
Understanding Android OS Forward Compatibility
Support for Legacy Apps: A Data-Driven Analysis

Shuang Li∗†, Rui Li∗†, Yifan Yu∗†, Kailun Yan∗†, Shihuai Yang∗†, and Wenrui Diao∗†(B)
∗School of Cyber Science and Technology, Shandong University

{lishuang128, leiry, yuyifan, kailun, shishuai}@mail.sdu.edu.cn, diaowenrui@link.cuhk.edu.hk
†Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong University

Abstract—The update of Android OS constantly brings users
various new features and enhances system security. On the other
hand, the system and API modifications with the update may
introduce the app compatibility issue. The app’s SDK version may
not align with the Android OS version, making apps not work
adequately. This condition will inevitably damage the Android
ecosystem. Thus, while developing Android OS, Google considered
and deployed compatibility support. The software engineering
research community also noticed the Android compatibility issue
and conducted some investigations. However, most previous
studies focus on apps’ performance and solutions on compatibility
(apps running on multiple OS versions). Rare work considers
the Android OS side’s forward compatibility implementations
(supporting legacy apps running on the latest OS).

This work systematically studied how Android OS implements
forward compatibility for the apps developed with outdated
SDKs, primarily focusing on the targetSdkVersion-based fine-
grained control. Specifically, we propose three research questions,
covering: 1) the forward compatibility support approaches;
2) the stability of forward compatibility support; and 3) the
invocations of the APIs with forward compatibility support in
third-party market apps. To address these questions, we conducted
comprehensive measurements on Android’s forward compatibility
support, including its implementation, implications, and evolution.
Our measurements were based on large-scale datasets covering
the source code of Android 8.0∼13 and 130,461 apps. Finally, we
provide rich data support and analysis to answer these questions.
This study offers new insights into Android’s forward compatibility
support, helping the research community understand the evolution
of Android’s API design.

I. INTRODUCTION

Android is the most popular mobile operating system, with
a market share of around 70% as of September 2023 [13].
It has continuously been evolving to provide users with a
better experience. Each major Android update corresponds to
a released SDK for app development. The API level uniquely
identifies the framework API revision offered by a version of
the Android platform [19]. On the one hand, app developers
may not use the latest SDK due to the concern of development
cost and cycle. On the other hand, Android devices may run
various versions of Android OS since Google does not control
the distribution of Android devices or software. As a result,
the SDK version used for developing an app may not align
with the Android OS version (i.e., the framework API level),
causing the app compatibility issue.

Android app compatibility means an app can run properly on
a specific version of the Android platform [5]. Failure to provide
compatibility support will result in app crashes or uncertain

behaviors [28]. Compatibility is a considerable challenge for
app development and Android OS design. To solve this issue,
in the app configuration, the targetSdkVersion attribute [19]
is introduced to specify the SDK version that this app should
run. Depending on targetSdkVersion, app compatibility can
be further divided into forward and backward compatibility
(F/B-compatibility for short). F-compatibility means that apps
targeting low SDK versions can run adequately on Android
systems with high API levels, and vice versa for B-compatibility.
Google claims that apps are generally forward-compatible with
the latest Android versions [7]. However, Android OS updates
may introduce new security requirements or vulnerability fixes
that could lead to attacks on legacy apps if forward compatibil-
ity is always maintained. For example, in apps targeting API
level 21 or higher, passing an implicit intent throws a security
exception [8], while for apps targeting low API levels, service
hijacking vulnerabilities [16] still exist without warning due to
compatibility support. Therefore, it is important to understand
Android’s F-compatibility implementations and whether they
maintain the security risks of apps with low target APIs.

Previous works focused on the compatibility issues of
Android apps [35], [28], [26], [36], [34], [23], [24], [32], [25].
These studies mainly focus on app code, such as how to detect
or fix app compatibility problems. Nearly no previous study
focuses on how Android OS achieves F-compatibility support.
Our investigation shows that the F-compatibility of the Android
OS is primarily concerned with method removal and method
change. For the former, Android uses the @Deprecated an-
notation to caution developers against using the method that
will be removed. For the latter, Android leverages the app’s
targetSdkVersion attribute, allowing precise control over
methods with internal alterations. Li et al. [29] studied method
removal. However, due to the complexity of method change,
it has not yet been explored in previous work.

Our Work. In this study, we conducted a systematic analysis
of F-compatibility implementations in Android OS. We focus
especially on the more complex aspect of F-compatibility,
namely method change. Through this, we shed light on the
design strategy behind the Android API and quantify the impact
of the F-compatibility implementation. To gain a comprehensive
understanding of Android’s forward compatibility, we analyzed
its current status in the latest version, its evolution between

two consecutive versions, and its usage in apps. This can be
summarized into the following three research questions:

RQ1 How does Android maintain its availability for legacy
apps? How does the latest Android version handle
apps targeted at different API levels? Is it possible to
loosen restrictions on legacy apps in certain scenarios,
potentially leading to security risks?

RQ2 How stable are the F-compatibility implementations
with the evolution of Android? Each update to Android
OS brings various changes to fix bugs and improve user
experience. What are Google’s strategies for adjusting
the existing F-compatibility implementations?

RQ3 What is the current state of third-party apps calling
F-compatibility-related APIs? Google Play now requires
apps to target API level 33 or higher, which means legacy
apps will not be available on devices running new OS
versions [18]. However, what is the current state of using
APIs with F-compatibility support for apps on third-party
markets?

To answer the above questions, we developed targeted
research approaches to investigate the implementations, impli-
cations, and evolution of F-compatibility support on Android.
Primarily, we focus on the targetSdkVersion-based fine-
grained control. Our dataset contains multiple versions of
the Android source code (8.0∼13) and 130,461 apps. Also,
to achieve the measurement, we designed a static data-flow
analysis approach to locate the F-compatibility implementations
in the massive Android source code. Then, multi-dimensional
targeted measurements are conducted to understand the Android
compatibility strategies.

Contributions. We list the main contributions of this paper.

• Large-scale measurement. We constructed large-scale
datasets for the empirical measurement study, covering
multiple versions of the Android source code (8.0∼13) and
130,461 third-party market apps.

• Systematic analysis. We systematically studied how Android
achieves F-compatibility on the code level. In addition, we
designed three research questions to explore, as answered
in the following.

1) Android 13 has 2,376 F-compatibility implementations.
It uses three ways to maintain its availability for legacy
apps: allowing the execution of obsolete code, reducing
checking conditions, and adjusting internal code logic. In
some situations, these ways lead to loosening restrictions
on lower-version apps, leading to potential security risks
such as information disclosure.

2) As Android OS evolves, its source code has an increasing
trend of F-compatibility implementations. Android OS
continuously maintains F-compatibility implementations
for multiple versions, and removal cases are rare.

3) Most third-party market apps (99.3%) target outdated
API levels. Furthermore, 98.0% of market apps use
APIs related to the deployed F-compatibility support
of Android OS.

Data Availability. The code of our analysis tool and the raw
measurement data for each research question are available at
https://doi.org/10.21227/gtme-x022.
Target and Beneficiary. This study contributes new knowledge
on how Android ensures forward compatibility support, helping
researchers understand the evolution of Android’s API design.
Framework maintainers can refine strategies for F-compatibility
support and reduce security risks through our data analysis. Our
analysis encourages third-party markets to limit apps’ target
API levels. Developers should update apps’ target API levels
rather than relying on Android’s forward compatibility. Our
analytical approach is versatile and can also be implemented
in Java-based development platforms.

II. BACKGROUND

This section provides the necessary background on Android
API levels and compatibility.

A. Android API Levels

The Android OS is constantly upgraded over time, and each
significant change is associated with an API level, an integer
uniquely identifying an Android version. For example, Android
11 is uniquely identified by API level 30 [4]. App developers
can specify an app’s API level requirements for the Android
platform in its manifest file through the uses-sdk element [19].
There are three main API-level settings, as follows:
• minSdkVersion: the minimum API level of the Android

platform that can run the app. Android checks the value
of this attribute when installing an app and denies the
installation if it exceeds the current system’s API level.

• targetSdkVersion: the target API level at which to run
the app and the level most suitable for running the current
app. If the app does not declare this attribute, the default
value equals minSdkVersion.

• maxSdkVersion: the maximum API level that supports
the app. The Android system checks the value of this
attribute when installing an app or re-verifying it after
system updates. If the value of this attribute is lower than
the current system’s API level, the app will not be installed
or be invisible to the user. Android does not recommend
developers set this attribute, because it will block the app’s
deployment on Android’s new versions.

Configuring the app with appropriate API levels can ensure
users benefit from security, privacy, and performance improve-
ments of the recent Android OS and avoid apps’ installations
on unsuitable Android platform versions [21].

B. Android Forward Compatibility

Due to the open nature and rapid evolution of the Android
OS, a wide variety of Android devices are available on the
market with varying OS versions. It causes compatibility issues
for Android apps [35]. Android app compatibility means that
the app can run properly on a specific version of the Android
platform [5]. As illustrated in Figure 1, it can be divided into
backward and forward compatibility based on the value of the

https://doi.org/10.21227/gtme-x022

APK Configuration

3 (Low) 33 (High)

Cannot Install Cannot Install

Forward Compatibility

Android OS
API Level

minSdkVersion targetSdkVersion maxSdkVersion

Fig. 1: Backward and forward compatibility.

app’s targetSdkVersion attribute. Backward compatibility (B-
compatibility) happens when tagetSdkVersion is higher than
the current running Android system’s API level [6]. On the
contrary, forward compatibility (F-compatibility) occurs when
tagetSdkVersion is lower than the system’s API level [7].

We conducted extensive investigation and identified two
scenarios for the Android OS to achieve forward compatibility.
Specifically, every new Android version introduces changes to
improve the user experience, security, and performance of the
Android platform overall, including removing and updating
existing framework methods and adding new ones. Android
claims that apps are generally forward-compatible with the
latest Android versions. That is, legacy apps can run properly
on new versions [7]. To eliminate the impact of the method
removal and change on apps’ compatibility, Android performs
the following strategies:
(1) Method removal. Use @Deprecated annotations to mark the
methods that are planned for removal, will soon be removed,
and should no longer be used. For example, as shown in
Listing 1, in Android 5.0 (API level 22), the getRecentTasks
method is deprecated because it can leak sensitive information
to the caller and is no longer available to third-party apps [10].
Since removing this method directly would cause the legacy
app (targeting API level 21 or lower) invoking it to crash
at runtime after users update their phones to Android 5.0,
Android marks this method with the @Deprecated annotation
first, leaving developers a period to adjust their apps.

1 /⁎⁎ @deprecated As of {@link android.os.
Build.VERSION_CODES#LOLLIPOP} (API level
22) ...⁎⁎/

2 @Deprecated
3 public List <RecentTaskInfo > getRecentTasks

(...){ ... }

Listing 1: Example of using the @Deprecated annotaion.

(2) Method change. Use app’s targetSdkVersion attribute
to perform a fine-grained control. For instance, as shown
in Listing 2, the restorePermissionState method is used
to update the granted permission status requested during the
app installation. Android 6.0 (API level 23) introduces the
runtime permission model, and the permission granting rules are
changed to make permissions more understandable, useful, and
secure for users [14]. To avoid affecting the permission-related
functions of the legacy app (targeting API level 22 or lower), the
system distinguishes apps based on their targetSdkVersion
attributes and performs permission granting for the legacy app.

1 private void restorePermissionState (...) {
...

2 final boolean appSupportsRuntimePermissions
= pkg.getTargetSdkVersion () >= Build.

VERSION_CODES.M; // API level 23...
3 if (...) { ... }
4 else if (bp.isRuntime ()) { ...
5 if (appSupportsRuntimePermissions) { ...

}
6 else { ...
7 if (! uidState.isPermissionGranted(

bp.getName ()) && uidState.
grantPermission(bp)){ ... }

8 ... }... }}

Listing 2: Example of using the targetSdkVersion attribute.

In the previous research, Li et al. [29] systematically
analyzed the current situation of Android deprecated APIs,
including their implementations and evolution. However, they
only identified deprecation tags (i.e., @Deprecated) in the
Android source code, leading to their analysis being conducted
at the method level without going into the specific logic
code inside the method. In comparison, our work focuses on
understanding how Android achieves F-compatibility through
targetSdkVersion-based fine-grained control at the code level,
which the Android research community neglects. Specifically,
we try to provide a comprehensive study by answering the
research questions proposed in Section I.

III. METHODOLOGY

In this section, we present our methodology to answer the
research questions proposed in Section I.

A. Overview

As illustrated in Figure 2, our analysis contains three main
stages as follows:
Stage 1 Dataset Construction. We collected the source code

for Android 8.0∼13 and built an APK dataset for
analysis.

Stage 2 F-compatibility Implementation Locating. All our
research questions require locating the Android’s F-
compatibility code that is implemented based on the
app’s targetSdkVersion attribute. We achieved this
through data flow analysis.

Stage 3 Targeted Measurement Analysis. Against the proposed
research questions, we performed multi-dimensional
measurements and targeted analyses.

Note that, since Stage 3 is closely related to the content of
the RQs, the corresponding analysis approaches are introduced
in Section IV.

B. Dataset Construction

We need to construct two types of datasets for this study,
as follows:
• Android System Dataset. We compiled the source code of

AOSP (Android Open Source Project) Android 8.0∼13
(covering over 90% of devices [4]) and obtained their

AOSP
Source Code
[Android 8-13]

WALA RQ1Code
Compilation

Forward
Compatibility
Impl Locating

Data Analysis

Multi-version
Analysis

Combined
AnalysisAPK AnalysisAPK DatasetApp Markets Androguard

RQ2

RQ3

Fig. 2: Overview methodology flow.

/system directories, which contain the Android frame-
work [17], for the subsequent analysis. The differences
between different Android versions of the same API level
are minor, so we only chose the latest source code version
for each API level.

• APK Dataset. As mentioned in RQ3 of Section I, Google
Play has set specific requirements for their apps. Currently,
it requires apps to have a targetSdkVersion that is greater
than or equal to API 33 [12]. Therefore, we selected four
popular third-party app markets without such requirements
to crawl apps in October 2023, including 2265, Lenovo,
Leyou, and Mdpda. After deduplicating and keeping only
the latest versions of apps with the same signature, a total
of 130,461 apps were obtained.

C. F-Compatibility Implementation Locating

As an essential step for the subsequent analysis, we need
to locate the F-compatibility implementations in Android,
which perform different handling treatments for apps with
different targetSdkVersion configurations. Therefore, it is
necessary to identify the conditional statements related to apps’
targetSdkVersion attributes, like if(targetSdkVersion <=
Build.VERSION_CODES.Q). However, due to diverse imple-
mentations, it is not enough to look for such a conditional
statement, of which condition is a constant comparison as-
sociated with the targetSdkVersion keyword. As we trace
all F-compatibility implementations, three challenges affect
accurate localization, as summarized below.
Challenge 1: Conditional Result Passing. As shown in
Listing 3, targetSdk of the onApplyThemeResource method
stores the value of app’s targetSdkVersion attribute, and
it is compared with Android version code Q (API level 28).
The comparison result is saved in the targetPreQ variable.
Without sequentially tracking targetPreQ, we would not know
the exact location of the F-compatibility implementation. In
other cases, the comparison result could be stored in a class
field, and we also need to continue tracing this field.

1 // Class: Activity
2 protected void onApplyThemeResource (...) {

...
3 final boolean targetPreQ = targetSdk <

Build.VERSION_CODES.Q;
4 if (! targetPreQ){...} ... }

Listing 3: Example of conditional result passing.

Challenge 2: Diverse targetSdkVersion Usages. In actual
implementations, the usages of targetSdkVersion in the
conditional statements are diverse. For example, as shown
in Listing 4, the parseUsesStaticLibrary method invokes
getTargetSdkVersion to obtain targetSdkVersion for fur-
ther comparison instead of using it directly.

1 // Class: ParsingPackageUtils
2 private static ParseResult <ParsingPackage >

parseUsesStaticLibrary (...) {...
3 if (pkg.getTargetSdkVersion () >= Build.

VERSION_CODES.O_MR1) ... }
4
5 // Class: ParsingPackageImpl
6 public int getTargetSdkVersion () {
7 return targetSdkVersion ;}

Listing 4: Example of diverse targetSdkVersion usages.

Challenge 3: Diverse Variable Comparison. In the conditional
statement, targetSdkVersion is compared with a variable
rather than a constant. For instance, as shown in Listing 5,
targetSdkVersion is compared with versionCode, which is
the parameter of the isTargetSdkLessThan method. Without
tracing the source of this parameter, we cannot confirm whether
this passed integer is a constant for version comparison.

1 // Class: WifiPermissionsUtil
2 public boolean isTargetSdkLessThan(String

packageName , int versionCode , int
callingUid) { ...

3 return targetSdkVersion < versionCode; }

Listing 5: Example of diverse variable comparison.

Due to the large amount of code and complex call chains
in the Android source code, the static analysis approach
is suitable for detecting it at scale. In the following, we
present our data flow analysis solutions to locate the F-
compatibility implementations and explain how to solve these
challenges. At a high level, we trace the propagation of the
targetSdkVersion attribute defined in the app manifest file
and locate the relevant conditional statements. The analysis
implementation is based on WALA [20] – a static analysis
library for Java and related languages.

Before Android 11 Android 11 and later

targetSdkVersion

ApplicationInfo
ParsingPackageImpl

setTargetSdkVersion()

targetSdkVersion

OS initialization & app installation

ParsingPackageUtils

parsePackage()

parseUsesSdk()

PackageParser2

parsePackage()

PackageParser

parsePackage()

parseBaseApkCommon()

A direct call between methods

A long call chain and some methods are ommitted

Fig. 3: Initial tracing variable locating.

Initial Tracing Variable Locating. First, we need to locate
the initial definition held by the system that corresponds to
the declaration of the targetSdkVersion attribute in the app
manifest file. Therefore, we analyzed the app manifest parsing
procedure of Android OS. As illustrated in Figure 3, the system
parses the app manifest file during OS initialization or app in-
stallation. It puts the value specified by the targetSdkVersion
attribute into the targetSdkVersion field of the AppInfo
class (< Android 11) or the targetSdkVersion field of the
ParsingPackageImpl class (≥ Android 11).

Subsequently, we trace the intra-procedural and inter-
procedural propagation of the targetSdkVersion field
(AppInfo.targetSdkVersion or ParsingPackageImpl.tar-
getSdkVersion) to identify the related conditional statements
of F-compatibility. Our analysis begins with the methods of
accessing this field directly. In the intra-procedural analysis,
we trace the propagation of it within a method. In the inter-
procedural analysis, we trace its propagation among methods.

Intra-procedural Analysis. We have an entry tracing variable
(ETV) passed into each method that needs to be analyzed. This
ETV is determined in our inter-procedural analysis, associated
with the targetSdkVersion field. Then we locate the block
involving the ETV and iterate through all subsequent blocks in
the CFG (Control Flow Graph) starting from it. Suppose that
the ETV propagates to a new variable. In that case, we record
the new variable, tracing it like the ETV to ensure that we do
not miss any relevant conditional statements. If the ETV and
other child tracing variables propagate to a return statement, a
method invocation statement, or a field, we also record it and
perform inter-procedural analysis.

Inter-procedural Analysis. This analysis can be classified into
three cases.

(1) Field propagation. The tracing variable in method A is
passed to a field. We search the method(s) that accesses
this field, say B, and treat the variable assigned by the field
assignment statement as the ETV of method B for intra-
procedural analysis.

(2) Parameter propagation. The tracing variable in method A
is passed to a parameter of method B. We treat this parameter
as the ETV of method B for intra-procedural analysis.
(3) Return value propagation. The tracing variable in method
A is passed as a return value of A. We search the caller(s)
of method A, say B. In method B, we locate the assignment
statement that invokes method A and assigns the return value to
a variable. This variable will be treated as the ETV of method
B for intra-procedural analysis.

One difficulty of inter-procedural analysis is Java’s interface
and inheritance mechanisms. Fortunately, WALA’s CHA (class
hierarchy analysis) solves this problem to some extent. Specif-
ically, if the called method cannot be uniquely determined,
WALA will parse all possible called methods. We build an
inter-procedural call graph based on the CHA. If the tracing
encounters a method call statement, we obtain all possible
called methods and build a call relationship chain with the
caller method.
Solutions to Challenges. Combining the above intra- and inter-
procedural analysis approaches, we can address Challenges 1
and 2. In particular, when addressing Challenge 1, we notice a
noteworthy situation. Some fields in the Android source code
are marked with the EnableSince or EnabledAfter annota-
tion, which was introduced in Android 11 [9]. EnableSince
means "≥" and EnabledAfter means ">". We manually
tracked the propagation of these fields and finally discovered
this type of F-compatibility usage pattern. Since the call chain
is complex, we use the example in Listing 6 to explain this
pattern and only introduce the key propagation nodes here.
The REQUIRE_EXACT_ALARM_PERMISSION field marked with
EnabledSince is passed into the isChangeEnabled method
as a parameter. Then, if the app’s targetSdkVersion is not less
than 31 (i.e., version code S), the isChangeEnabled method
will return true, and vice versa is false (Line 7). That is,
the return value of isChangeEnabled stores the comparison
result of targetSdkVersion and a constant (API level), which
also needs to be traced. Therefore, we scan the Android
source code to obtain all fields with the EnabledSince or
EnabledAfter annotation and search the methods that take
one of these fields as a parameter and return a boolean type
value. Then, we trace the propagation of these methods’ return
values. For Challenge 3, we trace back the variable compared
with targetSdkVersion to confirm whether its source is a
constant.

1 // Class: AlarmManager | Definition
2 @EnabledSince(targetSdkVersion = Build.

VERSION_CODES.S)
3 public static final long

REQUIRE_EXACT_ALARM_PERMISSION =
171306433L;

4
5 // Class: AlarmManagerService | Use
6 private static boolean

isExactAlarmChangeEnabled(String
packageName , int userId) {

7 return CompatChanges.isChangeEnabled(
AlarmManager.

TABLE I: Number of locations with F-compatibility support for specific API level in Android 13 (API level 33)† .

API Level
Constant‡

3 4 7 8 10 12 13 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

General type 17 10 10 7 22 2 176 10 246 16 18 1 283 1 352 114 2 76 9 149 140 61 42 5 50
EnabledX type - - - - - - - - 3 - - - - - - - - - - 1 2 79 251 18 203

†: This table only includes API levels relevant to F-compatibility implementations.
‡: The constant that is compared with the value of the app’s targetSdkVersion attribute.

REQUIRE_EXACT_ALARM_PERMISSION ,
packageName , UserHandle.of(userId)); }

Listing 6: Example of EnabledX.

IV. MEASUREMENTS AND FINDINGS

In this section, we provide a targeted data analysis of the
proposed research questions and explain the reasons behind
the results.

I RQ1. How does Android maintain its availability for
legacy apps?

Under this RQ, we focus on analyzing the conditional state-
ments with respect to F-compatibility and the subsequent branch
processing implementations in the Android source code. Also,
we give an overview of current F-compatibility implementations
in a recent Android OS version, Android 13.
Analysis Approach. Section III-C has described how to
locate the F-compatibility implementation code. In practice, for
each location, we record the related method data, conditional
statement, Android API level used in this conditional statement,
and processing statements in each branch of this statement.
Findings: F-compatibility Implementation Statistics. As
listed in Table I, in Android 13 (API level 33), we identi-
fied 1,819 F-compatibility implementations for the general
case (i.e., targetSdkVersion comparison) and 557 for the
EnabledSince and EnabledAfter case.

In Table I, it can be noted that Android 13 supports almost
all previous API levels with F-compatibility implementations.
In particular, the comparison occurs 352 times on API level 22,
which is the highest among all versions. The main reason is
that Android 6.0 introduced the runtime permission mechanism
[14]. That is, if the targetSdkVersion of an app is ≤
API level 22, Android will disable the runtime permission
mechanism. In addition, API level 30 appears most frequently
in EnabledX-related (EnabledSince or EnabledAfter) F-
compatibility implementations and far exceeds the general
implementations for the corresponding version. It is because
a new compatibility testing tool marked with EnabledX was
introduced in Android 11, and developers can use it to check
whether the app is compatible with the behavior changes in
the latest platform [9]. Specifically, developers can use the adb
(Android Debug Bridge) tool to turn on or off a behavior change,
so they do not need to change the targetSdkVersion of their
apps to observe the impact of platform behavior changes.

The purpose of Android’s F-compatibility implementation is
to enable legacy apps to continue running in their previous state,
but this practice comes with potential security risks. Mutchler

et al. [33] studied the risky cases related to F-compatibility im-
plementations. For example, apps targeting outdated SDKs can
still invoke obsolete APIs with security risks while running on
the latest Android OS due to compatibility issues. Therefore, we
are curious about the number of F-compatible implementations
in the Android source code that impose varying degrees of
restriction on apps targeting different API levels. In other
words, how many F-compatibility implementations loosen their
restrictions on low-version apps (apps targeting old SDKs)?
Findings: F-compatibility Implementation Measures. By
analyzing the branch code, we summarized and categorized the
processes of Android OS to achieve F-compatibility, including
three main treatment measures as follows.
(1) Allowing the execution of obsolete code. For high-version
apps, the system prevents the execution of a method by
throwing an exception or returning a void value. Still, for
low-version apps, the system keeps the original code execution.
For example, on Android, a service [15] is a component
that can perform long-running operations in the background.
Apps specify the services they want to interact with through
Intents. Intent [11] can be divided into explicit and implicit.
Explicit Intent specifies the desired service, while implicit Intent
provides abstract info for the system to select the appropriate
service. Using an implicit Intent can be unsafe as malicious
apps can create services that match the Intent and perform
service hijacking attacks [16], leading to security issues such as
information disclosure. Therefore, for apps targeting API level
higher than or equal to 21, security exceptions will be caused
when implicit intentions are passed to service-related APIs such
as startService, bindService, stopService, etc. As shown
in Listing 7, these APIs call the validateServiceIntent
method in the ContextImpl class. It throws an exception
for the apps with targetSdkVersion higher than or equal
to LOLLIPOP (API level 21), but only prints logs for other
apps.

1 // ContextImpl.validateServiceIntent
2 if (getApplicationInfo ().targetSdkVersion >=

Build.VERSION_CODES.LOLLIPOP) {...
3 throw ex;
4 } else {Log.w(...);}

Listing 7: Example of throwing exception.

(2) Reducing checking conditions. The system applies more
checking conditions for high-version apps than for low-version
apps, such as permission checking. As shown in Listing 8, if
the app’s targetSdkVersion is higher or equal to P (API level
28), the uninstall method in the PackageInstallerService

TABLE II: F-compatibility implementations by measure.

Type Allow
execution

Reduce
checking

Adjust
internal logic

General type 393 268 1,158
EnabledX type 102 57 398

class will check whether the REQUEST_DELETE_PACKAGES per-
mission has been granted to it. This forward compatibility
implementation will cause apps targeting low API levels to
apply for deletion of apps without permission.

1 // PackageInstallerService.uninstall
2 if (appInfo.targetSdkVersion >= Build.

VERSION_CODES.P) {
3 mContext.enforceCallingOrSelfPermission(

Manifest.permission.
REQUEST_DELETE_PACKAGES , null);}

Listing 8: Example of additional checking condition.

(3) Adjusting internal code logic. In this case, the OS has no
obvious tendency to loosen restrictions on low-version apps.
For example, as shown in Listing 9, the onKeyDown method in
the Activity class calls different methods for apps with the
targetSdkVersion before and after ECLAIR (API level 5).

1 // Activity.onKeyDown
2 if (getappInfo ().targetSdkVersion
3 >= Build.VERSION_CODES.ECLAIR) {
4 event.startTracking ();} else {
5 onBackPressed ();}

Listing 9: Example of different execution logic.

Discussion. Our analysis data indicate that the latest version of
Android OS includes forward compatibility implementations for
apps targeting various API levels, even old ones. Furthermore,
as listed in Table II, we counted the number of the above three
ways to achieve F-compatibility, respectively. The first two ways
relate to the loosening of restrictions on low-version apps. It
shows that 34.5% of Android F-compatibility implementations
(general and EnabledX methods) loosen restrictions on low-
version apps, which could pose security risks. Android aims to
maintain a large number of available methods instead of directly
blocking invocations. However, implementing this measure
could lead to potential security problems for apps in the long
run. For F-compatibility, how to balance security and usability
is still an open question.

Answers to RQ1

Android utilizes three methods to ensure that legacy apps
remain functional: allowing the execution of obsolete code,
reducing checking conditions, and adjusting internal code
logic. However, its forward compatibility implementations
have several instances of relaxing restrictions on apps
targeting low API levels, which may lead to potential
security risks.

8.0 8.1 9 10 11 12 12L 13
Android Version

269 278
350

414

553

659 660

7568 27 46
95 85

12
104

17
99 110

232
190

12

194

Remove
Add
Total

Fig. 4: Changes in numbers of TAC statements.

I RQ2. How stable are the F-compatibility implemen-
tations with the evolution of Android?

Each Android version brings numerous updates that may
affect existing F-compatibility implementations. Under this RQ,
we measure the changes in F-compatibility implementations
between two adjacent versions of Android 8.0∼13.
Analysis Approach. For a better understanding of the working
practices of Android OS developers, we identify the F-
compatibility implementations in each Android version by
keeping a record of the F-compatibility conditional state-
ments. For general type, the conditional statements include
targetSdkVersion attributes and API level constants, and for
EnabledX types, the conditional statements contain a method
like isChangeEnabled. However, we no longer track the
propagation of conditional results. To distinguish this situation
from the F-compatibility implementations in other places of this
paper, we call these locations the targetSdkVersion attribute
conditional statements (TAC statements for short). Then, we
combine these statements with their method signatures as the
signature of F-compatibility implementations. The method
signature consists of the method’s name, arguments, return
value type, and declaring class. Next, we compare the obtained
F-compatibility signatures between two adjacent versions and
manually check the discrepancies in the code implementations.
Findings: TAC Statements. Figure 4 shows the increase in
F-compatibility conditional statements (general and EnabledX
type) from Android 8.0 to 13. Since each Android version
needs to implement the F-compatibility of apps with the
previous version of the system, the increase in TAC statements
is inevitable. We are more curious about the removed TAC
statements and the reasons for removing them. Therefore, we
checked the removed TAC statements and found three types
of removals.
(1) Statement removed. The TAC statement has been removed
in the method of the next version. For example, there is a
method setRequestedOrientation in the ActivityRecord
class. Due to the mistakes of Android OS developers, in
Android 8.0, if the targetSdkVersion is > API level 26, the
system will throw an exception and terminate the running app.

TABLE III: The numbers of removed TAC statements between adjacent Android versions.

Types Android
8.0→8.1

Android
8.1→9

Android
9→10

Android
10→11

Android
11→12

Android
12→12L

Android
12L→13

Statement Removed 3 4 6 7 11 0 5
Method Removed 2 5 14 13 18 0 9
Method Changed† 3 18 26 75 56 12 90
Total Removed 8 27 46 95 85 12 104

†: Being recognized as "removal" due to the changed method signature, but the F-compatibility conditional statements have not been removed.

In Android 8.1, the developer removed this F-compatibility con-
ditional statement to fix this bug [1]. However, this confuses
many app developers as Android developers do not explain
this in their documentation or source code [2].

(2) Method removed. The method of the previous version
containing the TAC statement is removed in the next ver-
sion. For example, the isTaskForcedMaximized method in
the TaskLaunchParamsModifier class checks whether the
targetSdkVersion of the app is less than 4. This method
was removed in Android 11, and its caller did not invoke an
alternative method with similar functionality. Android may
consider that some F-compatibility implementations for very
old versions are no longer necessary.

(3) Method changed. The signature of the method containing the
TAC statement between the two versions has changed slightly,
which is recognized as "removal". However, the corresponding
method in the next version retains the TAC statement and its
branch codes unchanged. Since the change in the next-version
method is irrelevant to forward compatibility, it does not affect
the original F-compatibility implementations.

Discussion. To summarize, Figure 4 indicates that only 11.8%
of the total TAC statements were removed. Besides, Table III
shows that the number of method changed accounts for 74.3%
on average between versions. However, this type does not
change the original TAC statement, so we believe the Android
OS developers still maintain their F-compatibility. Therefore,
only 3.0% of TAC statements have not been maintained after
excluding the third type. This indicates that Android prefers
to keep the previous F-compatibility implementations when
updating the internal logic of the methods. It verifies a large
amount of F-compatibility in the latest Android OS because
Android rarely removes the forward compatibility already
implemented. To shorten the period of security risks, we
recommend that Android follow operations similar to the
deprecate-remove cycle.

Answers to RQ2

With each evolution of the Android OS, there is a growing
trend of implementing F-compatibility in its source code.
Android OS continuously maintains F-compatibility imple-
mentations for a long time, and removal cases are rare.

IRQ3. What is the current state of third-party apps
calling F-compatibility-related APIs?

To ensure a safe experience for Android and Google Play
users, Google Play now requires that newly submitted apps
target API level 33 or higher, and legacy apps are not available
to users on devices running new Android versions [18]. These
requirements thus avoid app F-compatibility issues. However,
for the third-party app markets without such requirements,
what is the prevalence of legacy apps? What is the usage
status of the F-compatibility-related APIs in these apps? In
this RQ, we focus on analyzing apps in third-party markets
calling F-compatibility-related APIs.
Analysis Approach. We used WALA’s CHA (class hierarchy
analysis) to obtain all public SDK APIs in android.jar of An-
droid 13 that can reach F-compatibility implementations. They
are treated as SDK APIs with F-compatibility support (APIs-
FC). Also, we extracted the targetSdkVersion attributes and
invoked SDK APIs from apps for comparative analysis.
(1) Identify APIs-FC. The F-compatibility implementations we
obtained lie in various components of the Android system.
Some of the methods to which they belong are internal and
cannot be invoked by apps directly. Therefore, we need to
find their top public APIs for apps on the call chain through
backward searching.

Specifically, we obtained all the public APIs in android.jar
as the initial API set. Then, based on CHA, we constructed
the invocation relationship among methods. Thus, we can find
the caller of a method and then follow the call chain with BFS
(Breadth First Search). From each F-compatibility implementa-
tion location, if we encounter a public API, we will map it to
this API and identify this API as API-FC. To avoid state space
explosion, we empirically limited the number of a method’s
callers to 20 and the search depth to 20. Finally, we identified
3,807 APIs-FC.
(2) App analysis. For each app, we used androguard [3]
to extact its targetSdkVersion attribute and called SDK
APIs. To further reflect the real intention of developers using
APIs, we excluded the APIs in the official libraries used by
apps, such as beginning with com.google.⁎, com.android.⁎,
androidx.⁎, and android.⁎. Then we filtered out the APIs-
FC and compared targetSdkVersion with the maximal API
level constant used in these APIs-FC.
Findings. As mentioned in Section III-B, we collected 130,461
APK files. The percentages of their targetSdkVersion at-
tributes are plotted in Figure 5, revealing that most apps do
not use the latest SDKs. Only 917 (0.7%) apps target API
level 33 or higher, while 81,485 apps (62.5%) still target API
level 26 or lower. This means that quite a number of third-

TABLE IV: Top ten most frequently used APIs with F-compatibility support in market apps.

Entry Point Method API Level App Amount
Landroid/content/Context;->getResources()Landroid/content/res/Resources; 28 119,609
Landroid/app/AlertDialog$Builder;->create()Landroid/app/AlertDialog; 32 111,471
Landroid/content/Context;->getSystemService(Ljava/lang/String;)Ljava/lang/Object; 32 96,676
Landroid/view/WindowManager;->getDefaultDisplay()Landroid/view/Display; 30 89,180
Landroid/os/Looper;->loop()V 32 87,043
Landroid/os/Environment;->getExternalStorageDirectory()Ljava/io/File; 32 85,019
Landroid/os/Environment;->getExternalStorageState()Ljava/lang/String; 32 84,920
Landroid/content/SharedPreferences$Editor;->commit()Z; 32 82,907
Landroid/app/Activity;->finish()V 32 82,323
Landroid/content/Context;->getSharedPreferences(Ljava/lang/String;I)Landroid/content
/SharedPreferences;

32 81,944

5 10 15 20 25 30
API Levels

5k

10k

15k

20k

25k

AP
K

Nu
m

be
rs

Fig. 5: Apps’ targetSdkVersion attributes.

party market apps are developed with outdated SDKs. Further,
we investigated why so many third-party apps target outdated
SDKs by analyzing their update times. The data shows that
after the release of Android 13 in May 2022, only 9.0% of apps
(11,757) have been updated, with just 7.6% (897) developed
for Android 13 or higher. Additionally, 127,853 (98.0%) apps
call at least one API-FC with a targetSdkVersion attribute
no greater than the maximal API level constant.

In addition, we are interested in understanding the reasons
behind the most frequently used APIs-FC and the unused
ones in apps. Table IV lists the top 10 most frequently used
APIs-FC. Some belong to the system’s essential functionalities
and must be used during the app development. For example,
the APIs-FC (getResources(), getSystemService(), and
getSharedPreferences()) all belong to the Context class,
and Context is an interface class for global information
about the app environment. Other APIs-FC also invoke basic
functionalities like creating dialog boxes or getting the default
screen. For example, create() is used to create dialog boxes
to interact with users.

On the other hand, 819 (21.5%) APIs-FC are not invoked
by any app. There are three main reasons.

• Newly added APIs. Most of the apps in our APK dataset
target API level 29 or lower, so some new APIs added
in higher Android versions are never used, such as the
addOrUpdateStatus API introduced in Android 12.

• Rarely used functionalities. Some APIs are outdated
or only suitable for certain apps. For example, the
downloadMultimediaMessage API is related to MMS
(Multimedia Messaging Service). Currently, apps generally
send messages over the Internet, not MMS.

• APIs only for system apps. Some APIs are designed for
system apps, not third-party market apps. For example,
invoking the setCallComposerStatus API requires the
MODIFY_PHONE_STATE permission with a system signature,
which third-party market apps cannot obtain.

Discussion. Many apps in third-party markets do not meet the
API level requirements of Google Play. This is mainly due to
two reasons. Firstly, some apps have not been updated for a long
time. Secondly, even if some apps are updated regularly, they
may not be developed for the latest SDK version. Since adapting
to a new SDK version requires modifying the app’s code, which
needs extra development cost and time, developers prefer to rely
on Android’s forward compatibility rather than migrating their
apps to the latest version. Besides, plenty of third-party apps
use APIs-FC. Some APIs-FC are even necessary for nearly all
apps. This leads to massive apps executing the code branches
for lower versions in F-compatibility implementations, which
may introduce security risks mentioned in RQ1 or prevent
users from using new features provided in branches for high
versions. Moreover, we found that some APIs-FC are not used
due to the technical evolution. In such cases, these APIs could
be removed from the framework or updated directly without
considering the compatibility issue.

Answers to RQ3

Most third-party market apps (99.3%) target outdated
SDKs (API level ≤ 32). 98.0% market apps use the
deployed F-compatibility support of Android OS. Some
APIs-FC are used widely among third-party apps, so their
implementations would have a profound influence.

V. DISCUSSIONS

In this section, we discuss the potential limitations of our
study and suggestions regarding forward compatibility issues.
Limitations. When constructing the Android system dataset,
we only selected one release version for each Android API

level. This is because the changes between different release
versions at the same API level are small. However, using more
release versions may be more precise.

Since static analysis does not execute the code, we cannot en-
sure that all of our discovered methods with F-compatibility sup-
port trigger F-compatibility control in practice.

During the measurement of the number of apps affected
by F-compatibility implementation, we only considered the
public SDK APIs in apps. Non-SDK APIs used by apps in
special ways, such as double reflection [38], are neglected.
Besides, when identifying APIs-FC, we restricted the number
of a method’s callers and the search depth to avoid state space
explosion. Therefore, the affected app amount may not be
entirely accurate.
Suggestions and Lessons Learned. After the above analysis,
it is evident that Android’s forward compatibility allows legacy
apps to function appropriately. However, its implementation
may also introduce potential security risks. Furthermore,
Android’s forward compatibility is essential for the functioning
of massive apps on third-party markets, making its impact
widespread. To address this issue, various parties must collab-
orate. In this regard, we suggest some recommendations for
developers and third-party markets.
• For OS developers, F-compatibility implementations can

be used as a transitional means to give app developers a
period of time to adapt. After this period, system developers
can delete or hide the F-compatibility implementations or
rewrite the code of the lower version branch. Therefore,
the functions that the legacy app intends to use will be
invalidated, prompting app developers to use new features.

• For app developers, they should update their target API
levels timely and implement backward compatibility in
their apps if they want to run smoothly on all Android
versions.

• For third-party app markets, we recommend that they follow
the same requirements as Google Play, which restricts
the targetSdkVersion attribute of apps submitted by
developers and makes legacy apps invisible to users. This
action can effectively eliminate legacy apps to avoid security
risks from F-compatibility implementations.

VI. RELATED WORK

Plenty of work studied the compatibility issue caused by the
fragmentation of Android OS. However, most research focused
on compatibility issues in apps, and rare work noticed the
implementations of app F-compatibility guarantee provided by
Android OS.
Android Forward Compatibility. As mentioned in Sec-
tion II-B, Android ensures that legacy apps are forward-
compatible with the new Android versions by two strategies:
1) using the @Deprecated annotation to mark the methods
that are expected to be removed, and 2) using the app’s
targetSdkVersion attribute to perform a fine-grained control.
For the first strategy, Li et al. [29] proposed CDA and
applied it to multiple versions of Android framework code

for characterizing how APIs are deprecated in practice. For
the second strategy, Mutchler et al. [33] manually discov-
ered several F-compatibility implementations based on the
targetSdkVersion attribute while studying the security of
legacy apps targeting outdated API levels. However, this
strategy’s overall status has not been extensively explored
by the current Android research community, such as its
implementation, implication, and evolution. Our work fills
this research gap.
App Compatibility Issues. The first work studying the app
compatibility problem caused by Android fragmentation was
conducted by Wei et al. [35]. They manually analyzed 191
real-world compatibility problems in open-source apps and
developed FicFinder to detect compatibility issues in apps
automatically. Li et al. [28] proposed CiD to model the Android
API lifecycle systematically and then analyzed the app bytecode
to investigate compatibility issues due to Android evolution. He
et al. [26] developed IctApiFinder to detect incompatible API
usages in Android apps using a context-sensitive inter-process
data flow analysis framework. Huang et al. [27] implemented an
empirical study on callback compatibility issues and proposed
Cider to detect this kind of issue in apps. Liu et al. [31] studied
compatibility issues caused by silently evolving code in the
Android source code. Other work related to app compatibility
issue detecting includes [36], [34], [22], [32], and [30]. To
fix app compatibility issues, Fazzini et al. [23] developed
AppEvolve which can automatically perform app updates for
API changes. Based on AppEvolve, Haryono et al. successively
proposed CocciEvolve [24] and AndroEvolve [25] to conduct
automatic deprecated-API usage update for apps. In addition,
Xia et al. [37] combined static analysis and machine learning
to develop RAPID, which examines developers’ handling of
evolution-induced API compatibility issues in Android apps
on a large scale.

Unlike the above research focus on detecting and fixing
apps’ compatibility issues introduced by Android fragmenta-
tion, our work studies the implementation of F-compatibility
promised by Android OS, especially through using the app’s
targetSdkVersion attribute.

VII. CONCLUSION

In this work, we systematically studied the forward com-
patibility implementations of the Android OS, with a primary
focus on the targetSdkVersion-based fine-grained control.
Specifically, we design three research questions covering
the implementations, implications, and evolution of forward
compatibility support in Android. We addressed these questions
through analysis based on large-scale datasets and targeted
approaches. This study offers insights into how Android ensures
forward compatibility and traces the evolution of the Android
framework design. It also quantifies the relaxation of restrictions
for apps targeting lower versions in the context of forward
compatibility. Furthermore, our findings can aid framework
developers in refining their forward compatibility policies and
assist third-party markets in evaluating the extent to which
their apps leverage forward compatibility.

ACKNOWLEDGEMENTS

This work was supported by Taishan Young Scholar Program
of Shandong Province, China (Grant No. tsqn202211001),
Shandong Provincial Natural Science Foundation (Grant No.
ZR2023MF043), and Xiaomi Young Talents Program.

REFERENCES

[1] (2017) Request: remove new restriction of Android 8.1 : "Only
fullscreen activities can request orientation". [Online]. Available:
https://issuetracker.google.com/issues/68454482?pli=1

[2] (2018) New fatal crash on ad display. [Online]. Available: https:
//groups.google.com/g/google-admob-ads-sdk/c/Yniv0UNCc74

[3] (2023) Androguard. [Online]. Available: https://androguard.readthedocs.i
o/en/latest/

[4] (2023) Android API Levels. [Online]. Available: https://apilevels.com/
[5] (2023) App compatibility in Android. [Online]. Available: https:

//developer.android.com/guide/app-compatibility
[6] (2023) Application back compatibility. [Online]. Available: https:

//developer.android.com/guide/topics/manifest/uses-sdk-element#bc
[7] (2023) Application forward compatibility. [Online]. Available: https:

//developer.android.com/guide/topics/manifest/uses-sdk-element#fc
[8] (2023) bindService. [Online]. Available: https://developer.android.com/

guide/components/intents-filters
[9] (2023) Compatibility framework tools. [Online]. Available: https:

//developer.android.com/guide/app-compatibility/test-debug
[10] (2023) getRecentTasks. [Online]. Available: https://developer.android.co

m/reference/android/app/ActivityManager#getRecentTasks(int,%20int)
[11] (2023) Intent. [Online]. Available: https://developer.android.com/referenc

e/android/content/Intent
[12] (2023) Meet Google Play’s target API level requirement. [Online].

Available: https://developer.android.com/google/play/requirements/targe
t-sdk

[13] (2023) Mobile Operating System Market Share Worldwide. [Online].
Available: https://gs.statcounter.com/os-market-share/mobile/worldwide

[14] (2023) Runtime Permissions. [Online]. Available: https://source.android
.com/docs/core/permissions/runtime_perms

[15] (2023) Service. [Online]. Available: https://developer.android.com/refere
nce/android/app/Service

[16] (2023) Service Hijacking. [Online]. Available: https://capec.mitre.org/da
ta/definitions/499.html

[17] (2023) Standard partitions. [Online]. Available: https://source.android.c
om/docs/core/architecture/partitions

[18] (2023) Target API level requirements for Google Play apps. [Online].
Available: https://support.google.com/googleplay/android-developer/ans
wer/11926878

[19] (2023) uses-sdk-element. [Online]. Available: https://developer.android.
com/guide/topics/manifest/uses-sdk-element

[20] (2023) WALA. [Online]. Available: https://github.com/wala/WALA
[21] (2023) Why target newer SDKs? [Online]. Available: https:

//developer.android.com/google/play/requirements/target-sdk
[22] H. Cai, Z. Zhang, L. Li, and X. Fu, “A Large-Scale Study of Application

Incompatibilities in Android,” in Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA),
Beijing, China, July 15-19, 2019, 2019.

[23] M. Fazzini, Q. Xin, and A. Orso, “Automated API-usage Update for
Android Apps,” in Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA), Beijing, China,
July 15-19, 2019, 2019.

[24] S. A. Haryono, F. Thung, H. J. Kang, L. Serrano, G. Muller, J. Lawall,
D. Lo, and L. Jiang, “Automatic Android Deprecated-API Usage Update
by Learning from Single Updated Example,” in Proceedings of the 28th
International Conference on Program Comprehension (ICPC), Seoul,
Republic of Korea, July 13-15, 2020, 2020.

[25] S. A. Haryono, F. Thung, D. Lo, L. Jiang, J. Lawall, H. J. Kang,
L. Serrano, and G. Muller, “AndroEvolve: Automated Update for Android
Deprecated-API Usages,” in Proceedings of the 43rd IEEE/ACM Inter-
national Conference on Software Engineering: Companion Proceedings
(ICSE-Companion), Madrid, Spain, May 25-28, 2021, 2021.

[26] D. He, L. Li, L. Wang, H. Zheng, G. Li, and J. Xue, “Understanding
and Detecting Evolution-Induced Compatibility Issues in Android Apps,”
in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering (ASE), Montpellier, France, September
3-7, 2018, 2018.

[27] H. Huang, L. Wei, Y. Liu, and S. Cheung, “Understanding and Detecting
Callback Compatibility Issues for Android Applications,” in Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software
Engineering (ASE), Montpellier, France, September 3-7, 2018, 2018.

[28] L. Li, T. F. Bissyandé, H. Wang, and J. Klein, “CiD: Automating the
Detection of API-Related Compatibility Issues in Android Apps,” in
Proceedings of the 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA), Amsterdam, The Netherlands,
July 16-21, 2018, 2018.

[29] L. Li, J. Gao, T. F. Bissyandé, L. Ma, X. Xia, and J. Klein, “Characterising
Deprecated Android APIs,” in Proceedings of the 15th International
Conference on Mining Software Repositories (MSR), Gothenburg, Sweden,
May 28-29, 2018, 2018.

[30] P. Liu, M. Fazzini, J. C. Grundy, and L. Li, “Do customized android
frameworks keep pace with android?” in 19th IEEE/ACM International
Conference on Mining Software Repositories, MSR 2022, Pittsburgh, PA,
USA, May 23-24, 2022, 2022.

[31] P. Liu, L. Li, Y. Yan, M. Fazzini, and J. C. Grundy, “Identifying and
characterizing silently-evolved methods in the android API,” in 43rd
IEEE/ACM International Conference on Software Engineering: Software
Engineering in Practice, ICSE (SEIP) 2021, Madrid, Spain, May 25-28,
2021, 2021.

[32] T. Mahmud, M. Che, and G. Yang, “Android Compatibility Issue
Detection Using API Differences,” in Proceedings of the 28th IEEE
International Conference on Software Analysis, Evolution and Reengi-
neering (SANER), Honolulu, HI, USA, March 9-12, 2021, 2021.

[33] P. Mutchler, Y. Safaei, A. Doupé, and J. C. Mitchell, “Target Fragmenta-
tion in Android Apps,” in Proceedings of the 2016 IEEE Security and
Privacy Workshops, San Jose, CA, USA, May 22-26, 2016, 2016.

[34] S. Scalabrino, G. Bavota, M. Linares-Vásquez, M. Lanza, and R. Oliveto,
“Data-Driven Solutions to Detect API Compatibility Issues in Android:
An Empirical Study,” in Proceedings of the 16th International Conference
on Mining Software Repositories (MSR), 26-27 May 2019, Montreal,
Canada, 2019.

[35] L. Wei, Y. Liu, and S. Cheung, “Taming Android Fragmentation:
Characterizing and Detecting Compatibility Issues for Android Apps,”
in Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering (ASE), Singapore, September 3-7, 2016,
2016.

[36] ——, “PIVOT: Learning API-Device Correlations to Facilitate Android
Compatibility Issue Detection,” in Proceedings of the 41st IEEE/ACM
International Conference on Software Engineering (ICSE), Montreal, QC,
Canada, May 25-31, 2019, 2019.

[37] H. Xia, Y. Zhang, Y. Zhou, X. Chen, Y. Wang, X. Zhang, S. Cui, G. Hong,
X. Zhang, M. Yang, and Z. Yang, “How Android Developers Handle
Evolution-induced API Compatibility Issues: A Large-scale Study,” in
Proceedings of the 42nd IEEE/ACM International Conference on Software
Engineering (ICSE), Seoul, South Korea, 27 June - 19 July, 2020, 2020.

[38] S. Yang, R. Li, J. Chen, W. Diao, and S. Guo, “Demystifying Android
Non-SDK APIs: Measurement and Understanding,” in Proceedings of the
44th IEEE/ACM 44th International Conference on Software Engineering
(ICSE), Pittsburgh, PA, USA, May 25-27, 2022, 2022.

https://issuetracker.google.com/issues/68454482?pli=1
https://groups.google.com/g/google-admob-ads-sdk/c/Yniv0UNCc74
https://groups.google.com/g/google-admob-ads-sdk/c/Yniv0UNCc74
https://androguard.readthedocs.io/en/latest/
https://androguard.readthedocs.io/en/latest/
https://apilevels.com/
https://developer.android.com/guide/app-compatibility
https://developer.android.com/guide/app-compatibility
https://developer.android.com/guide/topics/manifest/uses-sdk-element#bc
https://developer.android.com/guide/topics/manifest/uses-sdk-element#bc
https://developer.android.com/guide/topics/manifest/uses-sdk-element#fc
https://developer.android.com/guide/topics/manifest/uses-sdk-element#fc
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/guide/app-compatibility/test-debug
https://developer.android.com/guide/app-compatibility/test-debug
https://developer.android.com/reference/android/app/ActivityManager#getRecentTasks(int,%20int)
https://developer.android.com/reference/android/app/ActivityManager#getRecentTasks(int,%20int)
https://developer.android.com/reference/android/content/Intent
https://developer.android.com/reference/android/content/Intent
https://developer.android.com/google/play/requirements/target-sdk
https://developer.android.com/google/play/requirements/target-sdk
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://source.android.com/docs/core/permissions/runtime_perms
https://source.android.com/docs/core/permissions/runtime_perms
https://developer.android.com/reference/android/app/Service
https://developer.android.com/reference/android/app/Service
https://capec.mitre.org/data/definitions/499.html
https://capec.mitre.org/data/definitions/499.html
https://source.android.com/docs/core/architecture/partitions
https://source.android.com/docs/core/architecture/partitions
https://support.google.com/googleplay/android-developer/answer/11926878
https://support.google.com/googleplay/android-developer/answer/11926878
https://developer.android.com/guide/topics/manifest/uses-sdk-element
https://developer.android.com/guide/topics/manifest/uses-sdk-element
https://github.com/wala/WALA
https://developer.android.com/google/play/requirements/target-sdk
https://developer.android.com/google/play/requirements/target-sdk

