
Kindness is a Risky Business: On the Usage of the Accessibility APIs in Android
Wenrui Diao∗†, Yue Zhang‡, Li Zhang‡, Zhou Li§, Fenghao Xu¶, Xiaorui Pan‖, Xiangyu Liu\,

Jian Weng‡, Kehuan Zhang¶, and XiaoFeng Wang‖

∗Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education,
Shandong University, diaowenrui@sdu.edu.cn

†School of Cyber Science and Technology, Shandong University
‡Jinan University, {zyueinfosec, zhanglikernel, cryptjweng}@gmail.com

§University of California, Irvine, zhou.li@uci.edu
¶The Chinese University of Hong Kong, {xf016, khzhang}@ie.cuhk.edu.hk
‖Indiana University Bloomington, xiaopan@umail.iu.edu, xw7@indiana.edu

\Alibaba Inc., eason.lxy@alibaba-inc.com
Abstract

The assistive technologies have been integrated into nearly
all mainstream operating systems, which assist users with
disabilities or difficulties in operating their devices. On
Android, Google provides app developers with the acces-
sibility APIs to make their apps accessible. Previous re-
search has demonstrated a variety of stealthy attacks could
be launched by exploiting accessibility capabilities (with
BIND_ACCESSIBILITY_SERVICE permission granted). How-
ever, none of them systematically studied the underlying de-
sign of the Android accessibility framework, making the secu-
rity implications of deploying accessibility features not fully
understood.

In this paper, we make the first attempt to systemically
evaluate the usage of the accessibility APIs and the design
of their supporting architecture. Through code review and a
large-scale app scanning study, we find the accessibility APIs
have been misused widely. Further, we identify a series of
fundamental design shortcomings of the Android accessibility
framework: (1) no restriction on the purposes of using the
accessibility APIs; (2) no strong guarantee to the integrity
of accessibility event processing; (3) no restriction on the
properties of custom accessibility events. Based on these ob-
servations, we demonstrate two practical attacks – installation
hijacking and notification phishing – as showcases. As a re-
sult, tens of millions of users are under these threats. The flaws
and attack cases described in this paper have been responsibly
reported to the Android security team and the corresponding
vendors. Besides, we propose some improvement recommen-
dations to mitigate those security threats.

1 Introduction

The assistive technologies have been integrated into nearly
all mainstream operating systems, which assist users with dis-
abilities in operating their devices. It is not only the kindness
of OS vendors but also the requirements of federal law [20].
On mobile platforms, tremendous efforts have been spared

into developing assistive technologies. For example, Android
provides TalkBack [7] for users who are blind and visually
impaired. They could perform input via gestures such as swip-
ing or dragging on the screen and listen to the feedback in
an artificial voice. Other supports include Switch Access (an
alternative to using the touchscreen), Voice Access (control
device with spoken commands), etc.

Besides the built-in accessibility features provided by An-
droid OS, to support the development of accessible apps,
Google also provides app developers with the accessibility
APIs to develop custom accessibility services. The mission of
these APIs is to provide user interface enhancements to assist
users with disabilities, or who may temporarily be unable to
fully interact with a device [11]. With the accessibility APIs,
an app could observe user actions, read window content, and
execute automatic GUI operations, which improves the inter-
actions between users and apps. Since these APIs are quite
powerful, as a restriction, the accessibility service must be
protected by the BIND_ACCESSIBILITY_SERVICE permission
to ensure that only the system can bind to it.

On the other hand, the powerful capabilities of the acces-
sibility APIs can be exploited for malign purposes. Previ-
ous research demonstrated a variety of stealthy attacks could
be launched with the accessibility capabilities [35, 37, 43]
and investigated the inadequate checks on accessibility I/O
paths [36]. However, previous works focused on exploring
what kinds of attacks could be achieved through a mali-
cious app with the BIND_ACCESSIBILITY_SERVICE permis-
sion, and none of them touched the design of the Android
accessibility framework.

Our Work. Motivated by the significant security implications
of the accessibility service, in this work we perform the first
comprehensive study to evaluate the usage of the accessibility
APIs and the design of their supporting architecture in An-
droid. In particular, we first conducted a large-scale study on
91,605 Android apps crawled from Google Play to measure
the accessibility APIs usage in the wild. The result shows
the accessibility APIs have been misused widely. Most assis-

USENIX Association 22nd International Symposium on Research in Attacks, Intrusions and Defenses 261

tive apps utilize them to bypass the permission restrictions of
Android OS, which deviates from the original mission.

Then, we reviewed the Android accessibility framework
to investigate the fundamental reasons for misuse and the
potential security risks. Finally, we identify a series of funda-
mental design shortcomings that can lead to severe security
threats. (1) Specifically, we find that there is no restriction
on the purposes of using the accessibility APIs. Any app can
invoke the accessibility APIs even when the purpose is not
for helping the disabled users. (2) Also, we notice that the
Android accessibility architecture is event-driven. Under such
design, the event receivers do not communicate with the event
senders directly. The execution logic of accessibility services
only could rely on the received accessibility events. However,
the information contained in the events does not provide a
strong guarantee to the integrity of event processing. (3) Even
worse, Android allows zero-permission apps to inject arbitrary
custom accessibility events into the system, which brings the
possibility of constructing fraudulent activities.

Exploiting these design shortcomings, we demonstrate two
real-world attacks as showcases. That is, a malicious app with-
out any sensitive permission can hijack the execution logic of
assistive apps installed on the same phone to install arbitrary
apps and send phishing notifications. Note that, different from
the previous works [35, 37, 43], in our attacks, we consider
a more general model and do not assume the malicious app
has been granted with the BIND_ACCESSIBILITY_SERVICE
permission.

Following the responsible disclosure policy, we reported
our findings to the Android security team and the correspond-
ing vendors. At present, Google has confirmed our discovery
and rewarded us with $200 under the Android Security Re-
wards Program. The latest update could be tracked through
AndroidID-79268769 and CVE-2018-9376.

As mitigations, we also propose some improvement rec-
ommendations for each shortcoming. However, to thoroughly
address the current security threats, a new accessibility ar-
chitecture may be needed. How to trade off the security and
usability is still an open question.

Contributions. We summarize the contributions of this paper
as follows:

• Data-driven Analysis. We perform the first large-scale
study to measure the usages of the accessibility APIs
in the wild (based on 91,605 app samples from Google
Play). Our study shows the accessibility APIs have been
misused widely.

• Discovery of New Design Flaws. After reviewing the de-
sign of the Android accessibility supporting architecture,
we identify a series of fundamental design shortcomings
which may bring serious security risks. We also propose
improvement recommendations.

• Demonstration of Proof-of-Concept Attacks. We demon-
strate two concrete attacks exploiting the design short-
comings of the accessibility framework as showcases:
installation hijacking and notification phishing.

Roadmap. The rest of this paper is organized as follows.
Section §2 provides the background of the accessibility ser-
vice on Android. Section §3 introduces the threat model and
methodology of this paper. In Section §4, we measure the
usage status of the accessibility APIs on a large-scale app
dataset. Section §5 summarizes the discovered design short-
comings. Section §6 demonstrates two practical attacking
exploiting these shortcomings. Section §7 discusses some
attack conditions and limitations. Section §8 proposes some
improvement recommendations. Section §9 reviews related
works, and Section §10 concludes this paper.

2 Accessibility Service on Android

The accessibility service was introduced by Google starting
from Android 1.6 (API Level 4) and gained significant im-
provement since Android 4.0 (API Level 14). It is designed to
implement assistive technology with two main functionalities:
(1) receiving input from alternative input devices (e.g., voice
into microphone) and transforming it to commands accepted
by OS or apps; (2) converting system output (e.g., text dis-
played on screen) into other forms which can be delivered by
alternative output devices (e.g., sound through a speaker).

Capabilities. To this end, Android provides a set of capabili-
ties for the accessibility APIs, and they can be grouped into
eight categories [5], as listed below:

• C0: Receive AccessibilityEvents. This is the default
capability ensuring the accessibility service can receive
notifications when the user is interacting with an app.

• C1: Control display magnification.

• C2: Perform gestures, including tap, swipe, pinch, etc.

• C3: Request enhanced web accessibility enhancements1.
Such extensions aim to provide improved accessibility
support for the content presented in a WebView.

• C4: Request to filter the key event stream, including both
hard and soft key presses.

• C5: Capture gestures from the fingerprint sensor.

• C6: Request touch exploration mode. In this mode, a
single finger moving on the screen behaves like a mouse
pointer hovering over the user interface.

• C7: Retrieve interactive window content. An interactive
window is a window that has input focus.

1This capability was deprecated in Android 8.0 (API level 26).

262 22nd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

(a) Accessibility settings (b) AVG Cleaner (c) Security warning

Figure 1: Turn on accessibility service for AVG Cleaner.

Building An Assistive App. Android provides standard ac-
cessibility services (such as TalkBack), and developers can
create and distribute their own custom services. An app pro-
viding the accessibility service is called assistive app. To
build an assistive app, developers need to create a service
class that extends AccessibilityService.

Permission. For security reasons, the accessibility service
must be protected by the BIND_ACCESSIBILITY_SERVICE
permission (protection level: signature) to ensure that only
the system can bind to it. An extra requirement is that the user
must manually turn on the accessibility switch and confirm
the security implications for every accessibility service (assis-
tive app), as demonstrated in Figure 1(c). The listed items in
this picture are the capabilities declared by this service.

Service Interaction. The internal mechanism of the acces-
sibility framework is quite complicated, and here we focus
on how accessibility events are processed. As illustrated in
Figure 2, three components are involved in the Android ac-
cessibility service framework: topmost app, system-level ser-
vice AccessibilityManagerService, and multiple assistive
apps with custom accessibility services. A typical and simpli-
fied invocation process of accessibility service is illustrated
as below:

1. Generate & Send Events: An accessibility event [2] is
fired by the topmost app which populates the event with
data for its state (e.g., the changes in the UI) and requests
from its parent to send the event to interested parties. The
event delivery is based on the binder IPC mechanism via
IAccessibilityManager.

2. Dispatch Events: All generated accessibility events will
be sent to the centralized manager of the Android OS
– AccessibilityManagerService. After some basic
checkings (such as event types), it dispatches events
to each bound accessibility services through binder
IAccessibilityServiceClient.

3. Receive & Handle Events: Through the callback func-
tion onAccessibilityEvent, assistive apps obtain the
dispatched events and further process them following
their own programmed logics. If the assistive app needs
to inject actions (e.g., clicking), it could reversely lookup
the view hierarchy from the source contained in an event,
locate a specific view node (e.g., a button), and then per-
form actions on the topmost app.

Accessibility Events2. As described above, the accessibil-
ity architecture is event-driven. The AccessibilityEvent is
generated by a view and describes the current state of the view.
The main properties of an AccessibilityEvent include [2]:
EventType, SourceNode, ClassName, and PackageName.
Note that, each event type has an associated set of different
or unique properties.

3 Threat Model and Methodology

According to whether the assistive apps are malicious, the
security threats related to the accessibility APIs could be
classified into two groups. In this paper, we focus on the
normal use cases of the accessibility APIs and, therefore,
consider the security threats assuming benign assistive apps.

It has been well-studied that malicious apps can exploit the
powerful capabilities of the BIND_ACCESSIBILITY_SERVICE
permission to launch attacks. Previous research [35,37,43] has
demonstrated a variety of stealthy attacks could be launched,
even complete control of the UI feedback loop (see Section §9
for more details). Such kind of attacks is built on the dominant
feature through the accessibility APIs which could achieve
the cross-app operations. As shown in Figure 1, the key point
of a successful attack is how to induce victim users to turn on
the accessibility service.

Threat Model. In our study, we consider a more general
model: the attacker only could control a malicious app in-
stalled on the victim’s phone without any sensitive permis-
sions. Also, there is a benign assistive app installed on the
same phone. We assume the malicious app attempts to hijack
the execution logic of the assistive app to perform malicious
activities. In this process, the assistive app becomes the con-
fused deputy, and its assistive capabilities are abused.

Methodology. In our study, we employed the following two-
step methodology:

• Measuring the usage of the accessibility APIs in the
wild. With the data collected by ourselves, we could
answer whether the accessibility APIs are used correctly
by developers as expected.

• Reviewing the design of Android accessibility supporting
architecture. If the answer of the first step is “no”, we

2We use “AccessibilityEvent” and “accessibility event” interchange-
ably in this paper.

USENIX Association 22nd International Symposium on Research in Attacks, Intrusions and Defenses 263

AccessibilityManagerService

AccessibilityManager

Topmost App (View)

......

AccessibilityService

Assistive App1

AccessibilityService

Assistive App2

Generate & Send Events Dispatch Events Receive & Handle Events

Android OS

System Service

AccessibilityEvents

View ViewRootImpl

IAccessibilityServiceClientIAccessibilityManager

Figure 2: Android accessibility service framework.

Service searching Q1, Accessibility
Service Usage

Configuration file

 Q2, Accessibility
Capabilities Usage

strings.xml

res

AndroidManifest.xml

Resource files

NLP Q3, Accessibility
Purposes

crawl

Google Play

Key searching

Figure 3: App analysis.

need to investigate the fundamental reasons of misuse
and the potential security risks.

4 Accessibility APIs Usage

As the first step, to understanding the accessibility APIs usage
status, we carried out a large-scale study on Android apps in
the wild. In particular, we try to answer the following three
questions.

Q1: How many apps use the accessibility APIs?
Q2: What kinds of accessibility capabilities are used?
Q3: What are the purposes of using accessibility APIs?

Since we are interested in the usage status of legitimate
apps, an APK sample dataset (91,605 samples, around 1.12
TB) crawled from Google Play was used in our experiment.
These samples were collected in 2018, covering most popu-
lar apps in each category except for games. As preparation,
we used Apktool [9] to disassemble them and obtained the
corresponding manifest and resource files (the res folder).
To each question, we deployed different analysis approaches,
and Figure 3 illustrates the overall analysis process.

4.1 Accessibility APIs Usage
To Q1, we wrote a shell script to search the services pro-
tected by the BIND_ACCESSIBILITY_SERVICE permission in
manifest files.

Result. The result shows around 0.37% apps (337 / 91,605)
from Google Play use the accessibility APIs. Also, these 337
assistive apps provide 342 accessibility services3. Though the
percentage looks quite low, it does not mean these assistive
apps receive little attention. On the contrary, more than half
of them (56.7%) have over 1 million installations.

4.2 Accessibility Capabilities Usage
To Q2, accessibility services must declare the needed acces-
sibility capabilities (listed in Section §2) in advance and ask
users to confirm, like Figure 1(c).

In particular, every assistive app must prepare a con-
figuration file for its accessibility service, which declares
some meta information, such as needed capabilities, ex-
pected event types, and timeout. Here we take the config-
uration file of Network Master (com.lionmobi.netmaster)
as an example, as shown in Listing 1. The key-value pair
[android:canRetrieveWindowContent="true"] indicates
it needs to invoke the capability of retrieving the active win-
dow content. Note that the default capability of receiving
accessibility events will always be granted automatically.

1 <?xml version="1.0" encoding="utf -8"?>
2 <accessibility -service android:description

="@string/
boost_tag_acc_kill_service_description
" android:accessibilityEventTypes="
typeWindowStateChanged"
android:accessibilityFeedbackType="
feedbackGeneric"
android:notificationTimeout="100"
android:canRetrieveWindowContent="true
"

3 xmlns:android="http: // schemas.android.com/
apk/res/android" />

4 </service >

Listing 1: Accessibility configuration of Network Master.

Based on this observation, we obtain the capability usage
data by analyzing the accessibility service configuration files.

3Note that, one app could provide multiple accessibility services.

264 22nd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

C0 C7 C4 C3 C2 C6 C5 C1
Accessibility Capability #

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

) i
n

Ac
ce

ss
ib

ilit
y

Se
rv

ice
s 100.0%

58.8%

5.6% 4.4% 1.8% 1.5% 0.6% 0.3%

C0: Receive AccessibilityEvents
C1: Control Display Magnification
C2: Perform Gestures
C3: Request Enhanced Web Accessibility
C4: Request Filter KeyEvents
C5: Request Fingerprint Gestures
C6: Request Touch Exploration Mode
C7: Retrieve Window Content

Figure 4: Statistics of capabilities usage.

Among the collected 342 accessibility services, we did not
obtain the configuration files from 8 of them. The reasons
for the failed retrieval are two-fold: (1) some apps declare
the accessibility services in manifest files but do not imple-
ment them in code; (2) the other apps deploy anti-analysis
protections (e.g., packer), and the resource files cannot be
disassembled successfully.

Result. The statistical result is plotted in Figure 4. It shows,
besides the default capability of receiving accessibility events
(C0), the capability of retrieving the active window content
(C7) is the most popular one, say 58.8%. The use cases of
the other capabilities are not common. Also, 128 accessibility
services (37.4%) only use the default capability.

Our assessment: Most assistive apps only use the accessi-
bility APIs to receive accessibility events (C0) and execute
automated clicking operations (C7). Also, the deployment
scenarios of some accessibility APIs (C1 and C5) are ex-
tremely rare, of which design may be ill-considered.

4.3 Purposes of Using Accessibility APIs

To Q3, it is indeed a non-trivial task. An intuitive solution is
to analyze the disassembled code of assistive apps. Through
building a context-sensitive call graph, we could track the
accessibility APIs invocation and related code executions.
However, the challenge is how to identify the ultimate pur-
pose of the accessibility code. For example, we could identify
the assistive app injects some clicking actions to the fore-
ground app, but the purpose of the injection operations is
not easy to identify, especially for the various nonstandard
implementations. To achieve it, we have to manually analyze
several implementation samples and build a series of models.
When facing obfuscated apps, it will become a tough process.
Therefore, static code analysis is not practical for this task.

NLP-based Analysis. As an alternative, we designed a light-
weight solution based on natural language processing (NLP)

techniques. We notice that every accessibility service must
provide a description to explain why it needs the accessibil-
ity service, as shown in Figure 1(b). If the assistive app is
legitimate (and appears on Google Play), it has no incentive
to provide a fake description in most cases. Also, since this
description should be understood by ordinary users, it is usu-
ally written in plain languages, like Listing 2 from Network
Master. Also, we give more examples in the Appendix.

1 <string name="
boost_tag_acc_kill_service_description
">"Turn it on will help Network Master
stop apps and extend your battery

life. Network Master uses
accessibility service to optimize your
device only. We will never use it to

collect your privacy information. If
you receive warnings about privacy ,
please ignore."</string >

Listing 2: Service description of Network Master.

Motivated by this observation, the purposes of accessibility
APIs invocations could be extracted through analyzing their
usage descriptions. Here we describe our four-step approach:

1. Service Description Crawling. Through analyzing the
service configuration file, we could locate and extract
the service description from res/values/strings.xml
(or similar paths). If the description is not in English, we
translate it to English through the Google Translate API.

2. Part-of-Speech Tagging. Part-of-speech (PoS) tagging
is the operation of tagging a word in a text as corre-
sponding to a particular part of speech, based on both
its definition and context [17]. Since we are concerned
with the actions mentioned in the description, we need
to extract the contained action phrases, like “stop apps”.
With PoS tagging, we could obtain all verbs in a sentence
as preparatory knowledge. In the implementation, we
use spaCy [21] to complete this step, and the result is
shown in Figure 5 (based on Listing 2).

3. Semantic Relationship Extraction. In this step, we ex-
tract the [action + object] relationship from the sentences.
Our method is to build a semantic relationship tree for
each sentence based on spaCy. Then, through breadth-
first searching from each verb, we could get the [action
+ object] relationships. As illustrated in Figure 5, we
obtain “help apps”, “stop apps”, and “extend battery life”
from the first sentence. Note that, the negative statements
have been excluded in this step because the contained ac-
tions will not happen. Therefore, “(never) collect private
information” is not extracted from the third sentence.

4. Matching and Classification. The last step is to build
a series of matching rules for classifying the [action +

USENIX Association 22nd International Symposium on Research in Attacks, Intrusions and Defenses 265

help

Master

Network

apps and extend

life

Turn will stop .

onit

your battery

(Turn VERB) (it PRON) (on PART) (will VERB) (help VERB) (Network PROPN)
(Master PROPN) (stop VERB) (apps NOUN) (and CCONJ) (extend VERB) (your ADJ)
(battery NOUN) (life NOUN) (. PUNCT) (Network PROPN) (Master PROPN) (uses
VERB) (accessibility NOUN) (service NOUN) (to PART) (optimize VERB) (your ADJ)
(device NOUN) (only ADV) (. PUNCT) (We PRON) (will VERB) (never ADV) (use
VERB) (it PRON) (to PART) (collect VERB) (your ADJ) (privacy NOUN) (information
NOUN) (. PUNCT) (If ADP) (you PRON) (receive VERB) (warnings NOUN) (about
ADP) (privacy NOUN) (, PUNCT) (please INTJ) (ignore VERB) (. PUNCT)

help apps | stop apps | extend battery life | uses accessibility service | optimize
your device | receive warnings | ignore warnings

Part-of-Speech Tagging

Semantic Relationship Extraction

Remarks: The other three relationship trees are omitted due to space
limitations. The definitions of grammatical relations (like csubj, aux, ccomp,
and prt) are based on the Stanford typed dependencies [31].

Figure 5: [action + object] relationship extraction.

object] relationship sets. We apply a heuristic method to
build rules4. That is, when an app is not matched by any
rule, we will check its accessibility service description
and add new rules. If an app is classified incorrectly, we
will adjust the existing rules. The formats of rules are
[v] for matching a single verb, [n] for matching a single
noun, and [v n] for matching action phrases. For example,
the rules for the usage of killing processes contain:

[v kill n app; v stop n app; v block n app; v kill n applic;
v stop n applic; v block n applic; n batteri; n cach; n
acceler; n power]

Note that, we have applied the stemming in match-
ing to avoid the interference of inflected words. There-
fore, in this example, “applic” could match “application”
and “applications”. Similarly, “stop” could match “stop”,
“stops”, “stopping”, and so forth.

After the first step, we obtained 321 descriptions from 342
accessibility services. Among the failure samples, 8 of them
lacked available configuration files (the reason has been given
in Section §4.2), and 13 of them did not provide the service
descriptions.

Result. Finally, we classified the descriptions into 10 cate-
gories, and the result is plotted in Figure 6. Among them,

4We did not use machine learning-based algorithms (like k-means) in this
step because they do not work well on short text due to insufficient features.

Obtain Notification

30.8%

Uncategorized

18.8%

Kill Processes
17.9%

Execute Auto-actions

7.1%

Auto-fill Text

5.5%

Detect Foreground App

4.9%

Read Screen Text/URLs

4.5%

Detect User Actions

4.5%
Execute Voice Feedback

3.2%
Install Apps

2.6%

Obtain Notification
Uncategorized
Kill Processes
Execute Auto-actions
Auto-fill Text
Detect Foreground App
Read Screen Text/URLs
Detect User Actions
Execute Voice Feedback
Install Apps

Figure 6: Statistics of purposes.

58 accessibility services (18.8%) are labeled “uncategorized”
because their descriptions do not provide useful information5.

Among the collected descriptions, only 11 apps mention
they are designed for users with disabilities, i.e., 3.2%. It
means most accessibility service invocation behaviors are
suspicious to some extent. Also, according to Android devel-
opers documents: "accessibility services should only be used
to assist users with disabilities in using Android devices and
apps [4]." Here we define that if an app uses the accessibility
APIs not for helping the disabled people, it should be treated
as a misuse behavior. Note that, even such usage is not for
malicious purposes, it also could be classified into misuse
behaviors.

Through the categorical data analysis and manual confir-
mation, we identify some typical misuse implementations.

(1) Around 30.8% of assistive apps use the accessi-
bility APIs to obtain system notifications, which occu-
pies the most significant share. Most of them belong to
the launcher, lockscreen, or status bar apps. Though An-
droid has provided the notification reading APIs and the
BIND_NOTIFICATION_LISTENER_SERVICE permission in An-
droid 4.3, several assistive apps still keep the accessibility-
based approach to avoid compatibility issues.

(2) Another significant category is the purpose of killing back-
ground processes, say 17.9%. The apps falling in category use
the accessibility service to click the “FORCE STOP” button
on the app info menu in the system setting. This method could
terminate a background process and prevent it from restart-
ing again. Also, the regular KILL_BACKGROUND_PROCESSES
permission cannot achieve preventing apps restart. The
FORCE_STOP_PACKAGES permission could achieve it but not
available for third-party apps. Therefore, such implementation
is popular in battery saver or system booster apps.

5For example, “Tap on the top right hand toggle to enable CM
Launcher. Attention: You may receive standard privacy warnings. There’s
no need to worry, no personal data will be collected.” from CM Launcher
(com.ksmobile.launcher).

266 22nd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

(3) Executing auto-actions (7.1%) means accessibility ser-
vices could automatically complete a series of clicking actions
without user operations. A typical case is that input method
apps use it to send GIFs. Users with motor impairments also
could benefit such usage.
(4) Auto-filling text (5.5%) is mainly implemented to automat-
ically fill username and password. It has become the standard
feature in nearly all password manager apps.
(5) Around 4.9% of assistive apps use the accessibility APIs to
detect foreground apps, such as measuring game playing time.
The information about which app is running in the foreground
is sensitive because it may be abused for phishing attacks.
Therefore, Google has replaced the GET_TASKS permission
by the system-level permission REAL_GET_TASKS in Android
5.0 to block accessing from third-party apps. However, with
the accessibility service, assistive apps could still obtain the
foreground app information.

Our assessment: The accessibility APIs have been mis-
used widely. Most assistive apps utilize them to bypass
the permission restrictions of Android OS, which deviates
from the original mission.

5 Design Shortcomings

Motivated by the less optimistic results of app scanning, we
further reviewed the design of Android accessibility support-
ing architecture. Finally, we identify a series of design short-
comings lying in the Android accessibility framework, which
may bring serious security risks.

Design Shortcoming #16. The accessibility service is de-
signed for users with disabilities and, therefore, enhances the
user interactions (i.e., input and output). However, there is
no restriction on the purposes of using the accessibility APIs.
Any app can invoke the accessibility APIs even it is not de-
signed for disabled users. Naturally, in practice, how to use
these APIs depends on the developers’ understanding and
users’ demand.

Since the accessibility APIs are very powerful, the assistive
apps can know the current foreground app, displayed texts,
and user’s actions, and even operate arbitrary other apps. On
the other hand, due to the increasingly strict restriction of the
Android permission system [51], some apps need to find a
new code implementation approach to meet the requirements
of their function designs. As a result, through combining the
accessibility APIs and programming tricks, several dangerous
permissions could be bypassed, as summarized in Table 1.

Design Shortcoming #2. The accessibility architecture of
Android is event-driven. The execution logic of accessibil-
ity services only could rely on the received accessibility
events. The assistive app extracts the event properties (like

6DS#1 for short. Similarly, we have DS#2 and DS#3.

EventType, ClassName, PackageName) and further judges
what happens in the foreground. However, the information
contained in the events cannot provide a strong guarantee to
the integrity of event processing. The current design cannot
guarantee that two events with the same properties are defi-
nitely generated by the same view, i.e., uniqueness guarantee.

In the accessibility framework, the event receivers (assistive
apps) do not communicate with the event senders (topmost
app) directly. Such a design ensures the centralized manage-
ment and efficient event dispatching. On the other hand, the
integrity of event processing flow only relies on the checkings
implemented by the assistive apps themselves. The unreliable
provenance information may confuse the checkings.

Design Shortcoming #3. Android allows zero-permission
apps to inject custom AccessibilityEvents into the sys-
tem. This function is provided to developers to make their
custom view components accessible [12]. However, there
is no restriction on how to set the properties of a custom
AccessibilityEvent, which brings the possibility of con-
structing fraudulent events. Also, though Android OS requires
the AccessibilityEvent only could be sent by the topmost
view in the view tree [3], this restriction is not enforced.

Any app could implement the following code to construct
and inject a custom AccessibilityEvent:

1 AccessibilityManager manager = (
AccessibilityManager) getSystemService
(ACCESSIBILITY_SERVICE);

2 AccessibilityEvent event =
AccessibilityEvent.obtain ();

3
4 event.setEventType(. . .);
5 event.setClassName(. . .);
6 event.setSource (...);
7 event.setParcelableData (...);
8 . . . // Other properties are omitted
9

10 manager.sendAccessibilityEvent(event);

Listing 3: Inject custom AccessibilityEvent.

6 Attack Case Studies

In this section, we discuss how to exploit the discovered
design shortcomings to launch real-world attacks. Specifi-
cally, we present installation hijacking and notification phish-
ing as showcases. The attack demos are available at https:
//sites.google.com/site/droidaccessibility/.

6.1 Case Study: Installation Hijacking

In this case, a malicious app without sensitive permission
could hijack the execution logic of assistive apps to install
arbitrary apps silently.

USENIX Association 22nd International Symposium on Research in Attacks, Intrusions and Defenses 267

https://sites.google.com/site/droidaccessibility/
https://sites.google.com/site/droidaccessibility/

Table 1: Bypassed permissions through the accessibility APIs.

Usage Bypassed Permission Protection Level
Obtain notification BIND_NOTIFICATION_LISTENER_SERVICE† Signature
Kill processes FORCE_STOP_PACKAGES Not for third-party apps
Execute auto-actions INJECT_EVENTS Not for third-party apps
Auto-fill text BIND_AUTOFILL_SERVICE† Signature
Detect the foreground app REAL_GET_TASKS Not for third-party apps

Install / Uninstall apps
INSTALL_PACKAGES Not for third-party apps
DELETE_PACKAGES Not for third-party apps

†: The corresponding service must be protected by this permission to ensure that only the system can bind to it.

The popularity of Android is primarily due to a wide vari-
ety of apps provided by Google Play – the official Android
app store. However, due to the policy restriction, the Google
service framework (including Google Play) is not available in
some countries. Also, some apps on Google Play are region-
locked. Therefore, third-party app stores (store app for short)
become an alternative choice, such as 1Mobile [1], Amazon
Appstore [6], and APKPure [8].

In Android, the INSTALL_PACKAGES permission is designed
to prevent the apps from unknown sources to be installed
silently. Also, it is a system-level permission and not avail-
able for third-party apps. As a result, third-party store apps
have to work as APK downloaders and ask the user to click
the “INSTALL” button of the Installer by themselves, as shown
in Figure 7(a). However, with the accessibility APIs, store
apps can achieve the automatic installation by clicking the
“INSTALL” button programmatically, which saves user clicks
and bypasses the INSTALL_PACKAGES permissions. Such im-
plementation improves the user experience but disobeys the
mission of the accessibility APIs [DS#1].

Logic Analysis. Here we describe the logic implementation
of the automated installation of store apps, as illustrated in
Figure 7(c). After the target APK file has been downloaded
to the device, the store app utilizes the Intent mechanism [13]
to load this APK file. Then Android OS will invoke a proper
program (i.e., PackageInstaller [16] in this case) to process it.
After that, the Installer requests the user to confirm the instal-
lation and required permissions. Note that, during this process,
the store app continuously monitors the change of foreground
UI through filtering AccessibilityEvents. When it finds
that the PackageInstaller is launched to process the APK file
just downloaded, it will invoke the accessibility service to
click the "INSTALL" button automatically.

However, we find that, before deciding whether to click
the "INSTALL" button, the checking logic (Step 3© in Fig-
ure 7(c)) of the store app is vulnerable. This step checks four
parameters of incoming AccessibilityEvents:

1. SourceNode != null? (If null, the store app cannot re-
trieve the window content, locate the "INSTALL" button,
and execute the clicking action.)

2. EventType == TYPE_WINDOW_CONTENT_CHANGED?
(This type of events is usually triggered by adding or
removing views.)

3. PackageName == com.android.packageinstaller?
(This ensures that the app running in the foreground is
the PackageInstaller.)

4. Text is the name of the downloaded app (e.g.,
“WhatsApp” in Figure 7(a))? (This ensures that the app
being installed is the one just downloaded.)

If all four conditions pass, the store app will believe the Pack-
ageInstaller is processing the downloaded APK file [DS#2].
Unfortunately, this AccessibilityEvent-based checking is
not complete, and a malicious app installed on the same phone
can construct a scenario passing the checking conditions to
hijack the work-flow of store apps.

Attack. In this attack, the malicious app only declares the
READ_EXTERNAL_STORAGE permission, a very common per-
mission. Its payload contains a repackaged Trojan APK file
disguised as a popular app, like WhatsApp. This Trojan app
can execute various malicious operations with many danger-
ous permissions, like Figure 7(b).

First, the malicious app running in the background monitors
the download folder of the victim store app. In general, since
the downloaded APK files are not sensitive data, this folder is
usually located in the public storage of the device [19]. There-
fore, any app with the READ_EXTERNAL_STORAGE permission
could access it. Note that, if the store app keeps the down-
loaded APK files in its private folder, the malicious app will
not be able to monitor the file downloading status and further
launch the hijacking attack. (Un)fortunately, using the public
storage for saving temporary data is a widespread operation
in Android apps [34, 40], including at least 11 popular store
apps as listed in Table 2.

During the monitoring, if a new cache file appears in
this folder, it means the store app starts to download a new
APK file. The code implementation could be based on the
Runnable interface [18] for periodic file existing checking.
Through identifying the name of the cache file, the malicious
app could know what app is being downloaded because the file

268 22nd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

(a) Installer - WhatsApp (b) Installer - Trojan

2018/8/7 install_attack - 副本.svg

file:///E:/Dropbox/Projects/[Under%20Review]%20AccessibilityService/pic/install_attack%20-%20%E5%89%AF%E6%9C%AC.svg 1/1

AccessibilityManagerService

Android OS

System Service

AccessibilityService

Third-party Market App

Installer
(pointing to the downloaded APK file)

Event Checking

Discard

Pass ③

①
②

④

Installer
(pointing to a malicious APK file)

AccessibilityEvents

Fail ③

(c) Attack overview

Figure 7: Installation hijacking attack.

name is usually the hash value (MD5 or SHA-1) of the being
downloaded APK file or contains the package name. Taking
APKPure as an example, the default path for saving APK files
is /Download on the external storage, and the format of the
cache file name is WhatsApp_Messenger_[xxx].apk.tmp,
e.g., WhatsApp_Messenger_2a1417b0.apk.tmp.

Next, if the malicious app finds the store app is down-
loading the target app (i.e., WhatsApp in our case), the
hijacking attack will be launched. When the download-
ing completes (WhatsApp_Messenger_[xxx].apk.tmp be-
comes WhatsApp_Messenger_[xxx].apk), the malicious
app utilizes the same Intent mechanism as the store app to load
its Trojan APK file immediately, as shown in Figure 7(b). The
PackageInstaller pointing to the Trojan APK file (Installer-A)
will happen to cover the PackageInstaller pointing to the down-
loaded APK file (Installer-B), as illustrated in Figure 7(c).
Note that, this step creates a race condition (Installer-A vs.
Installer-B), and the attack may fail if the Intent from the
malicious app is not processed by the OS at the right time.
In practice, the success rate of attacks could be significantly
improved through adjusting the point in time of launching
Installer-A. For example, on Motorola Moto G3 (the device
used in our attack demo), when the downloading completes,
the malicious app will wait 400ms before launching Installer-
A. Following this trail, in experiments, we achieved nearly
100% success rate (Installer-A covering Installer-B). Also,
it is an empirical time value and may be different on other
devices with varying computing performance.

At this moment, the AccessibilityEvent from the
Installer-A is almost the same as the one from Installer-B,
which meets all four conditions listed previously. As a result,
the store app will be deceived into thinking the Installer-A is
processing the APK file it just downloaded, so it decides to
click the "INSTALL" button. Finally, the repackaged Trojan
app prepared by the attacker is installed on the phone.

Summary. The checking logic of store apps entirely de-
pend on the information contained in AccessibilityEvents.

Table 2: Vulnerable third-party app stores.

Store Package Name Version

APKPure com.apkpure.aegon 2.12.2
1Mobile Market me.onemobile.android 6.8.0.1
360 Mobile Assistant com.qihoo.appstore 7.1.90
Baidu Mobile Assistant com.baidu.appsearch 8.5.1
Sogou Mobile Assistant com.sogou.androidtool 6.7.2
MoboMarket com.baidu.androidstore 4.1.9.6222
PP Assistant com.pp.assistant 6.0.8
AppChina com.yingyonghui.market 2.1.62716
Lenovo Le Store com.lenovo.leos.appstore 9.8.0.88
2345 Mobile Assistant com.market2345 5.6
Wandoujia com.wandoujia.phoenix2 5.74.21

However, the verified factors cannot guarantee which APK
file is being processed, which results in the possibility of
creating a race condition.

Scope of Attacks. We checked popular third-party store
apps and found at least 11 of them (with tens of millions
of users [23, 24]) suffer from the security risk of installation
hijacking, as listed in Table 2.

6.2 Case Study: Notification Phishing

In this case, a zero-permission malicious app could exploit the
execution logic of assistive apps to send phishing notifications
to users. Also, this attack is different from the direct notifica-
tion abuse attack [47]. Even the attack app has been blocked
for sending system notifications, this attack still works.

Here we consider the apps with the function of notification
management, such as status bar app. On Android, the system
default status bar could be replaced by third-party status bar
apps for a better experience. They could provide several ad-
vanced features, like replaceable theme styles, customized
fonts, spams filtering, and so forth. On Google Play, there
are several popular status bar apps with over one million in-

USENIX Association 22nd International Symposium on Research in Attacks, Intrusions and Defenses 269

(a) Original status bar (b) Phishing notification (c) Phishing Activity

Figure 8: Notification phishing attack.

stallations, such as Super Status Bar7 (com.firezenk.ssb),
Status (com.james.status), and Material Notification Shade
(com.treydev.msb).

As an essential function, status bar apps need to obtain sys-
tem notifications and notify the user. After Android 4.3 (API
level 18), third-party apps could obtain system notifications
through the NotificationListenerService [15] with the
BIND_NOTIFICATION_LISTENER_SERVICE permission. How-
ever, for the devices equipped with old Android versions, the
only method of obtaining system notifications is to utilize
the accessibility service. Due to the Android fragmentation
problem and the consideration of backward compatibility,
this accessibility-based notification obtaining method is still
very popular. This observation also has been confirmed by
our study in the accessibility purpose analysis, say 30.8%
usage (see Section §4.3). Again, such implementation is not
designed for disabled users and disobeys the mission of the
accessibility APIs [DS#1].

Logic Analysis. Here we describe the execution logic of
accessibility-based notification obtaining. First, the status bar
app filters the received accessibility events for notifications.
If the EventType is TYPE_NOTIFICATION_STATE_CHANGED,
it will believe the system just dispatches a new notification
[DS#2]. Then the status bar app further extracts the properties
of this event, and parses the necessary information, like the
notification title, content, parcelable data. However, we find
this process is vulnerable. A zero-permission malicious app
could construct a custom AccessibilityEvent with phish-
ing information and cheat the event receiver.

Attack. As preparation, our zero-permission malicious app
has been installed on the user’s phone and runs in the back-
ground. Taking Super Status Bar as an example (Figure 8), the
attack app intends to send a phishing notification disguised as
a message from a bank app. Therefore, it needs to construct

7At present, this app is unavailable on Google Play, see the “Impact” part
of this subsection for more details.

and inject a custom AccessibilityEvent with the following
properties [DS#3]:

1. EventType = TYPE_NOTIFICATION_STATE_CHANGED.

2. ClassName = android.app.Notification.

3. PackageName = com.hangseng.rbmobile, notification
sender, a bank app.

4. SourceNode = null, there is no source for the type of
TYPE_NOTIFICATION_STATE_CHANGED [DS#2].

5. ParcelableData is set as a Notification [14] in-
stance which contains the phishing message and an In-
tent pointing to a phishing Activity (prepared by the
malicious app) disguised as the bank app.

When Super Status Bar receives the custom (phishing)
AccessibilityEvent, it will think the bank app just posts a
new notification to the system. Then it parses the properties
of this event and displays the phishing notification in its status
bar, like Figure 8(b). After the user notices this new notifica-
tion and clicks it, the status bar app will load the contained
Intent. Finally, the phishing Activity is launched and induces
the user to fill her credentials, as shown in Figure 8(c).

Summary. As mentioned in Section §2, different types of ac-
cessibility events may have different properties. To some spe-
cific types, like TYPE_NOTIFICATION_STATE_CHANGED, there
is no SourceNode property, which results in that assistive
apps cannot identify the original senders.

Impact. All assistive apps implementing the accessibility-
based notification obtaining suffer from the security risk
of notification phishing. This attack method and the design
shortcoming on custom AccessibilityEvent have been re-
ported to the Android security team and assigned tracking id
AndroidID-79268769. At present, they have acknowledged
our report and rewarded us with $200. They mentioned it
was also “reported by an internal Google engineer”. In other
words, they confirmed we discovered the problem indepen-
dently. Also, a CVE-ID has been assigned – CVE-2018-9376.
Besides, after our report, the vulnerable app Super Status Bar
(com.firezenk.ssb) was removed from Google Play.

7 Discussions and Limitations

Here we discuss some attack conditions and the limitations
existing in our experiment and analysis.
Attacks without accessibility services. To the installation hi-
jacking attack, if the accessibility service is not presented,
the user will be involved in the installation process. To an
experienced user, she may notice the unusual permission re-
quests (see Figure 7(b)) and rejects the installation. To the
notification phishing attack, if the accessibility service is not
presented, how to select the time of showing the phishing

270 22nd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

Activity will become a problem. This is the primary technical
challenge of Activity phishing attacks on Android.
APK dataset. The dataset for app scanning experiment con-
tains 91,605 samples, and 337 assistive apps (containing
342 accessibility services) were identified. Also, due to anti-
analysis protection and legacy code, only 334 service samples
could be used for subsequent analysis. Our dataset could be
extended to obtain more apps for analysis.
Dishonest descriptions. In Section §4.3, our analysis is based
on the accessibility service descriptions provided by assistive
apps. Though these apps are legitimate, it is still possible that
their descriptions are not honest. They may conceal (parts of)
their true intentions for some reasons. Such a situation may
affect the accuracy of our purpose analysis.
Misuse Identification. In some cases, it is difficult
to judge whether the usage behaviors are misuse, es-
pecial executing auto-actions. For example, Automate
(com.llamalab.automate) could help users create their au-
tomations using flowcharts. The supported actions include
automatically sending SMS or E-mail, copy files to FTP or
Google Drive, play music or take photos, etc. According to
the introduction on its website [10], we believe this app is not
designed for disabled users, but it is difficult to judge based
on its usage descriptions or behaviors.

8 Recommendations to More Secured Accessi-
bility APIs and Framework

In this paper, we systematically analyze the usage and security
risks of the accessibility APIs. Given the design shortcomings
of Section §5, we propose some possible improvements to
mitigate these security risks.

At the high level, the accessibility APIs are very special be-
cause they are designed for the users with disabilities. There-
fore, the usability is essential in the framework design. It
cannot be too complicated for disabled people. The trade-
off between security and usability is still an open question.
The shortcomings (DS#1, DS#2, and DS#3) discovered in
this paper are the fundamental design issues of the event-
driven accessibility framework. A new architecture may be
needed to completely solve them. At this moment, it is out
of the scope of this paper, and here we discuss some targeted
improvements for each shortcoming.

To DS#1, ideally, if an app is not designed for disabled
users, it should not invoke the accessibility APIs. The
problem is that some assistive apps belong to the killer
apps with millions of installations, and (parts of) their core
functionalities rely on the accessibility service, such as
LastPass (com.lastpass.lpandroid) and Universal Copy
(com.camel.corp.universalcopy). On November 2017,
Google required the assistive app developers must explain
how their apps are using the accessibility APIs to help users
with disabilities, or their apps will be removed from the Play

Store [32]. However, according to our observation, this plan
was not be executed smoothly, and Google gave up due to
the public outcry about favorite apps will stop working [27].
The lesson to be learned here is that whether something is a
“misuse” is mostly determined if the users are happy with how
that something is used.

We recommend designing new APIs for the requirements
of misuse cases. The existence of misuse cases reflects the
current Android APIs cannot meet the requirements of de-
velopers. New APIs and permissions could be added to
make developers give up using the accessibility APIs. Such
an improvement will be once and for all. Google also has
made such an attempt. On Android 8.0, a new permission
BIND_AUTOFILL_SERVICE is added, and password manager
apps could utilize this new permission to achieve the auto-fill
feature [41]. Due to Android fragmentation, it may take a long
time before all relevant issues are fixed. On the other hand,
the introduction of new APIs will bring some compatibility
problems inevitably. For example, the apps developed with
the new APIs cannot run on old devices directly. As a result,
the developers have to use the Android Support Library [22]
to achieve backward compatibility. Even so, due to the lim-
itations of the host device platform version, the full set of
functionality may still be unavailable.

To DS#2, under the current architecture, it is nearly impos-
sible to fix this design shortcoming. Since the accessibility
event senders and receivers do not interact directly, it is diffi-
cult for an assistive app (receiver) to identify the event sender.

We recommend improving the execution logic of assistive
apps as short-term mitigation. For example, in the case of
installation hijacking, the store app should save the down-
loaded APK files to its private data folder (i.e., internal stor-
age) [19], which would significantly reduce the chance of
being identified what APK file is being downloaded. Also, in
the case of notification hijacking, the status bar app should
not launch the (unreliable) Intent contained in the received
TYPE_NOTIFICATION_STATE_CHANGED events.

To DS#3, the basic information of custom accessibility
events should not be filled by third-party apps, including
SourceNode, ClassName, and PackageName. Only the OS
could fill such information. This restriction ensures the sender
information cannot be tampered with.

On the other hand, a new permission could be added for
restricting sending custom accessibility events. Since this
functionality is provided to developers to make their custom
views accessible, it should not be used by any app without
restrictions. At least, more restrictions should be applied to
the allowed types and numbers of custom events.

9 Related Work

Assistive technologies do not come at no cost. In this sec-
tion, we review the related works on the security issues of
accessibility techniques.

USENIX Association 22nd International Symposium on Research in Attacks, Intrusions and Defenses 271

Jang et al. [36] presented the first security evaluation of ac-
cessibility support for four mainstream platforms (Microsoft
Windows, Ubuntu Linux, iOS, and Android). Their study
demonstrated that inadequate security checks on I/O paths
make it possible to launch attacks from accessibility interfaces.
It is the closest work to us. The difference is that this study
focused on the accessibility module I/O and did not touch the
underlying design of Android accessibility framework.

On the Android platform, Kraunelis et al. [37] first
noticed the possibility of attacks leveraging the Android
accessibility framework. More recently, Fratantonio et
al. [35] designed the “cloak and dagger” attack. Their at-
tack combines the capabilities of the SYSTEM_ALERT_WINDOW
and BIND_ACCESSIBILITY_SERVICE permissions, which
achieves the complete control of the UI feedback loop. Aonzo
et al. [28] uncovered the design issues of mobile password
managers and mentioned the misuse of the accessibility ser-
vice (though it is not the focus of this work). Naseri et al. [43]
investigated the sensitive information leakage through the
accessibility service. They found 72% of the top finance and
80% of the top social media apps are vulnerable. Different
from our work, previous works focused on exploring what
kinds of attacks could be achieved through a malicious app
with the BIND_ACCESSIBILITY_SERVICE permission. Our
study focused on evaluating the usage of the accessibility
APIs and the design of their supporting architecture. Also, the
demonstrated attacks do not need any sensitive permission.

To the security risks of voice control, Diao et al. [33]
first discovered the Android built-in voice assistant module
(Google Now) could be injected malicious voice commands
by a zero-permission app. Some subsequent improved attacks
are designed, like hidden voice commands [25,29,46,48] and
inaudible voice commands [45, 49]. The corresponding de-
fense mechanisms also have been proposed, like articulatory
gesture-based liveness detection [50], tracking the creation of
audio communication channels [44], using the physical char-
acteristics of loudspeaker for differentiation [30], utilizing the
wireless signals to sense the human mouth motion [42].

In this paper, we present installation hijacking and notifica-
tion phishing as showcases. Some other works also achieve
similar attacks on Android with different approaches or ad-
versary models, such as abusing the notification services [47],
exploiting push-messaging services [39], ghost installer at-
tack [38], and UI redressing attacks [26].

10 Conclusion

In this paper, we systematically studied the usage of the acces-
sibility APIs and the design of their supporting architecture.
Through code analysis and a large-scale apps scanning study,
we identified a series of fundamental design shortcomings
that may bring serious security risks. As showcases, we pre-
sented two concrete attacks exploiting these shortcomings:
installation hijacking and notification phishing. As mitiga-

tions, we also propose improvement recommendations. We
believe the security threats reported in this paper are not just
isolated incidents. A new accessibility architecture may be
needed to completely solve these flaws.

Acknowledgements

We are grateful to our shepherd Jason Polakis and the anony-
mous reviewers for their insightful comments. This work was
partially supported by National Natural Science Foundation
of China (NSFC) under Grant No. 61902148, No. 61572415,
Hong Kong S.A.R. Research Grants Council (RGC) Gen-
eral Research Fund No. 14217816, and Qilu Young Scholar
Program of Shandong University.

References

[1] 1Mobile. http://www.1mobile.com/.

[2] AccessibilityEvent. https://developer.android.
com/reference/android/view/accessibility/
AccessibilityEvent.html.

[3] AccessibilityEvent.java. https://android.
googlesource.com/platform/frameworks/base/
+/android-8.1.0_r27/core/java/android/view/
accessibility/AccessibilityEvent.java.

[4] AccessibilityService. https://developer.android.
com/reference/android/accessibilityservice/
AccessibilityService.

[5] AccessibilityServiceInfo. https://
developer.android.com/reference/
android/accessibilityservice/
AccessibilityServiceInfo.html.

[6] Amazon Appstore. https://www.amazon.com/
androidapp.

[7] Android accessibility overview. https:
//support.google.com/accessibility/android/
answer/6006564.

[8] APKPure. https://apkpure.com/.

[9] Apktool. https://ibotpeaches.github.io/
Apktool/.

[10] Automate. https://llamalab.com/automate/.

[11] Building Accessibility Services. https:
//developer.android.com/guide/topics/ui/
accessibility/services.html.

[12] Building Accessible Custom Views. https:
//developer.android.com/guide/topics/ui/
accessibility/custom-views.html.

272 22nd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

http://www.1mobile.com/
https://developer.android.com/reference/android/view/accessibility/AccessibilityEvent.html
https://developer.android.com/reference/android/view/accessibility/AccessibilityEvent.html
https://developer.android.com/reference/android/view/accessibility/AccessibilityEvent.html
https://android.googlesource.com/platform/frameworks/base/+/android-8.1.0_r27/core/java/android/view/accessibility/AccessibilityEvent.java
https://android.googlesource.com/platform/frameworks/base/+/android-8.1.0_r27/core/java/android/view/accessibility/AccessibilityEvent.java
https://android.googlesource.com/platform/frameworks/base/+/android-8.1.0_r27/core/java/android/view/accessibility/AccessibilityEvent.java
https://android.googlesource.com/platform/frameworks/base/+/android-8.1.0_r27/core/java/android/view/accessibility/AccessibilityEvent.java
https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://developer.android.com/reference/android/accessibilityservice/AccessibilityServiceInfo.html
https://developer.android.com/reference/android/accessibilityservice/AccessibilityServiceInfo.html
https://developer.android.com/reference/android/accessibilityservice/AccessibilityServiceInfo.html
https://developer.android.com/reference/android/accessibilityservice/AccessibilityServiceInfo.html
https://www.amazon.com/androidapp
https://www.amazon.com/androidapp
https://support.google.com/accessibility/android/answer/6006564
https://support.google.com/accessibility/android/answer/6006564
https://support.google.com/accessibility/android/answer/6006564
https://apkpure.com/
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://llamalab.com/automate/
https://developer.android.com/guide/topics/ui/accessibility/services.html
https://developer.android.com/guide/topics/ui/accessibility/services.html
https://developer.android.com/guide/topics/ui/accessibility/services.html
https://developer.android.com/guide/topics/ui/accessibility/custom-views.html
https://developer.android.com/guide/topics/ui/accessibility/custom-views.html
https://developer.android.com/guide/topics/ui/accessibility/custom-views.html

[13] Intents and Intent Filters. https://developer.
android.com/guide/components/intents-
filters.

[14] Notification. https://developer.android.com/
reference/android/app/Notification.html.

[15] NotificationListenerService. https://developer.
android.com/reference/android/service/
notification/NotificationListenerService.

[16] PackageInstaller. https://developer.
android.com/reference/android/content/pm/
PackageInstaller.

[17] Part-of-speech tagging. https://en.wikipedia.org/
wiki/Part-of-speech_tagging.

[18] Runnable. https://developer.android.com/
reference/java/lang/Runnable.

[19] Save files on device storage. https://developer.
android.com/training/data-storage/files.

[20] Section 508 Law and Related Laws and Poli-
cies. https://section508.gov/content/learn/
laws-and-policies.

[21] spaCy. https://spacy.io/.

[22] Support Library. https://developer.android.com/
topic/libraries/support-library/.

[23] 30 Best Google Play Store alternative as of 2018.
https://www.slant.co/topics/2175/~google-
play-store-alternative, 2018.

[24] Top 20 Chinese Android App Stores. https://www.
appinchina.co/market/, January 2019.

[25] Hadi Abdullah, Washington Garcia, Christian Peeters,
Patrick Traynor, Kevin R. B. Butler, and Joseph Wil-
son. Practical Hidden Voice Attacks against Speech
and Speaker Recognition Systems. In Proceedings of
the 26th Annual Network and Distributed System Secu-
rity Symposium (NDSS), San Diego, California, USA,
February 24-27 , 2019, 2018.

[26] Efthimios Alepis and Constantinos Patsakis. Trapped
by the UI: The Android Case. In Research in Attacks, In-
trusions, and Defenses - 20th International Symposium,
RAID 2017, Atlanta, GA, USA, September 18-20, 2017,
Proceedings, 2017.

[27] Ron Amadeo. Public outcry causes Google to
rethink banning powerful “accessibility” apps.
https://arstechnica.com/gadgets/2017/12/
google-pauses-android-accessibility-app-
crackdown-after-public-outcry/, December
2017.

[28] Simone Aonzo, Alessio Merlo, Giulio Tavella, and Yan-
ick Fratantonio. Phishing Attacks on Modern Android.
In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security (CCS), Toronto,
ON, Canada, October 15-19, 2018, 2018.

[29] Nicholas Carlini, Pratyush Mishra, Tavish Vaidya,
Yuankai Zhang, Micah Sherr, Clay Shields, David A.
Wagner, and Wenchao Zhou. Hidden Voice Commands.
In Proceedings of the 25th USENIX Security Symposium
(USENIX-SEC), Austin, TX, USA, August 10-12, 2016,
2016.

[30] Si Chen, Kui Ren, Sixu Piao, Cong Wang, Qian Wang,
Jian Weng, Lu Su, and Aziz Mohaisen. You Can Hear
But You Cannot Steal: Defending Against Voice Imper-
sonation Attacks on Smartphones. In Proceedings of
the 37th IEEE International Conference on Distributed
Computing Systems (ICDCS), Atlanta, GA, USA, June
5-8, 2017, 2017.

[31] Marie-Catherine De Marneffe and Christopher D Man-
ning. Stanford typed dependencies manual. Technical
report, 2008.

[32] Steve Dent. Google cracks down on apps
that misuse accessibility features. https:
//www.engadget.com/2017/11/13/google-cracks-
down-accessibility-features/, 2017.

[33] Wenrui Diao, Xiangyu Liu, Zhe Zhou, and Kehuan
Zhang. Your Voice Assistant is Mine: How to Abuse
Speakers to Steal Information and Control Your Phone.
In Proceedings of the 4th ACM Workshop on Security
and Privacy in Smartphones & Mobile Devices (SPSM),
Scottsdale, AZ, USA, November 03 - 07, 2014, 2014.

[34] Shaoyong Du, Pengxiong Zhu, Jingyu Hua, Zhiyun
Qian, Zhao Zhang, Xiaoyu Chen, and Sheng Zhong.
An Empirical Analysis of Hazardous Uses of Android
Shared Storage. IEEE Transactions on Dependable and
Secure Computing, 2018.

[35] Yanick Fratantonio, Chenxiong Qian, Simon P. Chung,
and Wenke Lee. Cloak and Dagger: From Two Permis-
sions to Complete Control of the UI Feedback Loop. In
Proceedings of the 2017 IEEE Symposium on Security
and Privacy (Oakland), San Jose, CA, USA, May 22-26,
2017, 2017.

[36] Yeongjin Jang, Chengyu Song, Simon P. Chung, Tielei
Wang, and Wenke Lee. A11y Attacks: Exploiting Ac-
cessibility in Operating Systems. In Proceedings of
the 2014 ACM SIGSAC Conference on Computer and
Communications Security (CCS), Scottsdale, AZ, USA,
November 3-7, 2014, 2014.

USENIX Association 22nd International Symposium on Research in Attacks, Intrusions and Defenses 273

https://developer.android.com/guide/components/intents-filters
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/reference/android/app/Notification.html
https://developer.android.com/reference/android/app/Notification.html
https://developer.android.com/reference/android/service/notification/NotificationListenerService
https://developer.android.com/reference/android/service/notification/NotificationListenerService
https://developer.android.com/reference/android/service/notification/NotificationListenerService
https://developer.android.com/reference/android/content/pm/PackageInstaller
https://developer.android.com/reference/android/content/pm/PackageInstaller
https://developer.android.com/reference/android/content/pm/PackageInstaller
https://en.wikipedia.org/wiki/Part-of-speech_tagging
https://en.wikipedia.org/wiki/Part-of-speech_tagging
https://developer.android.com/reference/java/lang/Runnable
https://developer.android.com/reference/java/lang/Runnable
https://developer.android.com/training/data-storage/files
https://developer.android.com/training/data-storage/files
https://section508.gov/content/learn/laws-and-policies
https://section508.gov/content/learn/laws-and-policies
https://spacy.io/
https://developer.android.com/topic/libraries/support-library/
https://developer.android.com/topic/libraries/support-library/
https://www.slant.co/topics/2175/~google-play-store-alternative
https://www.slant.co/topics/2175/~google-play-store-alternative
https://www.appinchina.co/market/
https://www.appinchina.co/market/
https://arstechnica.com/gadgets/2017/12/google-pauses-android-accessibility-app-crackdown-after-public-outcry/
https://arstechnica.com/gadgets/2017/12/google-pauses-android-accessibility-app-crackdown-after-public-outcry/
https://arstechnica.com/gadgets/2017/12/google-pauses-android-accessibility-app-crackdown-after-public-outcry/
https://www.engadget.com/2017/11/13/google-cracks-down-accessibility-features/
https://www.engadget.com/2017/11/13/google-cracks-down-accessibility-features/
https://www.engadget.com/2017/11/13/google-cracks-down-accessibility-features/

[37] Joshua Kraunelis, Yinjie Chen, Zhen Ling, Xinwen Fu,
and Wei Zhao. On Malware Leveraging the Android
Accessibility Framework. In Mobile and Ubiquitous Sys-
tems: Computing, Networking, and Services - 10th Inter-
national Conference, MobiQuitous 2013, Tokyo, Japan,
December 2-4, 2013, Revised Selected Papers, 2013.

[38] Yeonjoon Lee, Tongxin Li, Nan Zhang, Soteris
Demetriou, Mingming Zha, XiaoFeng Wang, Kai Chen,
Xiao-yong Zhou, Xinhui Han, and Michael Grace. Ghost
Installer in the Shadow: Security Analysis of App Instal-
lation on Android. In Proceedings of the 47th Annual
IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), Denver, CO, USA, June
26-29, 2017, 2017.

[39] Tongxin Li, Xiao-yong Zhou, Luyi Xing, Yeonjoon Lee,
Muhammad Naveed, XiaoFeng Wang, and Xinhui Han.
Mayhem in the Push Clouds: Understanding and Mit-
igating Security Hazards in Mobile Push-Messaging
Services. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security
(CCS), Scottsdale, AZ, USA, November 3-7, 2014, 2014.

[40] Xiangyu Liu, Zhe Zhou, Wenrui Diao, Zhou Li, and
Kehuan Zhang. An Empirical Study on Android for
Saving Non-shared Data on Public Storage. In ICT
Systems Security and Privacy Protection - 30th IFIP
TC 11 International Conference, SEC 2015, Hamburg,
Germany, May 26-28, 2015, Proceedings, 2015.

[41] Joe Maring. Accessibility Services: What they are
and why Google is cracking down on their mis-
use. https://www.androidcentral.com/android-
accessibility-services, 2017.

[42] Yan Meng, Zichang Wang, Wei Zhang, Peilin Wu, Hao-
jin Zhu, Xiaohui Liang, and Yao Liu. WiVo: Enhanc-
ing the Security of Voice Control System via Wireless
Signal in IoT Environment. In Proceedings of the Nine-
teenth ACM International Symposium on Mobile Ad
Hoc Networking and Computing (MobiHoc), Los Ange-
les, CA, USA, June 26-29, 2018, 2018.

[43] Mohammad Naseri, Nataniel P. Borges Jr., Andreas
Zeller, and Romain Rouvoy. AccessiLeaks: Investigat-
ing Privacy Leaks Exposed by the Android Accessibility
Service. Proceedings on Privacy Enhancing Technolo-
gies, 2019(2):291–305, 2019.

[44] Giuseppe Petracca, Yuqiong Sun, Trent Jaeger, and Ah-
mad Atamli. AuDroid: Preventing Attacks on Audio
Channels in Mobile Devices. In Proceedings of the
31st Annual Computer Security Applications Confer-
ence (ACSAC), Los Angeles, CA, USA, December 7-11,
2015, 2015.

[45] Nirupam Roy, Sheng Shen, Haitham Hassanieh, and
Romit Roy Choudhury. Inaudible Voice Commands:
The Long-Range Attack and Defense. In Proceedings
of the 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), Renton, WA, USA,
April 9-11, 2018, 2018.

[46] Tavish Vaidya, Yuankai Zhang, Micah Sherr, and Clay
Shields. Cocaine Noodles: Exploiting the Gap between
Human and Machine Speech Recognition. In Proceed-
ings of the 9th USENIX Workshop on Offensive Tech-
nologies (WOOT), Washington, DC, USA, August 10-11,
2015, 2015.

[47] Zhi Xu and Sencun Zhu. Abusing Notification Ser-
vices on Smartphones for Phishing and Spamming. In
Proceedings of the 6th USENIX Workshop on Offensive
Technologies (WOOT), Bellevue, WA, USA, August 6-7,
2012, 2012.

[48] Xuejing Yuan, Yuxuan Chen, Yue Zhao, Yunhui Long,
Xiaokang Liu, Kai Chen, Shengzhi Zhang, Heqing
Huang, Xiaofeng Wang, and Carl A. Gunter. Com-
manderSong: A Systematic Approach for Practical Ad-
versarial Voice Recognition. In Proceedings of the
27th USENIX Security Symposium (USENIX-SEC), Bal-
timore, MD, USA, August 15-17, 2018, 2018.

[49] Guoming Zhang, Chen Yan, Xiaoyu Ji, Tianchen Zhang,
Taimin Zhang, and Wenyuan Xu. DolphinAttack: In-
audible Voice Commands. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS), Dallas, TX, USA, October 30 -
November 03, 2017, 2017.

[50] Linghan Zhang, Sheng Tan, and Jie Yang. Hearing Your
Voice is Not Enough: An Articulatory Gesture Based
Liveness Detection for Voice Authentication. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security (CCS), Dallas, TX,
USA, October 30 - November 03, 2017, 2017.

[51] Yury Zhauniarovich and Olga Gadyatskaya. Small
Changes, Big Changes: An Updated View on the An-
droid Permission System. In Research in Attacks, In-
trusions, and Defenses - 19th International Symposium,
RAID 2016, Paris, France, September 19-21, 2016, Pro-
ceedings, 2016.

Appendix

Here we give ten additional examples of accessibility service
descriptions.

1. com.yahora.ioslocker15⇒ “Turn it on to receive no-
tifications such as unread messages, unread mail, missed

274 22nd International Symposium on Research in Attacks, Intrusions and Defenses USENIX Association

https://www.androidcentral.com/android-accessibility-services
https://www.androidcentral.com/android-accessibility-services

call and so on, it doesn’t collect any data except receive
notifications.”

2. arun.com.chromer ⇒ “This service will be used by
Chromer to scan text links on your screen and load them
in the background. No other information is processed by
Chromer. You can still use Chromer in light mode if you
choose to not grant this. For more information, launch
Chromer app.”

3. com.parentsware.ourpact.child⇒ “OurPact Jr. re-
quires accessibility permissions in order to set healthy
screen time limits for your children and avoid excessive
or compulsive device usage. Please ENABLE accessibil-
ity permissions, then press Back twice to return to set
up. Note: No personal information is collected through
permissions.”

4. pl.damianpiwowarski.navbarapps⇒ “Navbar Apps
will use this service to detect active running app, which
can be used to color navigation bar by active app color.
This can be useful for users with disabilities as it makes
Navigation Bar more distinguishable and visible.”

5. com.cootek.smartinputv5⇒ “Turning on Accessibil-
ity makes sending GIFs easier. Flip the switch to enable
GIF Keyboard.”

6. com.lenovo.anyshare.cloneit ⇒ “Open CLONEit
install (Accessibility), help you click on the button when
install applications from old phone. Open CLONEit in-
stall service in accessibility, confirmation dialog will
pop up. Cloneit agreement, this feature is only available

as install application. No other permissions, Android 4.1
or later.”

7. com.companionlink.clusbsync⇒ “Enables DejaOf-
fice to respond to various voice commands.”

8. com.joaomgcd.touchlesschat⇒ “Touchless Chat al-
lows users with disabilities to interact with several chat
apps to automatically send and reply to messages with-
out ever needing to touch the device. This can be of
tremendous help for people who have trouble handling
their devices with their hands. Permissions: Observe
your actions: this permission is requested by default by
all accessibility services. Touchless Chat doesn’t need it.
Retrieve window content: Touchless Chat needs to know
what’s on the screen so it can find text fields to paste
written messages on behalf of the disabled user.”

9. com.ace.cleaner⇒ “Turn on the above button to ac-
tivate Ace Cleaner Power Mode for maximum acceler-
ation! Ace Cleaner use accessibility features to help
stopping notusing apps. Please don’t worry if you see
the privacy risk reminder, that’s just a regular informa-
tive warning for any accessibility service. We promise
NOT to collect ANY information.”

10. com.callpod.android ⇒ “KeeperFill allows you to
securely and quickly fill your login credentials on web-
sites and mobile apps. On the next screen, enable the
KeeperFill keyboard.”

USENIX Association 22nd International Symposium on Research in Attacks, Intrusions and Defenses 275

