
Cast Away: On the Security of DLNA Deployments
in the SmartTV Ecosystem

Guangwei Tian∗†, Jiongyi Chen‡(B), Kailun Yan∗†, Shishuai Yang∗†, and Wenrui Diao∗†(B)
∗School of Cyber Science and Technology, Shandong University

{gwtian, kailun, shishuai}@mail.sdu.edu.cn, diaowenrui@link.cuhk.edu.hk
†Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong University

‡National University of Defense Technology, jiongyi_chen@126.com

Abstract—The casting service on SmartTV has been increas-
ingly used for home entertainment and business, given the
convenience offered in media broadcast and screen sharing.
Among the underlying protocols that support TV cast, DLNA
(Digital Living Networking Alliance) – established by a group of
tech giants – has become a prevailing standard in the consumer
market. Although DLNA has launched the market for years,
concerns may arise about whether its real-world deployment has
been clearly understood.

In this work, we systematically evaluate the security of
DLNA deployments in the SmartTV ecosystem. Specifically, we
identify a series of critical security issues in the interactions
between SmartTVs and casting apps on the smartphone, ranging
from non-mandatory encryption to unauthorized file access. The
identified security risks can be exploited by a malicious app on
the victim’s phone, without requesting sensitive permissions, to
launch multiple attacks, including arbitrary command execution,
data theft, MITM (man-in-the-middle) attack, and DoS (denial-
of-service) attack. To measure the impact of the identified security
issues, we designed semi-automated analysis solutions to facilitate
the measurements and conducted real-world experiments on 10
on-shelf TV boxes. The results show that most DLNA implemen-
tations of products and apps in the wild are insecure. In the
end, we provide immediate improvement solutions to mitigate
the identified security issues.

I. INTRODUCTION

As a new instance of the Internet of Things, the Internet-
connected SmartTV with essential features (like media broad-
cast, content sharing, and projection) has been increasingly
owned by households and offices. A recent report shows that
more than 665 million homes worldwide owned a SmartTV
by the end of 2020, which will rise to 1.1 billion by 2026 [29].

The growing popularity of SmartTV could be attributed to
the rich functionalities backed by the wide interconnection
and the board integration of the ecosystem, compared with
traditional TVs that only allow access to limited channels. A
prominent and unique feature is the cast service, which enables
the sharing of digital media between the SmartTV and other
multimedia devices like the smartphone. Users can push local
streaming videos and photos on their smartphones for a larger
and clearer display.

One of the most representative protocols that support the
cast service of SmartTV is DLNA (Digital Living Network
Alliance). It is a set of interoperability guidelines for digital
media sharing in multimedia devices developed and promoted

by a group of tech giants (including Microsoft, Intel, Samsung,
HP, Sony, and Philips) in June 2003 [3]. The latest version –
DLNA 4.0, was released in June 2016. Nowadays, consider-
able SmartTV and set-up box manufacturers have pre-installed
the DLNA-based TV casting services on their devices.

DLNA Security. Though the DLNA service is widely de-
ployed with SmartTVs, its security has not been brought to
the forefront. As a result, we have seen some real-world
security incidents. For example, an X-rated film was cast on
the SmartTV in a famous hotpot restaurant by pranksters [5],
but the root cause of this incident is still unknown to the
public. Regarding the protection provided by the casting pro-
tocol, although the DLNA guideline details the specification
about security configurations, it does not provide clear imple-
mentation and configuration instructions for developers. For
instance, implementing secure authentication and authoriza-
tion are non-mandatory, which makes such implementations
vulnerable. On the other hand, DLNA is designed for the LAN
(local area network) environment with a coarse-grained trust
model – all devices on the same LAN are trusted. Different
from the previous security concern on the device-level access
control [30], [37], the SmartTV ecosystem brings the new
security risks to the communicated devices when a malicious
app is installed on a trusted smartphone [25], [21]. Further,
the security of DLNA deployments in the wild has not been
systematically evaluated.

Our Work. In this study, we evaluated the security of DLNA
deployments in the SmartTV ecosystem by investigating the
interaction between the casting app installed on the smart-
phone and the SmartTV device. After investigation, we iden-
tified four critical security issues: (1) no message content pro-
tection; (2) unauthorized file access on phone; (3) inadequate
authentication for SmartTV; (4) inadequate authentication
for casting app. Exploiting those security issues, attackers
can steal confidential data, gain access to sensitive files, or
perform unauthorized actions, by only installing a malicious
app without sensitive permissions on the victim’s smartphone.

To measure the impacts of the identified security issues,
we designed semi-automated analysis solutions to analyze
SmartTVs and casting apps, and conducted a series of experi-
ments. The results show that, out of 15 devices we purchased,

10 have DLNA casting service built-in, and all of them (100%)
have at least one security issue. Of the 117 casting apps that
we crawled from app markets, 73 (62.4%) have at least one
security issue. Also, we present two concrete attack cases to
demonstrate the consequences of identified vulnerabilities.
Responsible Disclosure. The discovered vulnerabilities have
been reported to the corresponding vendors and vulnerability
management organizations. Currently, two reports have been
confirmed with assigning CNVD-2022-54667 (rated as high
severity) and CNVD-2022-34589 (rated as low severity).
Contributions. Here we summarize the main contributions:

• New understanding. We performed the first systematic
study on the security of DLNA deployments in the
SmartTV ecosystem and identified four widespread secu-
rity issues. Also, we provided several practical mitigation
measures.

• Concrete attacks. Exploiting the identified security issues,
a malicious app without sensitive permissions can execute
commands, control the TV, and even steal sensitive files
from the victim user’s smartphone.

• Real-world measurement. We designed a new analysis
tool and conducted real-world measurement experiments.
The results show that most DLNA implementations are
insecure.

Roadmap. The rest of this paper is organized as follows.
Section II provides the necessary background of TV cast and
DLNA. Section III gives the threat model used in this work.
Section IV elaborates the four security issues we identified.
In Section V, we introduce the detailed design of our analysis
solutions and presents the findings. Section VI presents two
case studies of real-world attacks. In Section VII, we discuss
some mitigation and limitations of our work. Section VIII
reviews related work, and Section IX concludes this paper.

II. BACKGROUND

In this section, we provide the necessary background of TV
cast and the DLNA protocol.

A. SmartTV & TV Cast

SmartTV is a traditional TV with integrated Internet and
interactive features, allowing users to stream music and videos,
browse the Internet, and view photos [15]. The smart features
could also be implemented by deploying a smart set-top box1.
The systems of most SmartTVs and set-top boxes are built
based on the Android TV OS [9] with customized features.
Like smartphones, SmartTVs also allow users to install apps
from TV app markets.

SmartTVs have larger screen sizes than smartphones, usu-
ally from 32 ∼ 75 inches. Pushing the multimedia contents
like videos or photos from a small-screen smartphone to a
nearby large-screen TV for display is called TV cast (also
known as screen mirroring or screen projection), as shown in

1In this paper, we do not strictly distinguish between SmartTVs and set-top
boxes, because SmartTV can be treated as [set-top box + traditional TV]. For
convenience, we refer to them as “SmartTV” in subsequent sections.

Fig. 1: Cast smartphone to TV.

Figure 1. Usually, the smartphone and the SmartTV should
be connected to the same LAN. On the one hand, there is
a need for users to share with others in the same room or
to view personal multimedia files on a larger screen. On the
other hand, some video software does not have a universal
VIP service on different platforms (TV and mobile phone), or
the accessible content is not the same on different platforms.
These reasons create a demand for TV cast.

The TV cast function can be implemented through the
casting protocols, such as AirPlay [7], Chromecast built-in
(formerly Google Cast) [12], Miracast [13], and DLNA [3].
AirPlay was designed by Apple, and its deployment was
originally limited to Apple devices (e.g., Apple TV) until 2018
when Apple opened up the license for the protocol. There
are currently over 70 TV devices [8] that support AirPlay.
Similarly, Chromecast built-in is mainly used by Google
devices (e.g., Google TV) as well as some mainstream Android
TVs (e.g., Xiaomi Mi TVs, Sony TVs). Over 4,000 certified
Android TVs or devices currently available [11]. Miracast is a
screen mirroring protocol introduced by the Wi-Fi Alliance in
2012. It currently has over 6,400 certified TV or set-top box
devices [14]. The DLNA (Digital Living Network Alliance)
protocol is designed to share digital media among multimedia
devices, introduced in 2003. Given the first-mover advantage,
openness, and support from a group of tech giants, DLNA has
been recognized as one of the most popular TV cast protocols.
According to the DLNA official statistics [4], there are more
than 13,000 DLNA-certified TVs and set-top boxes around
the world. Therefore, in this study, we focus on the security
of DLNA deployments in the SmartTV ecosystem.

B. DLNA Protocol

The DLNA protocol enables media file sharing and playing
between different devices within the same LAN, which is well
suited for casting on TVs. Therefore, in the smart home era,
DLNA finds its own place. Below we elaborate on the details
of the roles and workflow in DLNA.
DLNA Roles. There are four roles involved in the DLNA
deployment – DMR, DMC, DMP, and DMS, as listed below.

• Digital Media Renderer (DMR) is like a traditional TV,
waiting for media data to play, and executing commands
sent by DMC.

• Digital Media Controller (DMC) acts as a remote con-
troller to control the playback like stop/play and adjusting

DMC
Controller

DMC
Controller

DMP
Media Player

DMP
Media Player

DMS
File Server

DMS
File Server

Search Push

Control

DMR
Media Renderer

DMR
Media Renderer

Casting App

Service App

TV

Fig. 2: Roles of DLNA in the SmartTV ecosystem.

volumes. It is also in charge of discovering media content
on DMS and sending the file to DMR.

• Digital Media Player (DMP) is the media player on the
control side. Compared with DMR, DMP can actively
search and play media content on DMS.

• Digital Media Server (DMS) is a file server that can
provide photos, videos, or audios to DMP and DMR.
Those files are accessed from the file system of the
smartphone.

As shown in Figure 2, from the user’s perspective, if she
wants to cast a local video file (on the phone) to the TV, she
needs to install a casting app on her phone. In fact, this casting
app serves the roles of DMS (for setting up a local multimedia
file server), DMP (for finding multimedia files), and DMC
(for pushing files and controlling the playback of media). The
service app on SmartTV, on the other hand, only implements
the role of DMR, which is responsible for receiving media
files and executing control commands. The service apps are
usually pre-installed by vendors or installed by users.

Workflow. The DLNA protocol is developed based on the
UPnP protocol [2]. Therefore, as shown in Figure 3, the
interaction between two communication parties are similarly
modeled, including the stages of discovery, description, and
control.

• Stage1 – Discovery. Before casting a video to TV, the
casting app needs to discover other devices in the same
LAN. Usually, there are two ways to do so: the service
app can send a NOTIFY message from time to time,
actively sending out its basic information (such as device
type, unique identifier, current status, and description
URI) via multicast; alternatively, for the casting app,
it can send an M-SEARCH message via multicast. The
SmartTV listens to the message and responds with its
basic information via unicast. With IPv4, the multicast
address is 239.255.255.250, and the port number is
1900. All UPnP-enabled devices (or services) in the LAN

STAGE 2
Description

STAGE 3
Control

STAGE 1
Discovery

RESPONSE: UPnP Action/Error ResponseRESPONSE: UPnP Action/Error Response

CONTROL: Control RequestCONTROL: Control Request

RESPONSE: Response a XML FileRESPONSE: Response a XML File

GET: Get a Device/Service Description URLGET: Get a Device/Service Description URL

RESPONSE: Unicast ResponseRESPONSE: Unicast Response

M-SEARCH: Multicast SearchM-SEARCH: Multicast Search

NOTIFY: Multicast AdvertiseNOTIFY: Multicast Advertise

Fig. 3: Workflow of DLNA.

listen to this port, but only the devices (or services) that
match the request type in M-SEARCH message will reply.

• Stage 2 – Description. After the discovery stage, the cast-
ing app needs to request more detailed information (e.g.,
supported actions and the format of control command)
about the discovered device and select an appropriate
device. This is achieved by accessing the description URL
returned by the SmartTV.

• Stage 3 – Control. After selecting the appropriate device,
the casting app can then cast contents to it. At this
stage, users can preview the media files on the DMS
via DMP. The DMC then pushes the file URL to DMR
through commands such as SetAVTransportURI. DMR
can display the corresponding media files by accessing
the URL. While playing, the DMC can perform various
controls on the DMR through the actions acquired during
the Description stage.

III. THREAT MODEL

In the traditional threat model on LAN (local area network)
security research [22], the adversary (usually as a device) can
connect to the Wi-Fi AP and access other devices on this LAN.
It means the adversary has obtained the password of this LAN
or compromised this AP’s authentication mechanism.
Our Model. Compared with previous work [30], [37], our
study considers a weaker threat model, and all attacks are
launched through a malicious app installed on the victim’s
Android phone. Also, this malicious app does not claim
any sensitive permissions, such as storage access. Since the
user owns a SmartTV, she uses a casting app on her phone
to facilitate TV control and video sharing. Restricted by the
Android app isolation mechanism, the malicious app cannot
interact with the casting app or directly access its data. The
attacker’s goal is to control the TV and steal the data stored

in the phone by leveraging the malicious app and exploiting
the DLNA security issues.

IV. SECURITY ANALYSIS OF DLNA

In this work, we systematically study the security of DLNA
deployments in the SmartTV ecosystem. Combined with the
field study and the official technical documents [1], we identify
a series of security issues related to TV casting. These issues
can result in various kinds of attacks, like device control, data
leakage, DoS (denial-of-service) attack, and MITM (man-in-
the-middle) attack. In this section, we illustrate these identified
security issues.

We focus on the communication process between the casting
app and SmartTV. The establishment of secure communication
relies on three critical mechanisms, namely authentication,
data encryption, and authorization. Following this trail, we
identify four security issues2 violating these requirements, as
listed in Table I.

• For authentication, two communication parties must au-
thenticate each other’s identity before exchanging any
information. Before communication can take place, both
sides of the communication need to be securely and
effectively authenticated. However, most vendors do not
take sufficient authentication measures, which leads to
SI#3 and SI#4.

• For data encryption, once the identities are verified,
both communication parties need to encrypt the message
content before it is sent out. The absence of an encryption
mechanism leads to SI#1.

• For authorization, accessing resources in a remote system
is also a necessary step during communication, which
requires effective authorization mechanisms to guarantee
legal access to file resources. The lack of an authorization
mechanism presents SI#2.

A. SI#1: No Message Content Protection

Encryption is an effective solution to guarantee message
confidentiality in communication.
DLNA Guideline. In the guideline, message encryption is not
strictly forced and no specific encryption scheme is mentioned.
It is only mentioned in the authentication section, say if the
device needs to be authenticated, it can use the TLS handshake
for authentication. In the UPnP specifications [2] (used in the
underlying implementation of DLNA), it is mentioned that the
privacy and integrity of the service can be guaranteed by the
HTTPS protocol based on the TLS standard. However, it just
is a recommendation, not a mandatory requirement.
Finding. The identified security issue in the wild is that DLNA
messages are all transmitted in plaintext during the entire
casting process. The manufacturer does not effectively secure
the message contents.
Security Risk: Privacy Leakage. Due to plaintext communi-
cation, any device on the same LAN can capture the private

2SI#X for short. Therefore, we have SI#1 ∼ SI#4.

data contained in messages. At each interaction stage, the
leaked information is illustrated as follows.

At Stage 1 – Discovery, the device broadcasts its brief
information on port 1900, and other devices on the same
LAN can also actively detect all DLNA-enabled devices with
the M-SEARCH command. Therefore, with such messages, an
attacker can obtain basic information about the device and its
active time.

At Stage 2 – Description, devices can access the description
URL to obtain detailed information about the casting device.
Thus, with such messages, an attacker can obtain the formats
and parameters of the control commands supported by the
device. Exploiting such information, the attacker can further
actively forge and execute control commands at Stage 3.

At Stage 3 – Control, similarly, the attacker can obtain the
control instructions by traffic analysis, which may contain the
information of cast multimedia files, such as the file name,
file description, and file resource address. Listing 1 gives an
example of the partial information about the currently played
video via the GetMediaInfo command. It means the attacker
can obtain the video’s title, the casting app, and even the user
account information.

1 <dc:title >"Fraidy Cat"</dc:title >
2 <dc:creator >"youku"</dc:creator >
3 ...
4 <yunos os="android"
5 ver="10.1.24"
6 name="youku video"
7 pkg="com.youku.phone"
8 yk_showtitle="Tom and Jerry"
9 definitionStr="540P"
10 device_model="Pixel+2"
11 user_info =\’{"isVip":"0"," ytid":""}\’
12 ...
13 />

Listing 1: Part of obtained video information.

B. SI#2: Unauthorized File Access on Phone

Authorization is needed to protect the resource files from
unauthorized access. For casting, only the cast media files can
be accessed by the DLNA service.
DLNA Guideline. The guideline does not explain how to
access media files before they are transferred. It is only
mentioned in the link protection section that the content stream
in transmission need to be protected. The casting app provider
should consider how to access the files by themselves.
Finding. The identified security issue in the wild is that, at
Stage 3 – Control, the casting app needs to generate a file
URL for DLNA service (i.e., SmartTV) accessing. However,
many app developers generate the file URLs in insecure ways,
resulting in unauthorized file access on the phone. Note that,
such access exploits the DLNA service and bypasses the
restriction of mobile OS, e.g., the READ_EXTERNAL_STORAGE
permission on Android.
Security Risk: File Leakage. As mentioned in SI#1, the cast
file address is transmitted in plaintext. As a result, an attacker

TABLE I: Security issues related to DLNA deployments in the wild.

No. Security Issue Components Involved Consequences / Possible Threats
SI#1 No message content protection Both sides Privacy leakage
SI#2 Unauthorized file access on phone Casting app on phone File leakage
SI#3 Inadequate authentication for SmartTV Casting app on phone Man-in-the-middle attack
SI#4 Inadequate authentication for casting app DLNA service app on TV Command execution, denial of service

can easily obtain the address, resulting in file leakage. Note
that, in this process, the casting app sets a file server, and
the DLNA service requests accessing a file by providing the
corresponding file URL. It means an attacker can construct
valid URLs for other files on the phone, even resulting in
arbitrary file access. Therefore, how to generate the file URL
is crucial for preventing URL guessing. We discovered the
following URL generation schemes in the wild:

Scheme#1: Generating URL based on file path. File URLs
can be formed by using the absolute / relative paths of files. In
this case, the attacker can construct URLs for non-designated
files by exhausting file paths in a directory. For example,
for the casting app EasyCast3, the attacker can access
a non-casting file under /sdcard/ directory via the URL
http://ip_addr:port/Pictures/Screenshots/Screenshot
_20200220-022515.png.

Scheme#2: Generating URL based on file serial number.
All files on Android are assigned a serial number, and some
casting apps use this number to generate the file URL. In
this case, it is also possible for the attacker to access other
files by traversing all numbers. Note that the upper limit
of this serial number is determined by the number of mul-
timedia files on the phone, which usually does not exceed
104 or 105. Hence, it only takes a relatively short time to
traverse all the multimedia files. For example, FastCast4, http
://ip_addr:port/image-item-40.

Scheme#3: Generating URL with encoding. Some casting
apps generate the URLs by encoding the absolute path to the
file. The implementation can be based on Base64 or hash
algorithms (e.g., MD5) on the path and then intercepting a
section in the middle. In theory, for URLs of this form, if
we can identify which encoding algorithm is being used,
we can use the same approach to generate valid URLs
for accessing other files. However, in practice, due to the
various customized implementations, it is difficult to tell
the accurate encoding approach. For example, Cast to TV5,
http://ip_addr:port/Y29udGVudDovL21lZGlhL2V4dGVybm
FsL2ltYWdlcy9tZWRpYS80MA==.

Scheme#4: Static URL. In our study, only one casting app
uses this approach to generate URLs for local files. In this case,
all files share the same URL, and the returned file depends on
which file is currently being pushed. That is, a fine-grained
file access control mechanism is implemented. This approach
is effective in preventing attacks from accessing other non-

3Package name: com.tv.cast.screen.mirroring.remote.control
4Package name: com.creative.fastscreen.phone
5Package name: com.casttotv.screenmirroring.castwebbrowser

pushed files. For example, Stream Phone To TV6, http://ip_
addr:port/.

To sum up, Scheme#1 & 2 are insecure and face the risk
of file leakage. Scheme#3 & 4 can resist the brute-force (file
traversal) attack to some extent.

C. SI#3: Inadequate Authentication for SmartTV

To prevent device forgery, authentication is an effective
solution in the interactions.
DLNA Guideline. Guideline provides an optional authentica-
tion mechanism. Developers can distribute credentials through
CA (Credential Authority) and use the credentials for authen-
tication, preventing attackers from forging devices. However,
this feature is optional, and developers would not implement
it if they believe the authentication operation is unnecessary.
Finding. The identified security issue is that most casting
apps under investigation do not implement the authentication
feature. It means they may establish a connection with a
malicious or fake device.
Security Risk: MITM Attack. At Stage 2 – Description, the
casting app does not validate the discovered devices. It only
checks the deviceType field to confirm whether the service
is a DMR, that is providing the casting service. Therefore, an
attacker can provide a forged DLNA service with the same
service name and description file as the origin service. From
the user’s perspective, she cannot distinguish which service
is forged or not. Note that such a service can be constructed
through a malicious app running on the user’s smartphone. No
physical device is needed.

Further, this malicious app can also forward the incoming
messages between the casting app and the real device, say
man-in-the-middle (MITM) attack. In this case, since the
DLNA service works well, the user cannot find any irreg-
ularity. Also, the malicious app can record and tamper with
the forwarded control commands. For example, by parsing the
SetAVTransportURI command issued by the casting app, the
attacker can access the currently played content and insert
an advertisement before forwarding the command, thereby
gaining revenue.

D. SI#4: Inadequate Authentication for Casting App

Since the device may receive malicious connection requests
and control commands, authentication to the casting app
(controller) is also necessary.

6Package name: com.miracast.smartthing.tv.airplay.screenmirror
ing

DLNA Guideline. Guideline provides an optional authentica-
tion mechanism. As described in Section IV-C, this authenti-
cation is not mandatory for device vendors to implement.
Finding. The identified security issue is that most devices un-
der investigation do not implement the authentication feature.
Only a few manufacturers implemented customized authenti-
cation mechanisms, such as whitelist.
Security Risk: Command Execution. At Stage 2 – Descrip-
tion, the casting app obtains the information of the device
and control commands (including the parameters, formats, and
control address). Afterward, the casting app can generate and
send control commands to the device (SmartTV), as showen
in Listing 2.

1 <?xml version="1.0" encoding="UTF -8"?>
2 <s:Envelope s:encodingStyle="http:// schemas

.xmlsoap.org/soap/encoding/" xmlns:s="
http:// schemas.xmlsoap.org/soap/envelope
/">

3 <s:Body >
4 <u:SetVolume xmlns:u="urn:schemas -upnp -

org:service:RenderingControl:1">
5 <InstanceID >0</InstanceID >
6 <Channel >Master </Channel >
7 <DesiredVolume >48</DesiredVolume >
8 </u:SetVolume >
9 </s:Body >
10 </s:Envelope >

Listing 2: The SetVolume command.

The control commands supported by most SmartTVs can
be classified into the following three types – AVTransport,
Rendering Control, and Connection Manager [26], as il-
lustrated as follows.

1) AVTransport. This type of command enables the con-
trol of the currently played content, like: GetMediaInfo,
GetPositionInfo, GetTransportInfo, Pause, Play,
Seek, SetAVTransportURI, and Stop.

2) Rendering Control. This type of command enables
the change to the TV state, like volume and image.
However, most available commands are volume related
(GetMute, GetVolume, SetMute, and SetVolume), and
nearly no device we investigated implements the ability
of image property modification, like SetBrightness.

3) Connection Manager. This type of command can get
the information about the current connection or get the
current protocols supported by the device. The com-
mands of this type do not affect the casting process,
like GetCurrentConnectionInfo, GetProtocolInfo,
and GetCurrentConnectionIDs.

Most manufacturers do not introduce effective authentica-
tion mechanisms for DLNA-based casting services. Therefore,
an attacker can send the above commands to a device directly.
Then the device will perform the corresponding actions, such
as playing any local or online media content and device
volume control. As mentioned in Section I, exploiting this
approach, someone cast an X-rated film to the SmartTV in a
famous hotpot restaurant [5].

ReportReport
Command
Construction
Command
Construction

Command
Execution
Command
Execution

Description
File
Description
File

Devices with DLNA
Services InstalledTV

Devices with DLNA
Services InstalledTV

Fig. 4: Analysis of SmartTVs

Fig. 5: Devices used in our experiments.

In addition, the built-in casting services on most SmartTVs
keep the ports of the casting service open permanently, in-
cluding the non-screen casting periods. Some manufacturers
also prefer to set their services as boot-up items. This brings
a better experience to the user. However, at the same time,
always-open ports inevitably result in a long attack window.
An attacker can launch attacks at any time the TV is on.

V. MEASUREMENT IN THE WILD

To understand the real-world impacts of our reported secu-
rity threats, we designed semi-automated analysis solutions to
identify the security issues for the service apps of SmartTV
and the casting apps of smartphone. On the one hand, we
evaluate the service apps of SmartTV by testing whether
control commands sent by illegitimate users can be executed
(SI#4). On the other hand, we evaluate the casting apps on
phones by testing whether they can be connected with a
malicious app (SI#3) and whether this malicious app can
further access files in smartphones via brute-forcing file URLs
(SI#2).

A. Analysis Solutions for SmartTVs

On the SmartTV side, we focused on evaluating SI#4 –
inadequate authentication for casting app. The analysis process
is illustrated in Figure 4.
Setup. To evaluate the real-world implementation, we pur-
chased 15 TV boxes produced by mainstream vendors, as
shown in Figure 5. These TV boxes were selected based on the
recommendations [18]. We setup the experiments to simulate

how a normal user operates on the device: launching all the
service apps on each TV box, returning to the main UI, and
waiting for 5 minutes. The purpose of leaving such time is
to test whether the port of casting service is closed or not
when the service app is not in use. We believe 5 minutes are
sufficient for a normal app to finish the procedure of closing
the port. If the port is still open after 5 minutes, the casting
service of the SmartTV is considered not closed on time.
Command Construction. In this step, we request the descrip-
tion file of the cast service and construct commands from
it, which contains action name, action parameters, allowed
value range, etc. The description file is requested by invoking
the API discover() of the package upnpy [20] to interact
with the SmartTV. upnpy is a lightweight Python library that
implements a range of functions of UPnP protocol like device
discovery and control. We show an example of the collected
description file in Listing 3. It specifies the description of the
SetVolume command, including several fields like argument
and allowedValueRange. We reconstruct the command ac-
cording to the description file, by specifying the action name,
the arguments, and the values of arguments. The values of
arguments are determined by randomly choosing a value that
is within the range specified by the label allowedValueRange.
1 <actionList >
2 ...
3 <action >
4 <name>SetVolume </name>
5 <argumentList >
6 ...
7 <argument >
8 <name>DesiredVolume </name>
9 ...
10 </argument >
11 </argumentList >
12 </action >
13 </actionList >
14 <serviceStateTable >
15 ...
16 <allowedValueRange >
17 <minimum >0</minimum >
18 <maximum >100</maximum >
19 ...
20 </allowedValueRange >
21 ...
22 </serviceStateTable >

Listing 3: Partial description of the SetVolume command

Command Execution. We send the constructed commands
to the SmartTV and receive the replied messages. When the
replied message (based on the HTTP protocol) contains status
code "200", the service is responding to the requests. On that
basis, if the replied message indicates "error", it means that the
request has been processed by the cast service but the format
or the fields of the command are incorrect. For example, when
a response contains error description "Invalid Channel", we
replace the command field "Channel" with other options like
"LF" and "RF" in the description file. When the traversal of
command fields is done, and the response still indicates an
error, we discard the command request and construct requests

Casting
App

Devices with DLNA
Services InstalledTV

Devices with DLNA
Services InstalledTV

URL TesterURL TesterCast ActionCast Action
URL

Generation
URL

Generation
ReportReport

Fig. 6: Analysis of casting apps

for the next action. A request can be categorized into the
following, according to its replied message:

• Action executed. When the replied message contains
status code 200 and does not contain the keywords like
"error", "fail", "invalid", "abort", or "not implemented",
we consider the previous request triggers a action on the
server side.

• Action failed. On the other hand, if the status code of the
replied message is "200" and the message contains failure
keywords like "action failed", "action not implemented",
it indicates that the constructed command was received
and processed, but the action was not executed for some
reason.

• Request Denied. When the status code of the response
is not "200", the control command is denied and not
processed at all. This is attributed to the fact that the
service app in the SmartTV requests authentication for
the sender before acting any control actions.

We determine whether SI#4 exists in the service app with
Action executed: as long as the replied messages contain
this indicator, there is a possibility that the device could be
controlled by an unauthenticated user.

B. Analysis Solutions for Casting Apps

On the smartphone side, we evaluate the DLNA-based
casting apps downloaded from Android app markets. The main
idea of our analysis is to trigger the screen cast function of the
casting app, extract the URLs of casting files, generate new
URLs on the same smartphone and access them. The analysis
process is illustrated in Figure 6.
Setup. We design a malicious Android app based on
Cling [19], which is a UPnP stack for Java and Android
development. This app runs on the smartphone, has a similar
description file, and provides similar functions to the cast
service of SmartTV. It connects to the casting app to perform
unauthorized actions such as accessing files.

Using "DLNA" and "cast" as the keywords, we found
a total of 337 apps from four app stores (Google Play,
Wandoujia [17], Anzhi [10], and Yingyongbao [16]). Then we
selected 117 apps by specifying the updated date (from 2020
to 2022) and the number of downloads (more than 1,000).
Among them, 14 apps have more than 10 million downloads.
Next, we ran the 117 apps one by one and manually examined
the app interfaces to confirm whether they support casting
local contents.

Triggering of Cast Function. Before we extract and access
the URLs of casting files, we need to trigger the cast function
from the casting app. As UI designs are largely varied from
each other, it is difficult to trigger the cast function for each
app automatically. Therefore, we manually operate the app to
trigger such a function by following the steps to cast local
media to a SmartTV: selecting a device to display, browsing
local files, and pushing the file.

This procedure determines whether the casting app under
test authenticates the malicious app (i.e., a fake device) or not.
We test whether an app can successfully discover the malicious
app, establish a connection with it, and push files to it. If the
malicious app accepts the URL of the file to be played, it
indicates that the casting app under test does not authenticate
the malicious app, resulting in SI#3. Furthermore, if the file
can be accessed by the malicious app, there is a SI#2.
URL Generation. In this step, we extract the file URL
from SetAVTransportURI – a command sent by the casting
app to specify file location on the smartphone. In addition
to the specified casting files, we also generate new URLs
to access other files, by mutating the parameters of the
SetAVTransportURI command. The generation of new URLs
is based on Scheme#1 and Scheme#27 described in Section
IV-B. For Scheme#1, since the files on the smartphone were
available to the tester, we directly specify the file paths in the
SetAVTransportURI command for casting. For Scheme#2, By
increasing/decreasing the number at the end of the filename,
a series of new filenames are produced. We then make access
to them to confirm the existence. The access does not extend
outside the /sdcard/ directory, because the malicious app is
"delegating" permissions from the casting app. The casting app
does not have permissions to access other locations like the
underlying Android filesystem (e.g., the /system/ directory).
URL Access. Through the malicious app, we push the contents
of the URLs to the service app on the SmartTV and check
whether the contents can be accessed. The SmartTV here is
used to display the contents to the tester. However, during
testing, some casting apps returned the same content for the
requests with different URLs. As such, we need to check if the
contents on the SmartTV are changed when traversing URLs.

C. Findings on the SmartTVs

Results. As mentioned in Section V-A, the measurement was
conducted on 15 TV boxes. 10 out the 15 TV boxes have
DLNA-based cast service apps built-in. We found that security
issues were presented in the 10 devices. None of the 10 devices
authenticate casting apps (SI#4). The results are summarized
in Table II.

For the DLNA service apps in SmartTVs, we invoke and
traverse all the actions it provides to check whether the actions
could be executed without authentication. Table III details the
number of extracted actions and the number of actions that can

7The URL generation does no cover Scheme#3 and Scheme#4, as those
two schemes provide a certain level of security and it is difficult to correctly
specify the URL.

TABLE II: Evaluation results of SmartTVs

Device Model SI#3
DiyoMate K3 ✓
Mi Box 4SE ✓
Webox WE60C ✓
Tmall Box M20_A ✓
Tencent Aurora Q0102 ✓
Dangbei Box DBH1A ✓
Skyworth Q0102 ✓
Mifon HG680-KA ✓
Bell Tree 6108 ✓
Magicsee N5 ✓
Chromecast GZRNL N/A
TiVo Stream 4K N/A
Fire TV E9L29Y N/A
Mecool KM6 N/A
Ematic AGT419 N/A

✓: security issue found; ✗: security issue not found; N/A: not applicable.

TABLE III: Amounts of executed and total commands

Device Service App AVT RCS CMS

DiyoMate HiMedia Render 11/13 2/6 3/3
KuMiao Video 11/18 9/11 3/3

Mi Box Wireless Share 8/14 4/35 3/3

Webox QiYiGuo TV 13/14 4/8 3/3
KuMiao Video 11/18 9/11 3/3

Tmall Box KuMiao Video 11/18 9/11 3/3

Tencent Aurora System Service 8/14 4/35 3/3
Aurora TV 13/14 35/35 3/3

Dangbei Box System Service 12/13 2/7 3/3
LeBo Cast 8/14 4/35 3/3

Skyworth System Service 8/14 4/35 3/3
KuMiao Video 11/18 9/11 3/3

Mifon System Service 8/14 4/35 3/3
KuMiao Video 11/18 9/11 3/3

Bell Tree KuMiao Video 11/18 9/11 3/3
System Service 7/13 2/6 3/3

Magicsee System Service 9/14 2/8 3/3
AVT: AV Transport; RCS: Rendering Control; CMS: Connection Manager.

be actually executed. We can see that most service apps can
directly execute unauthorized actions. Those actions include
SetAVTransportURI, Pause, SetVolume and other actions
that are directly related to the current playback status.
Failed Command Executions. For the actions that are not
successfully executed, we summarize the cause of failures as
follows:

• Incorrect parameters or incorrect state during command
execution. Some apps require a specific value of parame-
ter, like DesireMute in command SetMute to be 0 or 1.
Filling it with other integers would lead to errors. Besides,
instructions like Previous and Next require a specific
status to run. For example, the Next instruction needs to
be executed in the presence of the next playable item.
Otherwise, the execution may fail.

• Unimplemented actions. Certain service apps recognize
and accept some unimplemented actions (e.g., the actions
of adjusting brightness), by simply replying with "action
unimplemented".

TABLE IV: Evaluation results of casting apps

SI#2 SI#3
of confirmation 31 73

Percentage 55.4% 62.4%
The evaluation on SI#3 is based on 117 casting apps, and the evaluation for
SI#2 is based on 56 casting apps that can cast local files.

• Denied actions. A few casting service apps (e.g., Bilibili
for TV, or pre-installed casting service in Bell Tree) have
authentication mechanisms and close the open port in
time. As a result, the command requests are refused.

In general, there are two types of built-in service apps. The
first type is the streaming app like Youku Video and Tencent
Video that integrates cast service functions. The cast service of
this type comes as an additional feature of streaming apps and
tends not to offer abundant specialized settings. The other type
is the dedicated screen casting app. For example, a customized
service app called Lebo Cast is pre-installed in Mi Box and
Dangbei Box. It offers more specialized features like manually
confirming the connection status.

In the service app developed by Lebo Cast, mitigation
to authorized access is provided. The service app identifies
the casting app that is attempting to cast content to the
SmartTV and requires the user to manually choose to al-
low or deny the connection. However, we found that this
feature only restricts some of the actions in AVTransport
class (e.g., SetAVTransportURI), while some actions in
RenderingControl (e.g., SetVolume) can still be executed
without authentication.
False Positives & False Negatives. False positives occur in
the detection of SI#4, for QiYiGuo TV on WeBox and Aurora
TV on Tencent Aurora. This is mainly attributed to the fact
that some service apps on TVs do not report any errors for the
received command, even if the command is not executed. The
actions/commands that are not executed but do not correspond
to an error reply are incorrectly classified as "action executed"
by the tool. We manually confirm whether the execution is
successful by checking the status and settings of the SmartTV
to eliminate the false positives of the tool. Also, there is no
service app that reports errors for executed commands. Thus,
the tool gives no false negatives for the detection of SI#4.

D. Findings on the Casting Apps

Results. As mentioned earlier, the test is carried out on a total
of 117 apps. We tested the 117 apps for SI#3. Out of the
117 apps, 56 apps can cast local multimedia files to the TV
via DLNA. Thus, the 56 apps are used for the evaluation of
SI#2. As shown in Table IV, 73 of the 117 casting apps suffer
from SI#3, by accepting the URL from the malicious app in
the control stage and successfully replying with acceptance
messages. 31 out of the 56 casting apps suffer from SI#2, by
allowing file access on the smartphone.

Table V shows that more than half of the apps (31/56) use
risky file URLs, leading to unauthorized file access on the
smartphone. That means a malicious app installed on the user’s

TABLE V: Casting apps with different file accessing schemes.

Privilege of file access URL generation schemes
Sch.#1 Sch.#2 Sch.#3 Sch.#4

Can not access any files 0 0 2 1
Can access casting file 13 0 8 1
Can access unauthorized files 24 7 0 0

phone can access the files on external storage without any
permissions by exhausting the URLs. There are also 13 apps
that cannot access unauthorized files because only the current
file’s URL is set to be valid.

Only a small number of apps (10/56) use hashes or random
numbers to generate file URLs (Scheme#3). We test it by
detecting the URL format and do not generate new URLs
based on the existing URL. This mitigation makes it more
difficult for malicious apps to exhaust the file URLs. As for
Scheme#4, which uses a static URL as the file URL, we
cannot enumerate it, given that all files share the same URL.
Therefore, only the current casting file can be accessed.
Failed File Access. File access is closely related to the
configuration of the casting app on phone. There are few apps
that set a very short expiry time (a few seconds) for the URL,
which can cause us to time out when accessing it and thus not
be able to access the casting file.
False Positives & False Negatives. As long as the malicious
app can accept the URL, the casting app must have established
a connection with the malicious app. Therefore there is no
false positive in this experiment. False negatives in the exper-
iment are mainly caused by the rudimentary implementation
of the "malicious app". The improper implementation for app-
SmartTV interaction causes the connection to interrupt due to
command execution exceptions. In this situation, the casting
app was classified by the tool as not having SI#2. In reality, the
casting app does not implement authentication mechanisms.

VI. PRACTICAL ATTACK CASES

Exploiting the identified vulnerabilities, we present two
concrete attack cases against SmartTV and smartphone, re-
spectively.

A. Attack Case 1: Command Execution and DoS

As mentioned in SI#4, the DLNA services of SmartTVs
tend to lack effective authentication for the control command
sender, resulting in the risk of device control. Also, what
is worse, after casting, the DLNA service port may not be
closed on time, facilitating the attack at any time. Here we
demonstrate a practical attack case.
Attack Setup. We choose Mi Box 4SE as the attack target.
It has 2 pre-installed apps providing the DLNA service,
LeBo Cast for TV and Tencent Video for TV. Following our
threat model, we developed a malicious Android app MalApp1
without any dangerous-level permission. It achieves various
DLNA control functions, and the code implementation is based
on Cling [19], an open-source UPnP/DLNA library for Java
and Android.

DLNA Services

Casting

Control

Tencent Video Tencent Video

LeBo CastLeBo CastMalApp1MalApp1

Casting AppCasting App

DoS

Fig. 7: Attack case: command execution.

Attack Process. We assume MalApp1 has been installed on
the victim user’s phone and runs in the background. At a
certain time, the user is using a casting app (e.g., Youku
Video8) on her phone to cast an online movie to her TV. If
MalApp1 detects an available DLNA device appears, it starts to
launch the command execution attack. To both DLNA service
apps9, MalApp1 can execute 7 kinds of control commands
(i.e., Pause, Play, Seek, SetAVTransportURI, Stop, SetMute,
and SetVolume) directly. For example, it can execute the
SetAVTransportURI command to make the TV play another
video, SetVolume for increasing the TV volume.

Furthermore, in addition to executing a single control com-
mand, MalApp1 also can launch a DoS attack. The DLNA
service ports of 49153 (LeBo Cast for TV) and 39520 (Tencent
Video for TV) are always open. Therefore, MalApp1 can send
the SetAVTransportURI and SetMute commands repeatedly
and frequently (e.g., at 5s intervals), resulting in the normal
service not being provided. The former command brings the
TV to the video playback screen repeatedly, and the latter one
keeps the TV muted at all times.

Note that the TV remote control handset operations still
work well during the attacks. However, even if the user exits
the DLNA service apps or reboots the device, the casting
service will still run in the background. On the other hand,
due to heavy OS customization, the TV OS of Mi Box does
not provide the function of forcing closing an app. Therefore,
as a general user, she has no way to stop the DoS attack.
Impact. This case has been confirmed by CNVD with rating
high severity, and an ID has been assigned: CNVD-2022-54667.

B. Attack Case 2: Phone Data Theft

As mentioned in SI#2 and SI#3, the casting app does not
authenticate the devices for connection, and the file URL
generation mechanism may not be secure. It brings the security
risk of data theft.
Attack Setup. We choose Fast Cast10 as our attack target.
It is a popular casting app on Google Play with over 1
million installations. Following our threat model, the attack
is launched through a malicious app MalApp2 without any

8Package name: com.youku.phone
9LeBo Cast for TV provides the "anti-harassment" feature which is a kind of

white-list mechanism. However, by default, this option is switched off.
10Package name: com.creative.fastscreen.phone

Command
Forwading

SetAVTransportURI

MalApp2MalApp2
Construct

Real Device

File Theft

Screenshot on
Google Pixel 2

File SystemFile System Fast CastFast Cast

Fig. 8: Attack case: data theft.

dangerous-level permission. Similar to the previous attack
case, MalApp2 is developed based on Cling. Exploiting SI#3,
it can provide the DLNA service like a SmartTV. This means
that MalApp2 can [receive – record or modify – forward] a
control command, say MITM attack. The test phone is Google
Pixel 2 with Android 12.

Attack Process. As illustrated in Figure 8, at the moment of
connection establishment between the user’s casting app and
the SmartTV, she cannot distinguish whether the listed DLNA
service is provided by her TV or by a malicious app on her
phone. Therefore, the user may pick the fake service provided
by MalApp2 for connection. After that, during user operations,
when Fast Cast sends a casting command, MalApp2 can extract
the file URL from the command to steal the cast media file.

Also, other files that are not be cast still can be theft
through file name traversal. Taking Fast Cast as an ex-
ample, if the user wants to cast an image file named
Screenshot_20200220-022515.png in the folder /sdcard
/Pictures/Screenshots/, this casting app will generate a
file URL based on the sequence number, like http://192.
168.123.167:8090/image-item-40. MalApp2 can traverse
the last number of this URL to access other files, like [image-
item-1 ∼ image-item-999]. Note that, this kind of file access
is based on DLNA, that is, exploiting the Internet permission
(normal-level), not the READ_EXTERNAL_STORAGE permission
(dangerous-level). It is still Fast Cast that has access to the
files directly. What MalApp2 needs to do is to make a network
request and receive the files over the network. Therefore, it
does not break the isolation mechanism of the Android OS.
Following this approach, MalApp2 can access all image files
on the phone.

Impact. This case has been confirmed by CNVD with rating
low severity, and an ID has been assigned: CNVD-2022-34589.

VII. DISCUSSIONS

In this study, we identified four DLNA-related security
issues in the SmartTV ecosystem and designed analysis so-
lutions to detect them in devices and apps. Here we discuss
how to mitigate these security issues and some limitations of
this study.

A. Mitigation

Though the DLNA guidelines [26] design some protection
mechanisms, most of them are optional and do not affect the
core functions. On the other hand, the threat model of DLNA
is outdated and does not consider the scenario of malicious
apps on smartphones. A LAN does not mean all components
are trusted, such as malicious apps on the user’s phone. As a
result, most vendors did not implement these protections. For
each security issue, we propose the corresponding mitigation
solutions with the least modifications.

To SI#1, a straightforward and standard solution is message
encryption. PIN codes or QR codes can be used. By displaying
a PIN code or QR code on the TV side, the user enters or scans
the code on the mobile phone side. Then we can use the code
for key generation and negotiation, and later for encrypted
communication. For the exact process, we can refer to the
Bluetooth pairing and authentication process [6]. Also, since
the PIN codes or QR codes are displayed directly on the TV
screen, the malicious app on the phone has no way of knowing
the exact contents of these codes.

To SI#2, app developers can use secure file URL generation
schemes (such as Scheme#3 and Scheme#4 mentioned in
Section IV-B) to avoid brute-forcing file URLs. In addition,
denying any requests that do not match the URL of the cast
file can also prevent the leakage of non-cast files.

To SI#3, when the casting app establishes the connection
with the discovered device, it should deny the local DLNA
services (with local IPs) to prevent the attacks launched from
malicious apps on the same phone. Besides, using a PIN code
or scanning a QR code, as mentioned before, can also achieve
the effect of authentication.

To SI#4, it is necessary to add an extra connection confirma-
tion on the TV side. After receiving the request to establish a
connection, a connection confirmation window can be popped
up on the TV side for the user to mannualy confirm, in order
to avoid malicious users taking control of the TV. In addition,
whitelisting and blacklisting mechanisms are also necessary to
block frequent malicious requests. For example, we can use
user agents [30] to construct an access control list.

B. Limitations

Fully-automated Analysis. In Section V, we designed two
analysis solutions to detect our identified security issues in
casting apps and SmartTVs. However, some manual actions
are still required to trigger the operations of casting apps due
to the diverse code implementations. Though the workload of
manual actions is slight, it affects the analysis efficiency.

For the casting app analysis, we intended to use static
analysis to find the execution path of how the file URLs are

generated. The endpoint of the path is easy to determine. How-
ever, there is no unified interface for DLNA, and the software
vendor’s code implementations are quite different. Therefore,
tracing the path back to the starting point is challenging.
Finally, we launched our experiments by triggering a casting
action to capture the file URL. We faced a similar challenge to
the automated UI click triggering – the UI designs of casting
apps are quite different. Therefore, we have to trigger the
casting actions in the experiments by manual clicks.
Attack Consequences. The security impacts of some identi-
fied issues are not quite serious. For example, SI#4 can result
in the command execution attack, but this attack affects the
availability of services, not affecting the user’s private data
security. The main reason is that the DLNA is a file-sharing
protocol, and the user generally does not use the TV to process
sensitive data.
Other Casting Protocols. As described in Section II-B, there
are various casting protocols. In this study, we focus on DLNA
for its popularity. Other protocols are also deployed widely,
and we plan to study them in our future work.

VIII. RELATED WORK

Security of Smart Home. The security of the smart home is a
trending topic and has attracted attention from researchers. For
example, Fu et al. [28] proposed a semantics-aware anomaly
detection system for smart homes. Trimananda et al. [35]
presented a tool that can automatically extract packet-level
signatures for device events from network traffic. Fernandes
et al. [27] and Tian et al. [34] illustrate the security issues
associated with weak or lack of authentication in the smart
home. Zhou et al. [38] investigated the security issues in
the interaction between different entities in a smart home
platform. On the DLNA security, the previous work focused
on designing device-level access control schemes [30], [37].
However, these schemes are not suitable for our threat model
in the SmartTV ecosystem.
Security of SmartTV. Prior studies have traditionally focused
on the security of physical system and firmware for SmartTVs.
For example, Aafer et al. [21] developed a log-guided dynamic
fuzzing technique to evaluate Android SmartTV API additions.
The vulnerabilities they revealed could cause cyber threats,
memory corruption, and even visual and auditory disturbances.
Sitterer et al. [33] shared an approach to extract Android TV
application data without root access nor any authentication.
Bachy et al. [23] investigated the specific case of SmartTVs,
presented a new attack path that allows remote vulnerability
exploitation on smart devices, and discussed several methods
to extract and analyze the embedded firmware. Privitera et
al. [32] explored various security threats for SmartTV, fol-
lowed by the design and development of an asset protector by
considering inexpensive hardware and open-source software.
Bachy et al. [24] focused on the security of communication
channels for aerial TV broadcasts or between smartTVs and
their service providers. Niemietz et al. [31] conducted studies
on smart TV apps and found that these apps suffer from

security risks such as data leakage. Varmarken et al. [36]
proposed FingerprinTV, a method for automatically extracting
and evaluating network fingerprints of smart TV apps. In
contrast, our work focuses on security issues when performing
DLNA-based casting from smartphones to SmartTVs.

IX. CONCLUSION

In this paper, we conducted a systematic study on the
security of DLNA deployments in the SmartTV ecosystem, fo-
cusing on the interaction between casting apps and SmartTVs.
After investigation, we discovered four widely existed security
issues in the wild. Further, based on the new analysis solutions,
we conducted a series of experiments to measure the scope of
identified issues. The results are not encouraging: 100% TVs
and 62.4% casting apps have at least one security issue. The
current security risks should be mitigated immediately, and
further studies are needed.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their insightful
comments. This work was partially supported by National
Natural Science Foundation of China (Grant No. 61902148),
Shandong Provincial Natural Science Foundation (Grant
No. ZR2020MF055, ZR2021LZH007, ZR2020LZH002, and
ZR2020QF045), and Taishan Scholar Program of Shandong
Province, China. Jiongyi Chen was supported in part by
Natural Science Foundation of Hunan Province, China (Grant
No. 2022JJ40553).

REFERENCES

[1] (2016) DLNA Guidelines. [Online]. Available: https://spirespark.com/d
lna/guidelines/

[2] (2016) UPnP Standards & Architecture. [Online]. Available: https:
//openconnectivity.org/developer/specifications/upnp-resources/upnp/

[3] (2017) DLNA. [Online]. Available: https://www.dlna.org/
[4] (2017) DLNA Product Search. [Online]. Available: https://spirespark.c

om/dlna/products
[5] (2019) When Hotpot Gets Really Hot: Haidilao Customers Shocked by

Steamy TV. [Online]. Available: https://www.whatsonweibo.com/whe
n-hotpot-gets-really-hot/

[6] (2021) Bluetooth Core Specification. [Online]. Available: https:
//www.bluetooth.com/specifications/bluetooth-core-specification/

[7] (2022) AirPlay. [Online]. Available: https://www.apple.com/airplay/
[8] (2022) AirPlay Enabled TVs and Devices. [Online]. Available:

https://www.apple.com/ios/home/accessories/#section-tv
[9] (2022) Android TV. [Online]. Available: https://www.android.com/tv/

[10] (2022) Anzhi. [Online]. Available: http://www.anzhi.com/
[11] (2022) Certified Android TV. [Online]. Available: https://docs.google.

com/spreadsheets/d/1kdnHLt673EjoAJisOal2uIpcmVS2Defbgk1ntWRL
Y3E/edit

[12] (2022) Chromecast built-in. [Online]. Available: https://www.google.c
om/chromecast/built-in/

[13] (2022) Miracast. [Online]. Available: https://www.wi-fi.org/discover-w
i-fi/miracast

[14] (2022) Miracast Certified Products. [Online]. Available: https:
//www.wi-fi.org/product-finder-results?sort_by=certified&sort_order=d
esc&capabilities=100

[15] (2022) Smart TV. [Online]. Available: https://en.wikipedia.org/wiki/Sm
art_TV

[16] (2022) Tencent Yingyongbao. [Online]. Available: https://sj.qq.com/
[17] (2022) Wandoujia. [Online]. Available: https://www.wandoujia.com/
[18] (2022) What Android TV Buy? Comparison, Best 2022 Android

TV-Box. [Online]. Available: https://androidpctv.com/best-android-tv-b
ox/comment-page-1/

[19] 4thline. (2018) Cling. [Online]. Available: https://github.com/4thline/cli
ng

[20] 5kyc0d3r. (2020) upnpy. [Online]. Available: https://github.com/5kyc0
d3r/upnpy

[21] Y. Aafer, W. You, Y. Sun, Y. Shi, X. Zhang, and H. Yin, “Android
SmartTVs Vulnerability Discovery via Log-Guided Fuzzing,” in Pro-
ceedings of the 30th USENIX Security Symposium (USENIX-SEC),
August 11-13, 2021, 2021.

[22] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose, “SoK: Security
Evaluation of Home-Based IoT Deployments,” in Proceedings of the
2019 IEEE Symposium on Security and Privacy (Oakland), San Fran-
cisco, CA, USA, May 19-23, 2019, 2019.

[23] Y. Bachy, F. Basse, V. Nicomette, E. Alata, M. Kaâniche, J. Courrège,
and P. Lukjanenko, “Smart-TV Security Analysis: Practical Experi-
ments,” in Proceedings of the 45th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), June 22-25,
2015, 2015.

[24] Y. Bachy, V. Nicomette, M. Kaâniche, and E. Alata, “Smart-TV Security:
Risk Analysis and Experiments on Smart-TV Communication Chan-
nels,” Journal of Computer Virology and Hacking Techniques, vol. 15,
no. 1, pp. 61–76, 2019.

[25] Z. B. Celik, G. Tan, and P. D. McDaniel, “IoTGuard: Dynamic Enforce-
ment of Security and Safety Policy in Commodity IoT,” in Proceedings
of the 26th Annual Network and Distributed System Security Symposium
(NDSS), February 24-27, 2019, 2019.

[26] DLNA guidelines June 2016 release, Digital Living Network Alliance,
2016.

[27] E. Fernandes, J. Jung, and A. Prakash, “Security Analysis of Emerging
Smart Home Applications,” in Proceedings of the 2016 IEEE Symposium
on Security and Privacy (Oakland), May 22-26, 2016, 2016.

[28] C. Fu, Q. Zeng, and X. Du, “HAWatcher: Semantics-Aware Anomaly
Detection for Appified Smart Homes,” in Proceedings of the 30th
USENIX Security Symposium (USENIX-SEC), August 11-13, 2021, 2021.

[29] Ians. (2021) Over 665 million households own smart TVs globally,
says report. [Online]. Available: https://www.business-standard.com/ar
ticle/current-affairs/over-665-million-households-own-smart-tvs-globa
lly-says-report-121072500630_1.html

[30] M. Z. Islam, M. M. Hossain, S. Haque, J. Lahiry, S. A. Bonny, and
M. N. Uddin, “User-agent based Access Control for DLNA Devices,”
in Proceedings of the 6th International Conference on Knowledge and
Smart Technology (KST), Chonburi, Thailand, January 30-31, 2014,
2014.

[31] M. Niemietz, J. Somorovsky, C. Mainka, and J. Schwenk, “Not so smart:
On smart TV apps,” in 2015 International Workshop on Secure Internet
of Things, SIoT 2015, Vienna, Austria, September 21-25, 2015, 2015.

[32] D. Privitera and H. Shahriar, “Design and Development of Smart TV
Protector,” in Proceedings of the National Cyber Summit (NCS), June
5-7, 2018, 2018.

[33] A. Sitterer, N. Dubois, and I. M. Baggili, “Forensicast: A non-intrusive
approach & tool for logical forensic acquisition & analysis of the google
chromecast TV,” in Proceedings of the 16th International Conference
on Availability (ARES), August 17-20, 2021, 2021.

[34] Y. Tian, N. Zhang, Y. Lin, X. Wang, B. Ur, X. Guo, and P. Tague,
“SmartAuth: User-Centered Authorization for the Internet of Things,” in
Proceedings of the 26th USENIX Security Symposium (USENIX-SEC),
August 16-18, 2017, 2017.

[35] R. Trimananda, J. Varmarken, A. Markopoulou, and B. Demsky,
“Packet-Level Signatures for Smart Home Devices,” in Proceedings of
the 27th Annual Network and Distributed System Security Symposium
(NDSS), February 23-26, 2020, 2020.

[36] J. Varmarken, J. A. Aaraj, R. Trimananda, and A. Markopoulou, “Fin-
gerprinTV: Fingerprinting Smart TV Apps,” Proceedings on Privacy
Enhancing Technologies (PoPETs), vol. 2022, no. 3, pp. 606–629, 2022.

[37] Y. Wu and X. Zhi, “ARP Spoofing Based Access Control for DLNA
Devices,” in Proceedings of the 2015 International Conference on Cloud
and Big Data Computing, Beijing (CBDCom), China, August 10-14,
2015, 2015.

[38] W. Zhou, Y. Jia, Y. Yao, L. Zhu, L. Guan, Y. Mao, P. Liu, and
Y. Zhang, “Discovering and Understanding the Security Hazards in
the Interactions between IoT Devices, Mobile Apps, and Clouds on
Smart Home Platforms,” in Proceedings of the 28th USENIX Security
Symposium (USENIX-SEC), August 14-16, 2019, 2019.

https://spirespark.com/dlna/guidelines/
https://spirespark.com/dlna/guidelines/
https://openconnectivity.org/developer/specifications/upnp-resources/upnp/
https://openconnectivity.org/developer/specifications/upnp-resources/upnp/
https://www.dlna.org/
https://spirespark.com/dlna/products
https://spirespark.com/dlna/products
https://www.whatsonweibo.com/when-hotpot-gets-really-hot/
https://www.whatsonweibo.com/when-hotpot-gets-really-hot/
https://www.bluetooth.com/specifications/bluetooth-core-specification/
https://www.bluetooth.com/specifications/bluetooth-core-specification/
https://www.apple.com/airplay/
https://www.apple.com/ios/home/accessories/#section-tv
https://www.android.com/tv/
http://www.anzhi.com/
https://docs.google.com/spreadsheets/d/1kdnHLt673EjoAJisOal2uIpcmVS2Defbgk1ntWRLY3E/edit
https://docs.google.com/spreadsheets/d/1kdnHLt673EjoAJisOal2uIpcmVS2Defbgk1ntWRLY3E/edit
https://docs.google.com/spreadsheets/d/1kdnHLt673EjoAJisOal2uIpcmVS2Defbgk1ntWRLY3E/edit
https://www.google.com/chromecast/built-in/
https://www.google.com/chromecast/built-in/
https://www.wi-fi.org/discover-wi-fi/miracast
https://www.wi-fi.org/discover-wi-fi/miracast
https://www.wi-fi.org/product-finder-results?sort_by=certified&sort_order=desc&capabilities=100
https://www.wi-fi.org/product-finder-results?sort_by=certified&sort_order=desc&capabilities=100
https://www.wi-fi.org/product-finder-results?sort_by=certified&sort_order=desc&capabilities=100
https://en.wikipedia.org/wiki/Smart_TV
https://en.wikipedia.org/wiki/Smart_TV
https://sj.qq.com/
https://www.wandoujia.com/
https://androidpctv.com/best-android-tv-box/comment-page-1/
https://androidpctv.com/best-android-tv-box/comment-page-1/
https://github.com/4thline/cling
https://github.com/4thline/cling
https://github.com/5kyc0d3r/upnpy
https://github.com/5kyc0d3r/upnpy
https://www.business-standard.com/article/current-affairs/over-665-million-households-own-smart-tvs-globally-says-report-121072500630_1.html
https://www.business-standard.com/article/current-affairs/over-665-million-households-own-smart-tvs-globally-says-report-121072500630_1.html
https://www.business-standard.com/article/current-affairs/over-665-million-households-own-smart-tvs-globally-says-report-121072500630_1.html

