

statistics is unfettered. Such app is difficult to be detected by

mobile anti-virus software or the user during installation time.

In addition, our later evaluation on performance shows battery

and time consumption is negligible. Thus, it is also hard to be

observed by the user at runtime.

For the first attack, either the raw data of interrupts or the

inferred unlock pattern is sent out to the remote server of

adversary, based on where the analysis happens. Normally,

this requires the INTERNET permission to be granted. But as

discovered by previous works [21], certain covert channels can

be exploited (e.g., URI loading by browser) and the permission

requirement can be ignored. For the second attack, the UI

information can be used locally for subsequent attacks, like

phishing.

IV. UNLOCK PATTERN INFERENCE ATTACK

In this section, we present the attack inferring user’s An-

droid unlock pattern. We first elaborate the internal mecha-

nisms of event processing on touchscreen. Then, we introduce

our approach in unlock pattern modeling and data processing.

In the end, we evaluate the effectiveness and performance of

our approach.

A. Touchscreen Controller and Interrupt

A set of mechanisms have been implemented in Android

system and the underlying devices to support the process from

electrical signal generation from user’s finger touching to event

dispatching to the receiving app. The complete touch event

processing flow is introduced in Appendix VIII-A, and here

we only describe mechanism regarding interrupt.

IRQ from Touchscreen. Currently, most touchscreens use the

capacitive touch techniques to detect the change of electro-

static field from human’s finger in order to capture its move-

ment. Typically, capacitive touchscreens consist of glass as

the insulator. The human body is also an electrical conductor,

so when the human body comes into contact with the touch-

screen, its electrostatic field becomes distorted [22]. When the

finger keeps stationary on the screen, the electrostatic field

stays unchanged. An IRQ is triggered by the touchscreen

hardware when a change happens on the electrostatic field.

Therefore, a finger touching or leaving the screen will both

trigger one IRQ [23]. When user’s finger swipes upon the

touchscreen, a sequence of IRQ sequence will be produced as

the electrostatic field keeps changing (consider the movement

as continuous touching and leaving screen). The amount and

frequency of IRQ fired depend on the distance and speed

of finger’s movement. When the finger moves faster, more

IRQs will be generated, but the frequency can not exceed the

processing capability (about 135 Hz on Google Nexus 6).

Though some kinds of IRQs can be ignored by CPU, this

never happens to touchscreen due to its high priority in the

processing queue.

B. Attack Methodology

The correlation between finger’s movement on touchscreen

and IRQ inspires us to infer the unlock pattern through

monitoring the interrupt counter. As described in Section III-B,

an unlock pattern is composed of a set of swipe lines. Usually,

more interrupts can be observed from long swipe lines than

short ones. The finger usually pauses at the joint point between

two swipe lines, leading to a gap of interrupts. Therefore, by

analyzing interrupt data stream, at least partial information

on swipe lines (i.e., number and length) can be inferred.

Although the exact password pattern is not recovered, the

search space is significantly reduced, and enumerating the

possible combinations only takes dozens of attempts and

minutes of unlocking and waiting time, as shown in our later

analysis.

We divide the attack method into the following stages. 1)

The public interrupt log file is regularly sampled, and the

stream of interrupt counts are preprocessed and divided into

grams (a segment of ever-changing interrupt counts). 2) We

model the unlock pattern into the transition of states (a state

is a cluster of the swipe lines with the same length) with

probabilities. 3) The candidate combinations of states ranked

with probabilities are produced for a testing unlock pattern.
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[com.qihoo.security]

Fig. 7. Interrupt time series of 6 apps’ launching processes. The number of interrupts is aggregated in 50ms interval.

TABLE I
SUMMARY OF DEVICE NAMES FOR TOUCHSCREEN CONTROLLER

Phone Model PIC Name Device Name Device Vendor

Google Nexus 6 msmgpio atmel mxt ts Ateml
Moto Droid Turbo msmgpio atmel mxt ts Ateml
Moto Milestone 2 GPIO qtouch ts int Quantum
Sony Xperia Z3 msmgpio clearpad Synaptics
Sony Xperia ion msmgpio clearpad Synaptics
Samsung Galaxy A5 msm tlmm

v4 irq
mms300-ts Melfas

Samsung Galaxy S3 s5p gpioint melfas-ts Melfas
Samsung Galaxy S
Advance

Nomadik-
GPIO

mxt224 ts Ateml

We model and test the unlock pattern using Google Nexus

6 with AOSP Android 5.1.1 only, but the attack method also

applies to other smartphones.

Reading Interrupt Count. The interrupt time series for

touchscreen controller could be captured through monitoring

/proc/interrupts. The first issue we need to address is

to find the right entry regarding touchscreen interrupts from

the log file. Searching by IRQ number is not a viable solution,

as the IRQ number is customized by Android version or

manufacturer. Instead, we use device name to identify the entry

as it is fixed for the same phone model (atmel_mxt_ts
for Google Nexus 6). In addition, we surveyed a number

of phones and found the device name for touchscreen either

contains substring “ts” or “pad” uniquely, as summarized in

Table I. Therefore, we can use the substring pattern to find the

touchscreen log entry on new phone models. The aggregated

interrupt amount since the phone is booted can be read from

the column CPU0, as shown in Fig. 2, and we sample it at a

regular interval.

The sampling frequency of our implementation could reach

1675 Hz, which is much higher than the maximum frequency

of touchscreen IRQs (135 Hz on Google Nexus 6) to minimize

the odds of missing interrupt updates. In fact, we optimize the

data collection stage by only monitoring the interrupts during

the unlocking operation. The malicious app we built can stay

in the sleeping mode in the background and be activated only

when the screen is turned on, which can be detected by reg-

istering Android broadcast channel ACTION_SCREEN_ON.

When the broadcast ACTION_USER_PRESENT is observed,

the unlocking operation is supposed to be finished, and the

app can turn itself back into the sleeping mode.

Data Pre-processing. The sampled interrupt data stream needs

to be preprocessed before feeding to the subsequent stages for

unlock pattern inference. The steps are elaborated below:

• Data Deduplication. We split the interrupt data stream

by 1 ms interval. Since our sampling rate (1675 Hz)

is higher than 1000 Hz (1 sample per 1 ms), multiple

samples could be collected within 1 ms interval. For such

case, we keep the first data point within the 1ms interval.

• Data Interpolation. Although we use a high sampling

rate, occasionally, some changes of interrupts are still

missed, especially when heavy computing tasks are run

by CPU (around 1.8 % 1-ms intervals have no sample

data as observed from the experiments). To fill the

missing data points, we use the linear interpolation [24]

method, which has been extensively used in the area of

signal processing.

• Interrupt Increment Computation. The interrupt data ob-

tained are the aggregated values since the bootstrap of the

phone. We compute the difference of interrupts counts to

get the increment value.
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TABLE II
5 STATES OF SWIPE LINES

State Length Swipe Line Examples % of appearance in
all state sequences

L1 1 1→2, 1→4 33.81 %

L2

√
2 1→5, 2→4 24.45 %

L3 2 1→2→3, 3→6→9 10.92 %

L4

√
5 1→6, 6→7 26.64 %

L5 2
√
2 1→5→9, 3→5→7 4.18 %

• Gram Segmentation. We segment a long interrupt time

series to several grams through searching interrupt gap

which is actually the turning points between swipe lines.

According to our experiments and empirical analysis, if

the amount of interrupts in 60 ms is less than 5, we

consider it as a gap. Then we label the gram using

the accumulated interrupts increments within the time

window. For example, the interrupt time series in Fig. 5

is converted to 4-grams {28, 58, 77, 45}.

Unlock Pattern Modeling. A gram is labeled by the number

of observed interrupts, and we need to find the mapping from

it to the corresponding swipe lines. Since the length of a swipe

line is proportional to the number of interrupts, we cluster the

swipe lines by the length and the grams by the interrupt count

and build the correlation. It turns out there are 5 types of swipe

lines, associated with 5 types of grams.

For explanation, we model the unlock pattern in 2-

dimensional Cartesian coordinate system and set dot 7 as

origin point with coordinate as (0, 0), as shown in Fig. 4.

Therefore, the swipe line from dot 7 (0, 0) to dot 8 (0, 1) is

represented by a vector [0, 1] with length 1. Under this model,

all swipe lines can be clustered into 5 categories (or states),

labeled as Li, i ∈ [1, 5], which are listed in Table II. Based on

such model, every unlock pattern could be represented by a

state sequence. For example, the pattern 41235789 could be

translated to L1L3L5L3. A long swipe line can be represented

by one or two states (e.g., 147 corresponds to L1L1 or L3).

To make sure that the mapping from swipe line to state is

unique, we always use the state with the longest length (so

147 is mapped to L3). On the contrary, the mapping from

state to swipe line is one-to-many (see Table II). The number

of unlock patterns associated with one state sequence is yet

limited, due to the restrictions of valid unlock pattern. On

average, one state sequence corresponds to 20.37 patterns.

Single State Analysis. Our goal is to infer the state sequence

from the grams. As the first step, we need to derive the correct

state from a single gram. This task looks trivial at first sight:

one simple approach is to correlate the state with the range

of interrupt count and classify a gram into a state if it falls

within the range. Unfortunately, this approach easily failed

due to the big variance of people’s drawing actions. Even for

a single user, the way of swiping a line is different from time

to time. This forces us to find a model which can handle the

variances, instead of a simple linear equation.
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To uncover the relationship, we carried out a user study

and recruited 5 users to join our experiments1. We asked each

user to draw lines belonging to each state for 100 times on

the unlock pattern UI of Google Nexus 6. At the same time,

a self-developed app runs in the background and samples

the interrupt count. Fig. 8 shows the interrupt accumulation

histogram of these 5 states.

As shown in the histograms, the amount of interrupts across

different swipes forms Gaussian-like unimodal distribution

(normal distribution), for all 5 states. Such observation inspires

us to compute the probabilities of 5 states derived from a

gram, using the Gaussian model trained from real-user data.

In particular, we use probability density function (PDF):

f(x|μ, σ) = 1

σ
√
2π

exp(− (x− μ)2

2σ2
) (1)

In our case, f(x|μ, σ) is the probability of state, x is

the amount of interrupts, σ is the expectation, and μ is the

standard deviation. Leveraging the curve fitting functionality

of MATLAB [25], σ and μ could be obtained from the same

set of data collected from the 5 volunteers (also shown in

Fig. 8). Given an interrupt amount x, we calculate probabilities

of states Li, i ∈ [1, 5] it belongs to as:

Pr(y|Li) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f(y|37.43, 6.439), i = 1
f(y|40.79, 7.611), i = 2
f(y|51.38, 8.555), i = 3
f(y|52.62, 8.399), i = 4
f(y|58.84, 8.665), i = 5

(2)

It turns out the distribution of the 5 states can be separated

in most cases, as plotted in Fig. 9. The only exception is for

L3 and L4. This can be explained by their length. In fact, the

geometric length of L3 and L4 is 2 and
√
5, and the difference

is only 0.23, much less than other pairs.

In order to evaluate the accuracy of our Gaussian model, we

designed a simulation experiment. According to the percent-

ages of every state (listed in Table II) and distribution features

(shown in Fig. 8), we generated 1,000,000 simulated interrupt

amount observation values with state label, (y, Li). Based on

these simulated data, the probability of correct guessing for

1We have got the IRB approval from the authors’ institutes before perform-
ing any experiment related to human subjects.
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Fig. 8. The distribution of interrupt amounts for 5 states.

Lx1 Lx2 Lx3 …... LxT
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State Sequence:

Observed Sequence:
(Amount of interrupt 

occurred)

Fig. 11. Using HMM to infer state sequence. {Lx1Lx2Lx3 . . . LxT } can
be inferred using {y1y2y3 . . . yT }.

1 to 5 times using our Gaussian model is calculated and the

result is shown in Fig. 10. The success rate is substantially

increased: even for one-time guessing, the success rate is 42.45

%, doubled from that of random model.

State Sequence Analysis. After the probability of a single

state is computed, the next step is to derive the state sequence.

Within one unlock pattern, states are not independent and

the probability of one state is affected by previous ones.

For instance, when a user swipes a line of L5 (1→5→9 or

3→5→7), she can not swipe L5 for next. Therefore, we treat

the problem of finding state sequence as a process of solving

Hidden Markov Model (HMM) [26], that is to find the correct

(hidden) state sequence from the observed sequence (grams),

as shown in Fig. 11.

Viterbi Algorithm. Viterbi algorithm [27], [28] is a classic re-

cursive optimal solution for searching the most likely sequence

of hidden states, which is particularly suited for solving HMM.

We formalize this algorithm for our settings: suppose the state

space of HMM is S = Li, i ∈ [1, 5], the probability of initial

state Li is πLi
and the transition probability from Li to Lj

is TrLi,Lj . If the observation sequence is {y1, y2, . . . , yT }
(every element is the interrupt amount of a gram), the most

likely state sequence {Lx1, Lx2, . . . , LxT } could be calculated

through:

V1,Lk
= Pr(y1|Lk) · πLk

(3)

Vt,Lk
= max

Lx∈S
{Vt−1,Lx · TrLx,Lk

· Pr(yt|Lk)} (4)

where Vt,Lk
is the probability of the most likely state sequence

with the first t observations and Lk as the final state. Pr(yt|Lk)
is the emission probability of showing observation yt in the

hidden state Lk. So, to apply Viterbi algorithm, we need a

way to represent emission probability Pr(yt|Li), i ∈ [1, 5] and

transition probability TrLi,Lj
, i, j ∈ [1, 5].

Emission Probability. Since the probability for each state Li

for a gram has been calculated in the previous step using

Equation 2, we assign the emission probability Pr(yt|Li) with

these values.

Transition Probability. We build set M containing the map-

pings between all the 389,112 pattern passwords and state

sequences (e.g., [41235789−→L1L3L5L3]), and use it to

infer the probability per state sequence. Different from the

standard Viterbi algorithm, the transition probability at step t
in our case does not only rely on the one state ahead, but all

previously encountered states (the sequence of previous states

is defined as Lseq(t−1)). Thus, we customize the formula of

transition probability as below:

TrLseq(t−1),Lj
=

∑
M [s].start with(Lseq(t−1)‖Lj

)∑
M [s].start with(Lseq(t−1))

(5)

where
∑

M [s].start with(Lseq(t−1)) is the amount of state

sequences that start with seq(t− 1) and contain s states (the

target unlock pattern is s-gram, which is determined during

the previous data pre-processing stage).

Top-N Result. The output of Viterbi algorithm is the most

likely state sequence, which may be incorrect sometimes.

Therefore, we could provide N most likely state sequences

ranked by the overall probabilities to increase the chances of

successful attacks. The algorithm is shown in Algorithm 1.

Algorithm 1: Top N state sequences calculation

1 for i=1 to N do
2 StateSeq = Viterbi(ObservedSeq);

result.add(StateSeq) ; // record Top X result
3 M .remove(StateSeq) ; // adjust M to change Tr

4 end
5 output result;

Pattern Password Recovery. A state sequence inferred in the

last step could be shared by multiple pattern passwords (e.g.,

both 1235789 and 7415963 can be described by L3L5L3).

The concrete pattern password could be obtained by attempt-

ing the combinations of digits corresponding to the state
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TABLE III
SEARCH SPACE AFTER SUCCESSFUL STATE SEQUENCE INFERENCE

Pattern 2-gram 3-gram 4-gram 5-gram

# of Patterns 12.9 25.7 29.2 29.9
Space Reduction 99.997 % 99.993 % 99.992 % 99.992 %

sequence. It turns out the search space is significantly reduced

when starting from state sequences, as shown in Table III. If

the phone is grabbed by an attacker, only dozens of attempts

are needed for a correctly interred state sequence. Take 3-gram

pattern as an example, 99.993 % patterns have been excluded

already and on average only 25.7 pattern passwords need to be

tested. If we assume drawing one pattern takes 4 s, an attacker

could unlock victim’s phone in �25.7� × 4 + 4× 30 = 224 s
(every 5 wrong attempts lead to 30 s punitive wait, which is

the default setting in AOSP). This process can even be fully

automated by plugging in a signal simulator to the victim’s

phone [29].

C. Evaluation

We evaluate the effectiveness of our attack against the pat-

tern passwords inputted by real users. Different from previous

works [2], [30], which only attack a very limited number of

patterns (50 for [2] and 1 for [30]), our attack targets all
389,112 patterns. In particular, we first evaluate the accuracy

of gram segmentation during the data pre-processing stage.

Then, we examine the success rate of the state sequence

inference. As a comparison, we also run the attack under the

same setting of [2].

Attack App. Two modules, interrupt sampling module and

data analysis module, are developed and included in the attack

app. For the first module, we wrote it in native C using

Android NDK [31]. The second module is written in Java.

For the optimal performance, we implemented the HMM and

Viterbi algorithm (around 750 lines of code) instead of using

other general libraries.

Experimental Setup. The Gaussian model for single state

needs to be trained before the actual attack, and we reuse

the data collected from the 5 users. For testing, we invited 2

users and none of them participated in the training step. The

experiment device is the same Google Nexus 6 phone with

our attack app installed.

We only consider 2-gram, 3-gram, 4-gram and 5-gram

patterns, because too long gram patterns are rarely used

in practice [17], [32]. Besides, it is difficult to require the

users during our test to remember all long pattern passwords.

We randomly generated 20 password patterns for each x-

gram (x ∈ [2, 5]) from 389,112 pattern passwords (listed in

the Appendix VIII-D) and asked these two users to draw

each generated pattern two times. In total, we obtained 160

password patterns from each user.

Gram Segmentation Result. In this part, we examine whether

the interrupt time series could be segmented correctly and the

result is shown in Table IV. The success rate turns out to be

TABLE IV
SUCCESS RATE FOR GRAM SEGMENTING

Pattern Success Rate Search Space Reduction

2-gram 98.75 % 99.96 % (from 389,112 to 168)
3-gram 92.5 % 99.35 % (from 389,112 to 2,544)
4-gram 97.5 % 97.16 % (from 389,112 to 11,048)
5-gram 97.5 % 90.45 % (from 389,112 to 37,160)

TABLE V
SUCCESS RATE FOR STATE SEQUENCE INFERENCE

User # Top N 2-gram 3-gram 4-gram 5-gram Popular

User 1

Top 3 50 % 25 % 7.5 % 0 47.2 %
Top 5 80 % 27.5 % 10 % 0 52.8 %
Top 10 97.5 % 40 % 20 % 2.5 % 61.1 %
Top 20 97.5 % 60 % 37.5 % 12.5 % 72.2 %
Top 40 97.5 % 90 % 52.5 % 17.5 % 83.3 %

User 2

Top 3 45 % 20 % 15 % 2.5 % 50 %
Top 5 62.4 % 22.5 % 22.5 % 5 % 61.1 %
Top 10 95 % 35 % 25 % 10 % 63.9 %
Top 20 100 % 50 % 40 % 20 % 75 %
Top 40 100 % 70 % 57.5 % 22.5 % 77.8 %

very high (more than 95 % on average), which also suggests

the interrupt gap between different swipe lines is prominent.

From the perspective of computation complexity, even if the

attacker’s knowledge is only the number of grams, the search

space can be substantially reduced.

State Sequence Inference Result. We tested the effectiveness

of the output of state sequence inference and the result is

listed in Table V. In the case of 3-gram, random guessing

only reaches 0.0157 % success rate (guessing 3 times) while

our attack could improve the success rate to thousands of

times – 20 % at least. Given that exhausting passwords for

a 3-gram pattern is only 25.7 times (see Table III), for 20%

such patterns, the attack time is acceptable. The success rate

decreases with the increase of the number of grams since more

errors would be introduced.

Popular Patterns. Recent studies [17], [32], [33] on usable

security discovered that the pattern used by a user is not a

random selection. In fact, several patterns are extensively used,

and we could leverage this insight to remove unpopular pat-

terns from search space. We studied the 6 popular patterns [32]

(ranging from 2-gram to 5-gram) and removed any pattern

from the 389,112 patterns if it contains a L4 line or starting

dot is {5, 6, 8, 9}. L4 line is hard to be drawn by user, and

none of the starting dot is used by popular patterns.

To test our attack against popular patterns, we use the 6

patterns as the initial set and extend it through clock-wise

rotations (90, 180 degrees separately), totally 18 patterns. The

shapes of the original 6 patterns and the list of all 18 patterns

are shown in Appendix VIII-D. We asked the same 2 users to

input the 18 patterns twice. The result shows our success rate

is improved noticeably (see the last column in Table V).

Password Pattern Inference with Prior Knowledge. The

previous experiments consider all valid password patterns
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TABLE VI
SUCCESSFUL RATE FOR PATTERN PASSWORD INFERENCE

User # Top N 50
patterns

100
patterns

200
patterns

500
patterns

User 1

Top 1 38 % 29 % 23.8 % 11.5 %
Top 2 56.5 % 40.3 % 28.5 % 16.7 %
Top 3 60 % 46.3 % 29.5 % 18.7 %
Top 5 60 % 49.7 % 32.3 % 20.4 %

User 2

Top 1 38.5 % 31.1 % 22.3 % 12.2 %
Top 2 61.1 % 42 % 27.5 % 17 %
Top 3 64 % 47.1 % 29 % 18.6 %
Top 5 64 % 51.5 % 32.3 % 19.6 %

as targets. For this experiment, we adopt the same setting

of previous works [2], that user’s password choices can be

confined based on the prior knowledge. We assume the victim

selects her secret pattern passwords from a pre-defined set.

Also in this experiment, we evaluate the success rate of

breaking the password pattern instead of state sequence.

We asked the two users each to select one pattern from the

80 patterns (4 × 20) provided in the previous experimental

setup and draw it on the testing phone twice. This process

was repeated 20 times. The selected pattern is then mixed with

randomly generated password patterns to build the pre-defined

set. Four different set sizes are considered here: 50, 100, 200

and 500 and the password inference success rate is listed in

Table VI. When the set size is 50, we have more than half

a chance to unlock victim’s phone by just 2 attempts. This

result is comparable to [2] exploiting the side-channel from

accelerometer, which was able to crack a password pattern

within 5 attempts with 73 % accuracy when user’s sitting and

40 % accuracy when user’s walking. In addition, our attack

removes the two restrictions of [2]: 1) the body movement

has to be small (the accuracy is much worse when the user

walks than sits). 2) the mobile phone has to be held at hand

(accelerometer produces no usable data when the phone is

placed on the desk).

Battery and Time Consumption. Most of the battery con-

sumption is cost by the interrupt sampling module. Since this

module only runs when the screen is lighted and ends before

the phone is unlocked (generally, the sampling period <30 s),

the battery consumption is very slim and hard to be observed

(<1 %). To infer one unlock pattern, the computation time

of data analysis module is less than 0.3 s, which is also

negligible.

V. FOREGROUND APP INFERENCE ATTACK

In this section, we present the attack on inferring the app

running in the foreground. We start from introducing Display

Sub-System and interrupts. We then elaborate how we leverage

the interrupt side-channel for attacks and the evaluation result.

A. Display Sub-System and Interrupt

Display Sub-System (DSS) takes in charge of controlling the

actual display and governing the FrameBuffer driver. It keeps

refreshing the screen using the content from FrameBuffer

1

1
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VSync VSync VSync
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Fig. 12. VSync signal that keeps refreshing rate fixed.

(/dev/graphics/fbX) when the content is updated till

all the changes are rendered. The complete workflow of

Android display system is provided in Appendix VIII-B as

supplementary.

IRQ from DSS. The design of screen refreshing is changed

drastically since Android 4.1, and our attack targets the DSS

under this setting. In Android 4.1, Project Butter is launched

by Google to improve UI display smoothness. As one of

the main visual performance improvements, the VSync (ver-

tical synchronization) mechanism is integrated [34] to keep

the refresh rate fixed at 60 Hz, or 60 frames per second

(FPS). Specifically, the refresh requests will be queued and

synchronized at regular interval. Fig. 12 illustrates this VSync

mechanism, in which the drawing operations of CPU and GPU

always start with the VSync signal [35].

A VSync IRQ will be issued by DSS after one full-

screen refresh is completed [36], announcing the end of one

frame interval and the beginning of the next. As shown in

Section III-B, the IRQ time series is distinctive for each app’s

launching process, depending on the content loaded by the

app and its refreshing strategy. Since only one app is allowed

to run in the foreground, we could infer the foreground app

through observed interrupt time series from DSS.

Remarks. For some phones under VSync mechanism, the

frequency of interrupts issued from DSS can be 120 Hz,

due to VSync signal virtualization [37], a new enhancement

by Google since Android 4.4. This technique is proposed

for more efficient synchronization. Two virtual VSync signals

(one is used for app UI data preparation, and another is

for SurfaceFlinger) will be sprung from one physical VSync

signal.

B. Attack Methodology

Different from the unlock pattern inference attack, where

the interrupt time series can be segmented and the amount of

interrupts within each segment can be mapped to a limited set

of states, the interrupt time series of app launching is more

random and it is impractical to map the foreground app to

an arbitrary one. Therefore, we build app fingerprints using

interrupt time series for popular apps a priori and attempt to

find a matching app for a foreground app running on victim’s

phone. We first elaborate our techniques for reading interrupt

data, data pre-processing and similarity calculation. Then we

describe the training process for building fingerprint base and

testing process for detecting foreground app.
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TABLE VII
SUMMARY OF DEVICE NAMES FOR DSS

Phone Model PIC Name Device Name Device Vendor

Google Nexus 6 GIC MDSS Qualcomm
Moto Droid Turbo GIC MDSS Qualcomm
Moto Milestone 2 INTC OMAP DSS TI
Sony Xperia Z3 GIC MDSS Qualcomm
Sony Xperia ion GIC MDP Qualcomm
Samsung Galaxy A5 GIC MDSS Qualcomm
Samsung Galaxy S3 COMBINER s3cfb Samsung
Samsung Galaxy S
Advance

GIC nmk-i2c
(non-unique)

ST-Ericsson

The training and testing are also done on Google Nexus 6.

We believe our techniques could be applied without modifica-

tion on other devices with Android 4.1 above installed.

Reading Interrupt Count. The interrupt time series for DSS

could be captured through monitoring /proc/interrupts
as well. Following the similar method as Section IV-B, we

use the device name to identify the entry for DSS. We look

for MDSS2 on Google Nexus 6. The device names of DSS

on several other phones are summarized in Table VII. All

interrupts for DSS are logged under CPU0, so we only need

to monitor that column.

The sampling frequency of our implementation could reach

4899 Hz3, which is much higher than the frequency of

IRQ from DSS (60 Hz or 120 Hz). High sampling rate

would lead to more power consumption, but as described in

Section V-C), the performance impact to the phone is still

limited. For power saving, we could instruct the malicious

app to run only when the screen is turned on (register-

ing ACTION_SCREEN_ON) and to sleep when the screen

is locked (registering ACTION_SCREEN_OFF). The start-

ing point of sampling (i.e., app launching) could be de-

termined through combing the knowledge of targeted app

and our previous interrupt channel for touchscreen in Sec-

tion IV. For instance, after the malicious app finds the

user presses the Home Key (through the system broadcast

ACTION_CLOSE_SYSTEM_DIALOGS) and two successive

interrupts for touchscreen are detected, it can learn that the

user clicks an app icon on the home screen. The sampling

period could be set according to the launching time duration

of the targeted apps.

Data Pre-processing. Similar to the unlock pattern inference

attack, deduplication and interpolation are applied in the same

way (see Section IV-B). An additional noise filtering step is

introduced to removed the background noise on interrupts. The

interrupts from DSS are not only caused by the app running

in the foreground. The system UI events (status bar showing

time, signal strength, battery, etc.) also cause screen refreshing,

2The name of MDSS is used by Qualcomm CPU series and stands for
Mobile Display Sub-System.

3Compared with the interrupt sampling module for unlock pattern inference,
the reason for different frequencies stems from the API fgets which is used
to read /proc/interrupts. The sampling rate is affected by the location
of interrupt log entry in the file.
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Fig. 13. The curves of interrupt time series are similar for the same app.

incurring noises. By inspecting the interrupt sequence caused

by system UI events, we found all the noises are segments

of consecutive 50 ms intervals with less than 30 interrupts

in total and less than 6 interrupts per 50 ms interval. They

are nominal comparing to the interrupts from the foreground

app, and we search the interrupt time series to remove all such

noises.

App Similarity Calculation. We consider the interrupt time

series after pre-processing as app’s fingerprint, which is used

to determine whether two apps are the same one. Exact

matching is not a viable solution here. Even for the same app,

the screen refreshing during app launching is not the same,

because of the background processes and different network

connection status. We use sequence similarity as the metric to

adapt to such unstable situations. Fig. 13 shows an example in

which we could find, for the two interrupt time series coming

from the same app, their curves are quite similar, but not

coincide at every timestamp.

For calculating the sequence similarity, several difficulties

must be overcome: the lengths of two interrupt time series

may be different, and there may exist displacements along the

timeline. After examining different matching algorithms, we

found Dynamic Time Warping (DTW) algorithm [38] achieves

the optimal result. DTW is designed to calculate intuitive

distances between time series by ignoring shifts in the time

dimension. Its basic idea is to find a minimum-distance warp

path of which length is treated as the measured distance. We

formalize it like [39] in our settings: given two interrupt time

series

X = {x1, x2, . . . , xi, . . . , x|X|}

and

Y = {y1, y2, . . . , yi, . . . , y|Y |}

, a warp path

W = {w1, w2, . . . , wK}, max(|X|, |Y |) ≤ K ≤ |X|+ |Y |

is constructed where K is the length of the warp path and the

k-th element of the warp path is wk = (i, j) where i is an

index from X and j is an index from Y .
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Fig. 14. Warp paths of time series. Left: the same app. Right: different apps.

The optimal warp path is the one leading to minimum warp

distance, where the distance of a warp path W can be defined

as

Dist(W ) =

k=K∑
k=1

Dist(wki, wkj) (6)

where Dist(wki, wkj) is the distance between the two data

point indexes in the k-th element of the warp path.

The DTW distance could be used as the measurement of

the similarity between two interrupt time series. Fig. 14 gives

two warp path examples in which the background is the cost

matrices of distances (the deeper gray, the higher cost and the

farther distance). The warp path based on the same app (the

same two series as Fig. 13) in the left figure is nearly a straight

line from (0, 0) to (100, 100). However, the path in the right

figure based on different apps has several significant turnings.

Training Phase. In this phase, we profile apps of our interest

and build the fingerprint database. We automate the training

process by using monkeyrunner [40] which can repeatedly

open and close apps following the scripted instructions. While

deciding when to open an app is easy (the time after the exit

of the prior app), it is not clear when to close the app. Based

on empirical observations and experiments, we found 4.5 s is

enough for an app to finish loading. Therefore, monkeyrunner

will close the app after 4.5 s since starting. For every app,

monkeyrunner triggers the launching operations for N times,

and the derived N fingerprints are all stored in the fingerprint

database. N can be adjusted by the adversary. While a small

N could lead to mismatch for the same app, big N will incur

large overhead in comparing. We set N to 10 by default.

Testing Phase. This phase is to test whether an app running

in the foreground matches one in the training dataset. The two

steps included in this phase are described below:

• Pre-filtering. Computing DTW distance is costly. To

reduce the overhead, we use the total amount of interrupts

as a condition for pre-filtering. Specifically, we obtain

the upper-bound and lower-bound of the total amount of

interrupts for all apps in the training dataset. If the amount

falls out of the range from training dataset, which is

extended from the upper- and lower-bound by 25 % (see

Section V-C for how 25 is decided), the app is considered

irrelevant and not proceeded to the next stage.

• Classification. DTW distance is supposed to be calculated

between the fingerprint of the testing app and all finger-

prints in the training set. For optimization, we apply the

same heuristic in pre-filtering stage and skip the distance

calculation if the interrupts total amount greatly differs.

When DTW distance needs to be calculated, we employ

FastDTW algorithm [39] to accelerate the computation.

After the fingerprint distances between the testing app and

training apps are computed, we use k-nearest neighbors

(k-NN) algorithm [41] to classify the app, that is a

majority vote by its neighbors. For instance, assuming

k = 5, if the testing fingerprint matches 3 fingerprints

from appa and 2 fingerprints from appb, we consider

appa is running in the foreground. Since the result of

majority vote may be incorrect and several fingerprints

in the training set may have the same distances as the

testing fingerprint, we also consider the top-N results. In

addition, to avoid identifying an app not in the training

set, we could customize the training set based on the list

of installed apps on the victim’s phone. Such list could

be easily obtained by invoking PackageManager and

PackageInfo classes without permission.

C. Evaluation

We evaluate the effectiveness of our attack using interrupt

data collected by running popular apps. In addition, we mea-

sure the statistics of the interrupt amount per app and justify

how the pre-filtering threshold is determined. The performance

overhead is tested using variant sampling rate and in the end,

we show an advanced version of this attack in sniffing the

foreground Activity in Appendix VIII-C.

Attack App. The attack app contains two modules – interrupt

sampling module (built with Android NDK) and data analysis

module (about 700 Java lines of code). Our implementation of

DTW distance calculation is based on Java-ML library [42].

Experimental Setup. We select 100 popular apps from

Google Play to build the training set, as listed in the Ap-

pendix VIII-E. These apps all stay in the foreground when

launched, and the apps always running in the background, like

instant messaging apps, are not included. Each app is launched

10 times, and 1,000 fingerprints are recorded in total. For some

apps, an introduction or user agreement page is displayed at

the first launching after installation and never shown afterward.

The fingerprints, in this case, are discarded by us manually.

To build the testing set, we randomly select 10 apps (as shown

in Table IX) from these 100 apps in the training set, run each

one 10 times, and record 100 fingerprints in total.

Interrupt Amount Threshold. We use the range of interrupt

amount to pre-filter apps and optimize similarity calculation.

The threshold θ for separating fingerprints needs to be de-

termined before testing. For this purpose, we look into the

distribution of interrupt amount across different apps and

within one app. For every app in the training set, we count

the mean interrupt amount of its 10 fingerprints, as shown

in Fig. 15 in ascending order. The maximum value is 635.7
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Fig. 15. Mean interrupt amount.

TABLE VIII
SUCCESS RATE OF APP IDENTIFICATION UNDER DIFFERENT K

k k=3 k=5 k=7 k=9

Top 1 77 % 87 % 83 % 82 %
Top 2 85 % 91 % 88 % 90 %
Top 5 93 % 95 % 94 % 93 %
Top 10 94 % 96 % 96 % 98 %

coming from Microsoft Hyperlapse Mobile: during launching,

its UI is always refreshing and even the background of main

Activity is dynamic. The minimal value is 38.5 coming from

Google Search App: its launching process is very fast and no

animation is used, which is reasonable for a search engine

app. The average and standard deviation of interrupt amount

are 237.3 and 114 respectively.

For a single app, the interrupt amount has much less varia-

tion. Among the 10 samples of every app in the training set,

the average fluctuation is 20.8 %. Thus, we set the threshold

θ to 25 % to accommodate some redundancy.

App Inference Result. We apply k-NN algorithm to classify

a testing app, and the selection of k affects the classification

precision. Table VIII lists the result under different k. When k

= 5, the success rate is the highest. Even for a one-time test, on

average, there is 87 % chance for the adversary to know which

app runs in the foreground. Also, we can perfectly identify

some tested apps, such as com.cleanmaster.mguard
(Table IX).

We notice the launching patterns of some apps with similar
names can not be distinguished, like:

com.google.android.apps.docs.editors.docs

TABLE IX
SUCCESS RATE OF APP IDENTIFICATION, K = 5

App Name Top 1 Top 2 Top 5

tv.danmaku.bili 100 % 100 % 100 %
com.baidu.search 80 % 90 % 90 %
com.icoolme.android.weather 90 % 90 % 90 %
com.scb.breezebanking.hk 80 % 90 % 100 %
ctrip.android.view 50 % 50 % 60 %
com.lenovo.anyshare.gps 100 % 100 % 100 %
com.sometimeswefly.littlealchemy 100 % 100 % 100 %
io.silvrr.silvrrwallet.hk 90 % 100 % 100 %
com.cleanmaster.mguard 100 % 100 % 100 %
com.ted.android 80 % 90 % 100 %
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Fig. 16. The result under varying sampling frequency.

com.google.android.apps.docs.editors.sheets
com.google.android.apps.docs.editors.slides

The main reason for such misclassification is code reusing.

Clearly, a vendor or a developer prefers to keep the uniform UI

style for a series of apps. The number of such apps, however,

are limited among the most popular apps.

Battery and Time Consumption. We mainly consider the

battery usage for interrupt sampling module, which reads

/proc/interrupts periodically. When it is running in the

background, 13 % CPU resources will be occupied and 1 %

battery is consumed per 6 min.

In the above settings, one time DTW distance calculation

costs about 15.8 ms. However, this time consumption is not a

stable value and affected by the number of non-zero interrupt

count. One complete app identification (classification) costs

4.1 s, which depends on the size of the training set. This value

is not a simple multiple of overhead from distance calculation,

as the times required for distance calculation depends on the

result from the pre-filtering stage.

In order to reduce the battery and time consumption, one

solution is to reduce the sampling frequency of interrupt

sampling module, which may impact the inference accuracy.

To quantify such relationship, we carried out experiments

under different sampling frequencies. The result is illustrated

in Fig. 16 and the time overhead decreases rapidly without

significantly impacting the successful rate. For instance, 1/10

sampling frequency of the default value (4899 Hz) could still

guarantee 71 % successfully rate and the time overhead drops

to only 0.25 s. Under this configuration, the adversary could

sneak the malicious activity into the screen more timely.

Discussion. In the experiments above, the testing phone is not

running many background apps. We repeated the experiments

under a heavy workload running environment to see if the

attack result is stable under different environment, i.e., the

available memory is less than 30 % when too many processes

are running. Such run-time environment affects the app launch-
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ing process and the sampling frequency of our attack app at

the same time. The result shows the average identification rate

for the 10 testing apps could still reach 72 % for one guess

(77 % for top 2 and 84 % for top 5).

VI. DISCUSSION

Our attacks successfully exploit the leaks from touchscreen

and display interrupts, while whether other interrupts can be

exploited is unclear. We first discuss the potential threats from

other interrupts and then suggest several defenses.

A. Leaks from Other Interrupts

A lot of peripheral devices have been introduced to Android,

among which a large portion has access to private information,

as described in Section II. We believe the attack surface on

interrupt is not exhausted, and new attacks may be sprung from

other interrupt sources. For example, we can acquire the inter-

rupt information from Bluetooth device (named bluetooth
hostwake) and NFC Controller device (named bcm2079x)

in the interrupt logs on Google Nexus 6 to infer when the

devices are running or sleeping. Furthermore, the size/timing

of the file/packet transmitted through these communication

channels can be inferred potentially. These could give the

attacker a big lift in information stealing. As an example, since

NFC is largely leveraged for in-store payment, an adversary

can do targeted phishing to steal user’s credit card number

when knowing the status of NFC device. What’s more, it is

also a reasonable speculation that such information leakage

exists on other operating system platforms and can be ex-

ploited. It is necessary to fully explore the attack surface via

interrupts, but the effort is, however, considerable. We believe

an approach based on automated testing can greatly reduce the

overhead and increase the chances of discovering new interrupt

leaks, and we leave it as the next step.

B. Defense

The attacks presented in our work belong to a big category

of side-channel attacks. It is known by the community that

side-channel attacks are hard to detect and mitigate, due

to their stealthy nature. Recent work by Zhang et al. [43]

proposed a new detection system against runtime side-channel

attacks on Android and also released an app on Google Play.

We tested this app against our attacks but found none of our

attacks were detected or prevented.

On the other hand, we believe Android needs to be for-

tified at the system level. Since the interrupt statistics leak

from proc filesystem (/proc/interrupts), the natural

idea is to remove the proc filesystem or make it invis-

ible to processes. However, these simple remedies would

cause big usability and compatibility issues as many utilities

rely on /proc to gain access to Linux kernel informa-

tion [44]. For example, the Linux command ps relies on

the /proc/<pid>/ to obtain process status [45], and the

irqbalance service [46] uses interrupt statistics informa-

tion for balancing CPU load on a multiprocessor system.

Instead, we suggest two alternative defenses below:

Fine-grained Access Control on procfs. The access to

proc filesystem should be mediated. Linux has been moving

towards this direction and access to some files under proc
filesystem is restricted. For example, /proc/vmallocinfo
is not world-readable. Still, not all proc files are protected,

including the one we identified. In the long run, we believe

all files under proc filesystem should be scrutinized and

protected at different levels (accessed by system process only,

accessed based on granted permission, or open to public). Yet,

the decision should be made after measuring the impact on

legacy apps and OS components to ensure their functionalities

are not largely disrupted.

Decreasing the Resolution of Interrupt Data. Similar to the

defense proposed by Zhou et al. [21] which foils the attack by

rounding up or down the data value from exploitable sources

(e.g., the volume of network traffic logged in public statistics),

we could reduce the resolution of logged interrupt data as

mitigation. Noise injection, proposed by Xiao et al. [47], is

also an alternative solution in the same direction.

As one option, /proc/interrupts can present the

hardware interrupt information grouped by PIC (it connects

to multiple devices) instead of a single device. Another option

is to update the interrupt count after a number of interrupts

have been collected. Since the precision is degraded, different

touch movements or UI refreshes may share the same delta

of interrupts count, reducing the chance of finding the right

unlock pattern or the foreground app by attackers.

VII. RELATED WORK

A. Side-channel Attacks

Linux procfs. Zhang and Wang [6] were the first to present

a side-channel attack by exploiting Linux proc filesystem,

which allows a malicious user to eavesdrop other users’

keystrokes. By tracking changes in the application’s memory

footprint (/proc/<pid>/statm), Jana et al. [5] showed

that how a malicious Android app can infer which page

a user is browsing. Zhou et al. [21] demonstrated several

attacks to infer user’s identity, location using such side channel

information (e.g., /proc/uid_stat/). UI state can also be

read from proc filesystem, as described by Chen et al. [18].

Moreover, Lin et al. [48] exploited /proc/<pid>/stat
to detect target apps activities. The TCP sequence number

inference attack of Qian et al. [49] and the ret2dir attacks

of Kemerlis et al. [50] exploited /proc information as

well. Compared with previous works, our work is the first

one exploiting /proc/interrupts to implement inference

attacks and we proposed a new approach for general interrupt

timing analysis. In addition, our work makes the first step to

investigate the security issues coming from the integration of

the emerging hardware components and the legacy kernel on

mobile platforms.

Leaks from Sensors. In addition to Linux procfs, the

reading from sensors can also be exploited by malicious

apps for side-channel attacks. As demonstrated by previous

works [1], [2], [51], [52], [53], the data stream from the
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accelerometer can be leveraged by malicious apps to infer

mobile phone user’s tapping locations on screens or even

password. Michalevsky et al. [54] demonstrated an attack

which is able to identify the speaker information and parse the

speech through reading phone gyroscopes. More recently, the

leaks from the sensors on smartwatch were investigated. Wang

et al. [55] demonstrated that user’s keypresses on QWERTY

keyboard can be inferred using accelerometer and gyroscope

data. Liu et al. [56] showed that side-channel information

from accelerometer and microphone can be leveraged to infer

PIN typed on numeric keypad and text typed on QWERTY

keyboard.

B. Timing Analysis

Techniques for timing analysis have been extensively used

for inference attacks. Kocher et al. [57] showed that secret keys

used by DES algorithm can be decoded through analyzing

sequences of power consumption signals. Michalevsky et

al. [58] described an attack that allows a malicious app on

Android to learn information about the user’s location by

reading the phone’s aggregated power consumption over a

period of a few minutes. By measuring the intervals between

keystrokes, Song et al. [59] showed it is possible to recover

the password or other sensitive information typed by a victim

during SSH sessions. Hund et al. [60] implemented a practical

timing side channel attack against ASLR to infer information

about the protected address space layout. Andrysco et al. [61]

identified a timing channel in the floating point instructions

of modern x86 processors, which can be used to break the

isolation guarantees of Web browsers.

VIII. CONCLUSION

In this paper, we describe our finding of a new information

leakage channel on Android – interrupt statistical information

(/proc/interrupts). This channel could leak the running

status of devices and be exploited by attackers to infer private

information. We propose the interrupt timing analysis as a

general approach and demonstrate the practicality with two

inference attacks which can infer user’s unlock pattern and

the app running in the foreground. We implemented attack

prototype apps and evaluated them using the real-world data.

Our experimental studies show that indeed interrupt statistics

could lead to leaks of user’s sensitive information or actions.

We believe such security threat from the ill-conceived integra-

tion of hardware components and tailored kernel is not just an

isolated incident and call for the attention from the security

community.
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APPENDIX

A. Android Touch Event Processing Flow

Fig. 17 illustrates the touch event processing flow on

Android and the implementation of each layer is described

below:

• Hardware Device Layer: Touchscreen can sense the

movement of user’s finger on the surface and release an

IRQ when detected.

• Linux Kernel Layer: CPU responds to the IRQ by calling

the handler registered by the input device driver. In this

case, touchscreen controller driver decodes the physical

signals about the touch action (down / up) to touch loca-

tion on the screen (Cartesian coordinates) and other useful

information. Next, the Linux input event driver – evdev
translates device-specific signals into Linux input events

and pass them to the character devices (single characters

are transmitted) defined in the /dev/input/eventX
directory [62].

• Hardware Abstraction Layer: The EventHub component

provided by Android receives the raw input events re-

ported by the kernel and converts them to Android events.

• Hardware Independent Layers: Finally, after event de-

coding (by InputReader) and dispatching (by InputDis-
pacher), the events are delivered to the app taking focus

at foreground as MotionEvent objects.

B. Android Display Work Flow

Below, we describe the work flow of DSS through different

layers, as shown in Fig. 18. For simplicity, we focus on the

flow for 2D frame refreshing [63]:

• Hardware Independent Layers: Every window that is

created on the Android platform is backed by a Surface,

which is used for drawing display content. A Surface

could overlap or even override another one and updating
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Surface object would cause the screen refresh. Multiple

Surfaces may be active concurrently and they are com-

posited by SurfaceFlinger onto the display.

• Hardware Abstraction Layer: Hardware Composer is the

central point for all Android graphics rendering, which

is used by SurfaceFlinger to composite Surfaces to the

screen. The graphics memory allocator Gralloc is respon-

sible for allocating memory that is requested by image

producers.

• Linux Kernel Layer: Gralloc operates the Frame-

Buffer in this layer defined as a character device

/dev/graphics/fbX (fb0 for the main monitor)

with the UI content. Once the FrameBuffer geometry

is programmed, the DSS starts pulling the pixels from

memory and sending them to the display device [36],

which will be refreshed constantly.

• Hardware Device Layer: When a screen refresh is com-

pleted, an IRQ will be released by DSS.

C. App Activity Detection

Our attack mainly focuses on identifying the launching

pattern of an app. This attack could be extended to identify

which Activity of a targeted app is running in the foreground

through similar methods. With such information at disposal,

an attacker can hijack Activities at any time during the lifetime

of victim app. The Activities with unique UI refreshing pattern

among all the Activities initiated by one app are more likely

to be successfully inferred, due to the nature of our attack.

The bar for such attack is, however, higher since the loading

time of an Activity is usually shorter than the time of app

launching.

We find two types of Activities, camera and login, usually

have unique UI refreshing patterns and can be reliably inferred.

Activity for camera always refreshes its UI for image preview-

ing, so continuous and large amount of interrupts could be

observed. A login Activity is often quite different from other

Activities as unique third-party modules for SSO (Single Sign

On), like Facebook and Google+ SSO modules, are included.
We examined several apps and found indeed these two

types of Activities can be attacked. For example, the login

Activity of a popular traveling app Expedia can be inferred.

We analyzed the Activity transition flow of this app and

discovered that the main Activity leads to any one of 9

Activities based on user’s choice. Among them, some Activi-

ties are indistinguishable, like PreferenceActivity and

AboutActivity, because their UIs are very concise and

contain no dynamic data. However, AccountLibActivity
(for login) is quite different from other 8 Activities. We col-

lected the interrupt time series for all 9 Activities and applied

the same training and testing methodologies. It turns out

AccountLibActivity could be detected by our method

with 100 % success rate. Therefore, an attacker targeting the

credentials of Expedia users can achieve her goal leveraging

the information provided by our inference attack.

Previous work on shared-memory side-channel by Chen

et al. [18] studied the problem of UI hijacking on Android

as well. Their work combines other data sources like CPU

utilization time, network statistics to reach high accuracy. Our

initial result shows interrupt patterns itself could be used to

construct fingerprint. We believe our attack would also benefit

from using these sources as well.

D. Experimental Dataset for Unlock Pattern Inference Attack
2-gram Patterns.

1852 2584 2586 2963 3216
3576 3692 4951 5147 6547
6741 7456 78951 7896 8524
8529 8753 95147 9635 98741

3-gram Patterns.
123456 29516 36947 3854 4153
4983 5214 5491 5693 5729
65481 6745 6849 7234 7486
7594 81476 8549 9213 951234

4-gram Patterns.
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Fig. 19. Popular patterns.

124567 18579 275389 278945 29587
35918 389514 51897 52146 549637
635742 63894 6741258 743218 76941
78365 841596 87253 94571 78963214

5-gram Patterns.
1258469 1485263 1598436 186347 2586793
3269514 3572814 418365 451823 36214789
451863 452871 4571238 5283147 543689
576483 6753291 749568 7534921 74168523

Popular Patterns.
1235789 1235987 1236987 12369 1475963
14789 1478963 3214789 3215987 36987
123654789 12369874 147852369 14789632
321456987 36987412 7415369 7415963

E. Training Dataset for Foreground App Inference Attack

air.com.hoimi.MathxMath
cmb.pb
cn.etouch.ecalendar.longshi2
cn.wps.moffice
com.aastocks.dzh
com.airbnb.android
com.ajnsnewmedia.kitchenstories
com.android.phone
com.antivirus
com.antutu.ABenchMark
com.baidu.baidutranslate
com.baidu.baike
com.baidu.searchbox
com.booking
com.citrix.saas.gotowebinar
com.cleanmaster.mguard
com.cleanmaster.security
com.coolmobilesolution.fastscannerfree
com.csst.ecdict
com.dewmobile.kuaiya.play
com.dianping.v1
com.douban.frodo
com.eastmoney.android.fund
com.exchange.rate
com.facebook.pages.app
com.facebook.work
com.globalsources.globalsources
com.google.android.apps.docs
com.google.android.apps.docs.editors.docs
com.google.android.apps.docs.editors.sheets
com.google.android.apps.docs.editors.slides
com.google.android.deskclock

com.google.android.googlequicksearchbox
com.google.android.keep
com.google.android.street
com.hket.android.ctjobs
com.hse28.hse28
com.htsu.hsbcpersonalbanking
com.icoolme.android.weather
com.imdb.mobile
com.indeed.android.jobsearch
com.intsig.BCRLite
com.intsig.camscanner
com.job.android
com.jobmarket.android
com.jobsdb
com.Kingdee.Express
com.kpmoney.android
com.labour.ies
com.lenovo.anyshare.gps
com.linkedin.android.jobs.jobseeker
com.lionmobi.battery
com.lionmobi.powerclean
com.magisto
com.malangstudio.alarmmon
com.mandongkeji.comiclover.play
com.megahub.appledaily.stockking.activity
com.microsoft.hyperlapsemobile
com.microsoft.rdc.android
com.miniclip.agar.io
com.mmg.theoverlander
com.mobilesoft.kmb.mobile
com.mobisystems.office
com.money.on
com.mtel.androidbea
com.mt.mtxx.mtxx
com.mymoney
com.nuthon.centaline
com.openrice.android
com.pps.app
com.qihoo.security
com.roidapp.photogrid
com.sankuai.movie
com.scb.breezebanking.hk
com.scmp.jiujik
com.Slack
com.smartwho.SmartAllCurrencyConverter
com.smule.singandroid
com.sometimeswefly.littlealchemy
com.surpax.ledflashlight.panel
com.ted.android
com.tripadvisor.tripadvisor
com.twitter.android
com.wacai365
com.xunlei.downloadprovider
com.yahoo.infohub
com.yahoo.mobile.client.android.weather
com.yipiao
com.youdao.dict
com.zhihu.android
ctrip.android.view
freelance.flk.com.myapplication
io.appsoluteright.hkexChecker
io.silvrr.silvrrwallet.hk
jp.united.app.kanahei.money
me.chunyu.ChunyuDoctor
sina.mobile.tianqitong
tools.bmirechner
tv.danmaku.bili
tw.com.off.hkradio
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