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Abstract—Android’s openness allows device manufacturers to
deeply customize system functionalities, including the use of
undocumented “secret codes”, which are special dialer inputs
that invoke privileged operations such as hardware testing,
log recording, and configuration changes. Although these codes
serve legitimate engineering purposes, their proprietary and
non-standardized implementations across vendors result in an
obscure and largely under-analyzed attack surface. Previous
studies have examined only isolated cases and have not provided
a comprehensive understanding of their prevalence, functionality,
or security implications.

In this paper, we present the first large-scale, cross-
manufacturer analysis of secret codes embedded in system
apps within Android firmware. We construct a dataset of 673
firmware images from 18 vendors and extract 218,354 APK files
for analysis. By combining static analysis with LLM-assisted
semantic interpretation, we identify and classify secret codes,
analyze their functional categories, and assess the associated
risks. Our results show that secret codes are widely deployed
(averaging 103 per device), often redundant (20%-40%), and in
some cases expose serious security vulnerabilities. Specifically, we
discovered three real-world issues that allow attackers to bypass
ADB authentication and gain privileged access. Furthermore,
we observe a dual trend: the overall number of secret codes
continues to grow, while some vendors have begun restricting
access to sensitive functionalities. This indicates an uneven but
increasing awareness of security concerns across manufacturers.
To support future research, we also open-source our analysis
tools and dataset.

Index Terms—Secret Code; Android; OEM Firmware; Secu-
rity Analysis

I. INTRODUCTION

The openness of the Android OS allows Original Equipment
Manufacturers (OEMs) like Samsung, Huawei, and OPPO to
deeply customize the system, creating unique features and in-
terfaces while integrating seamlessly with their own hardware.
In current research, the security issues caused by customized
Android systems involve areas such as SELinux policies [41],
custom permissions [27], and incompatible APIs [28]. One
relatively common but lesser-known customization feature is
the “secret codes” [15]. By entering a specific sequence of
characters in the dialer interface, developers and technicians
can access hidden diagnostic menus to perform functional
tests or configure internal parameters. Although the Android
Open Source Project (AOSP) [5] provides a standard method
for handling these codes, manufacturers often extend it by
adding proprietary, non-public code, and even using their own

custom methods (such as proprietary broadcasts) to invoke
these special functions.

The deep and non-standardized customization of secret
codes by manufacturers has created a significant but under-
researched attack surface in the Android ecosystem. These
codes act as hidden “backdoors” capable of triggering power-
ful, high-privilege functions. For example, on Honor devices,
entering ⁎#⁎#2846579#⁎#⁎ opens the Background Settings
page, where users can configure USB port settings and AP log
settings. Since these manufacturer-specific codes lack public
documentation and vary significantly across different brands
and even device models, their obscurity raises several critical
security questions that have not been systematically assessed:
How widespread is this practice? What high-risk functions
are concealed behind these codes? Can attackers exploit
these hidden entry points to bypass system security policies?

The most relevant research includes vulnerability reports
by Baptiste et al. [1] and Zhang et al. [2]. The former
discovered the EngineerMode app on OnePlus devices, which
was intended for factory testing but was not removed, allowing
users to gain root access by entering a specific password. The
latter used fuzzing to scan secret codes across major vendors,
exposing flaws like log leakage and unauthorized resets that
undermined Android’s permission model. While these studies
highlight the potential risks posed by secret codes, they remain
limited in both scope and scale. Most focus on individual
vendors or specific devices, without offering a broader analysis
of secret code usage across the Android ecosystem. Specifi-
cally, no prior work has systematically examined how different
manufacturers implement and manage secret codes, or how
their usage has evolved over time.
Our Work. To address these unanswered questions, this work
presents the first large-scale, cross-manufacturer investigation
into the ecosystem of secret codes in system apps within
Android firmware. We constructed a comprehensive dataset
and employed a combined approach of static analysis and
Large Language Model (LLM) to systematically extract these
codes, categorize their functionalities, and assess their poten-
tial risks. Our study focuses on the functionalities provided by
these codes, their redundancy and associated security risks, as
well as the evolution of their usage over time, guided by the
following research questions:



⇒ RQ1: What functions do secret codes provide in mobile
phones?

⇒ RQ2: Are there any secret codes that are redundant or
pose security risks?

⇒ RQ3: What has been the trend of secret codes over the
years?

Our findings show that secret codes are a widespread
practice, with devices containing an average of 103 codes, pri-
marily for diagnostic and configuration purposes (Answering
RQ1). This practice introduces code redundancy and security
risks: redundancy rates frequently range from 20% to 40%, and
more critically, we discovered and verified three exploitable
vulnerabilities that bypass core security mechanisms, such as
ADB authentication (Answering RQ2). Finally, we identify a
dual trend over recent years: on one hand, the total number
of secret codes has continued to grow; on the other hand,
some manufacturers have begun enforcing stricter controls on
high-risk codes. This indicates a growing awareness of secu-
rity across the industry, though actions among manufacturers
remain uncoordinated (Answering RQ3).
Contributions. The main contributions of this paper are:
• New understanding. We focus on manufacturer cus-

tomization of secret codes on devices, an area that has
been largely overlooked in prior research. Our study offers
a comprehensive analysis of the use of secret codes across
different manufacturers and systematically evaluates the
resulting security and compliance implications.

• Real-world measurement. We conducted a large-scale
analysis of Android devices by building a dataset of 673
firmware images from 18 manufacturers, covering 218,354
APKs. This provides a comprehensive view of how secret
codes are used across different vendors.

• Concrete attacks. Based on the results of our analysis,
we evaluated the security implications of secret codes on
seven real-world mobile devices and found 142 secret
codes with security risks. Moreover, 3 of these devices
are vulnerable to attacks that bypass ADB debugging
permission configurations.

Responsible Disclosure. Following the responsible disclo-
sure policy, we reported the identified vulnerabilities to the
corresponding vendors. Honor acknowledged our report and
has released a patch to fix the vulnerability. In addition, the
vendor assigned CVE-2025-57840 and awarded a bounty for
our report.

II. BACKGROUND

In this section, we introduce the necessary background
for this work. We first describe the meaning of Android
secret codes and the mechanism by which the Android OS
handles them. Second, we discuss the differences between the
AOSP [5] and device manufacturer customization ecosystems.

A. Secret Code Mechanism

“Secret Codes”, sometimes referred to as “Debug Codes”
or “Hidden Codes” [15], are specially formatted character

(a) ⁎#06# (b) ⁎#⁎#2846579#⁎#⁎

Fig. 1: Secret Codes Within Devices.

sequences embedded in system apps within the Android OS.
These codes are designed by device manufacturers, and devel-
opers typically enter these codes through the system’s dialer
app to access hidden test menus, diagnostic tools, or internal
features. As illustrated in Figure 1, when entering a specific
formatted character sequence in the dialer app, such as ⁎#06#
shown in Figure 1 (a) and ⁎#⁎#2846579#⁎#⁎ in Figure 1 (b),
the dialer app recognizes the pattern and does not attempt
to make a call. In some cases, particularly those for simpler
or internal tasks, the dialer handles the codes directly. These
actions can range from displaying a simple dialog with system
information to more covert operations, such as modifying
system settings or starting a background service to perform
time-consuming tasks. In such cases, the entire process can be
imperceptible to the user, as it may not produce any visible
changes to the user interface.

1 <receiver
2 android:name="com.hihonor.android.

projectmenu.ProjectMenuReceiver"
3 android:permission="com.hihonor.permission

.SECURITY_ACTIVITY"
4 android:exported="true">
5 <intent-filter >
6 <action android:name="android.provider.

Telephony.SECRET_CODE"/>
7 <data android:scheme="

android_secret_code"
8 android:host="2846579"/>
9 </intent-filter >
10 </receiver >

Listing 1: Example of a Secret Code Receiver.



In another case, the dialer app internally constructs a
specific Intent object and broadcasts it to system components
that may be interested in triggering the corresponding secret
functionality. According to the AOSP definition, this Intent
typically contains the following two key fields: (1) Action:
android.provider.Telephony.SECRET_CODE, or its updated
form android.telephony.action.SECRET_CODE. It serves as
an explicit “signal” to the system indicating that this is an event
related to a secret code. (2) Data: The secret code itself (e.g.,
2846579) is encapsulated in a URI object, usually formatted as
android_secret_code://2846579. The receiver can extract
the specific code entered by the user by parsing this URI.

Any app that intends to respond to a specific secret
code must statically register a BroadcastReceiver [7] in its
AndroidManifest.xml file, as illustrated in Listing 1. This re-
ceiver needs to declare an <intent-filter> that matches the
above-mentioned action and data scheme. When the system
sends out the broadcast, the matching BroadcastReceiver
will be triggered, and its onReceive method will be invoked
to execute the specific logic associated with the secret code.

B. AOSP and Manufacturer Customization

The key to understanding the ecosystem of secret codes
lies in understanding the openness and fragmentation of the
Android OS. AOSP is the open-source base version of the
Android OS maintained by Google. It includes the core
functionalities of Android and a set of standard secret codes,
primarily used for general debugging and testing (such as
the ⁎#06# mentioned earlier). It is this open-source nature
that enables device manufacturers to build upon and diverge
from the AOSP baseline. To achieve market differentiation,
OEMs such as Samsung, Huawei, Xiaomi, and Vivo undertake
substantial secondary development and deep customization.
The principal drivers for this are to establish a distinct brand
identity, to ensure the integration and optimization of propri-
etary hardware, and to adhere to the market and regulatory
requirements of specific locales. While this customization is
a source of the Android ecosystem’s diversity, it also poses a
potential security risk.

This deep customization strategy also extends to the realm
of secret codes. Manufacturers not only retain most of the
standard AOSP codes but also add a large number of pri-
vate, non-public secret codes for their internal research and
development, testing, and after-sales processes. These codes
serve as “backdoors” to access proprietary features, such as
performing hardware diagnostics and calibrations on specific
hardware components (e.g., particular camera or fingerprint
scanner models). To manage these private codes and avoid con-
flicts with standard mechanisms or other apps, manufacturers
typically define their own private broadcast actions to handle
them. For example, instead of using the standard broadcast
action defined by AOSP, Vivo defines and uses its own ac-
tion (android.provider.Telephony.VIVO_SECRET_CODE) to
receive and handle secret codes specific to its brand’s devices.
This non-standardized practice leads to a situation in which
each brand’s devices may have unique sets of secret codes

and response mechanisms, distinct from those used by devices
from other brands.

C. Threat Model

In our threat model, the attacker exploits a situation where
the device is already unlocked and left unattended. For in-
stance, the user might briefly leave the phone on a desk without
manually locking it. During this window, the attacker can
launch the dialer app and enter a secret code to trigger sensitive
system functions.

III. METHODOLOGY AND DATASET

As illustrated in Figure 2, the methodology adopted in this
study consists of three core phases, each designed to progres-
sively build upon the previous one to enable comprehensive
discovery and evaluation of secret codes in Android firmware:
• Dataset Construction and Preprocessing. We begin by

collecting and filtering a diverse set of firmware images
from multiple vendors, followed by extracting embedded
system apps to serve as the analysis foundation.

• Secret Code Identification and Extraction. We then define
the structural patterns of secret codes and apply two com-
plementary static analysis techniques to extract them from
firmware apps, along with their execution entry points.

• Functional Analysis and Risk Assessment. Finally, we
perform static call path analysis and leverage LLMs to
categorize the functionality of each code and assess its
potential security risks and necessity.

A. Dataset Construction and Preprocessing

Firmware Collection. First, we constructed a firmware dataset
to extract and evaluate the security of secret codes. The
firmware samples used in this study are primarily sourced
from Android Dumps [4], a well-known repository that pro-
vides publicly available Android firmware images for the
research community. Since the number of firmware images
varies across brands in Android Dumps, we also downloaded
additional firmware from the official websites of brands with
fewer samples [9], [10], [11], [12].
Dataset Cleaning and Filtering. The Android Dumps dataset
includes a wide range of firmware versions, including official
releases and beta builds for various devices, such as phones,
TVs, and smartwatches. To ensure our analysis remained both
accurate and relevant, we applied a thorough data cleaning
process. For this study, we focused exclusively on official
release firmware intended for mobile phones. Specifically, our
cleaning process involved the following four steps:
• Duplicate Firmware Filtering. We first calculated the MD5

hash of each firmware image file and removed any dupli-
cates to avoid redundant analysis of the same firmware.

• Device Scope and Integrity Filtering. In order to ensure
the integrity and relevance of our dataset, we first fil-
tered out any firmware package lacking a build.prop
file, as it is essential for identifying critical meta-
data like device model and version. We then further
refined the dataset by parsing properties within the
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Fig. 2: Overall Analysis Process.

build.prop file, such as ro.product.system.device and
ro.product.system.model, to remove firmware for non-
phone devices (e.g., TVs, watches) and non-production
builds (e.g., developer testing, debugging builds).

• Release Type Filtering. To retain only the final products
intended for market release, we filter the firmware based on
two properties in the build.prop file. We check for “user”
in the ro.build.type [14] property and “release-keys” in
ro.build.tags [13], as these respectively indicate a user-
facing build type and the use of a release signing key.

• Timeliness Filtering. To ensure the analysis reflects current
trends in secret codes, we further filtered our dataset to
include only firmware built after 2020, using the build date
from ro.build.date.utc property in build.prop file.

After the above cleaning and filtering process, we ultimately
retained a dataset consisting of 673 firmware images from
18 different brands for analysis. We extracted the system
apps from each image as a basis for subsequent analysis
phases, including secret code extraction, behavioral analysis,
and security evaluation.

B. Secret Code Identification and Extraction

Based on the constructed firmware dataset, our core task is
to comprehensively extract secret codes for security evaluation.
We first need to accurately identify the format of secret codes
in the source code, such as whether they consist purely of
digits or a combination of digits and ⁎ or #. Based on these
identified formats, we then develop automated scripts to batch
extract all relevant secret codes from the dataset.
Secret Code Format Identification. We identify the for-
mat of secret codes by distinguishing between standard-
ized codes defined by AOSP and proprietary codes intro-
duced by device manufacturers: (1) Secret Codes defined by
AOSP. The code formats are listed in the AOSP source file
SpecialCharSequenceMgr.java [16], where the comments
of handleSecretCode method explicitly define two formats:
⁎#⁎#<code>#⁎#⁎ and ⁎#<code_starting_with_number>#.
(2) Secret Codes defined by Manufacturers. In the process
of vendor customization, secret codes beyond those defined
by AOSP are sometimes used, such as ##467#. To identify
potential manufacturer-defined secret code strings, we extract
all strings composed solely of the characters ⁎, #, and digits
from the firmware, as these are the only characters used in

dialer input. We then manually verify each extracted string to
determine whether it is a secret code.

Some secret codes, when dispatched via an Intent, typi-
cally specify a particular action. This action is key to iden-
tifying the component that processes the code. Based on
their origin, these actions can also be categorized into two
types: (1) Actions Defined by AOSP. As specified in the
AOSP source file TelephonyManager.java [17], the com-
ment for the ACTION_SECRET_CODE field indicates that the
broadcast action for handling secret codes should be either
android.telephony.action.SECRET_CODE or its legacy ver-
sion, android.provider.Telephony.SECRET_CODE. (2) Ac-
tions Defined by Manufacturer. In addition to defining custom
secret code formats, device manufacturers also introduce non-
standard Intent actions to receive and process these codes.
To systematically identify such custom actions, we scanned
the AndroidManifest.xml files of all apps in the firmware
and applied the following identification rules: (1) First, we
retrieved all values of the name attribute within <action> tags
that contain the keyword SECRET_CODE. (2) Then, we excluded
standard actions defined by AOSP from the results, with the
remaining entries considered as manufacturer-defined actions.

Secret Code Extraction. To extract all secret codes from
firmware, we statically analyze system apps by reviewing
their AndroidManifest.xml files and hardcoded strings. This
works because dialed codes are either handled directly by the
dialer app or broadcast to another app for processing:

• Manifest-based extraction. To respond to secret codes,
an app must statically declare a BroadcastReceiver
in its AndroidManifest.xml file to listen for the cor-
responding action. We analyze each app’s declared re-
ceiver components and check whether any <action> el-
ement within their <intent-filter> corresponds to a
SECRET_CODE action. In the <intent-filter>, its subtag
<data>’s host attribute specifies the secret code that the
BroadcastReceiver can handle. Therefore, if such an
action is found, we further extract the host value from
the <data> element under the same <intent-filter>.

• Pattern-based extraction. If an app does not specify the
BroadcastReceiver that handles a secret code through
the <data>, it can only hardcode the logic in the code,
triggering different actions based on the secret codes.
Therefore, we can extract hardcoded strings that match



these patterns directly by string matching, based on the
formats of secret codes previously summarized from apps.
However, not all strings from pattern-based extraction are
actual secret codes. Some may simply be regular strings
that happen to fit the format. The key distinction is that
secret codes are typically compared in the code to trigger
specific functionality. Such comparisons are commonly
implemented using conditional statements such as if or
switch, or through the use of the equals method in
smali code. Ordinary strings, however, are not involved
in such comparisons. Therefore, based on the previously
identified secret code patterns, we first construct high-
precision regular expressions to extract secret codes and
then check whether a candidate string matching the format
is involved in an equal comparison. If not, it is considered
an ordinary string and filtered out. These expressions
are applied to all code files to specifically identify hard-
coded strings used in conditional comparisons, enabling
the accurate extraction of secret codes.

C. Functionality Analysis and Risk Assessment

Call Path Tracing and Analysis. To determine the final
operation triggered by the secret code and assess its security
risks, we need to trace the execution path of the code. Our
secret code extraction process provides an ideal starting point
for functional analysis, as each method not only extracts
the secret code but also identifies its corresponding entry
point within the app. Specifically: (1) For codes identified via
Manifest-based extraction, the entry point is the onReceive
method of the corresponding BroadcastReceiver. (2) For
codes found through Pattern-based extraction, the entry point
is the method containing the hardcoded string.

Then, we use AndroGuard [3] to construct the app’s call
graph. Starting from the analysis entry point, we perform
control-flow analysis along the call graph to determine the
execution path. When the path involves an Intent dispatch (i.e.,
intra- or inter-app communication), we conduct value analysis
to resolve the Intent object and its parameters (such as target
package name, Activity, and Action). This enables the accurate
tracing of cross-component and cross-app calls, continuing
until one of the following three behavioral endpoints is located:
(1) a new UI is displayed (e.g., an Activity is launched); (2) a
popup message is shown (e.g., a Toast or Dialog); or (3) there
is no UI change (i.e., the code executes in the background
with no UI feedback).
LLM-based Risk Assessment. After identifying the final
behavior triggered by each secret code, we leverage the
DeepSeek-R1 [8] to perform an initial automated assessment
of its functionality. Based on the results from the previous
step, we extract contextual information and code snippets for
each secret code to serve as part of the input to the LLM: (1)
UI Display. Extract all visible text elements from the target UI
component (e.g., Activity or Fragment). (2) Popup Message.
Extract the text content passed to the Toast or Dialog. (3) No
UI Change. Extract the code snippets and their strings from the
code path starting at the entry point and ending at the final

activity it jumps to. Considering the potential hallucination
issues in LLMs, we use a voting mechanism during LLM-
based reasoning to improve the reliability of the results.
Functional Categorization. To classify and evaluate secret
codes’ functionality, we design an LLM task prompt for a two-
level classification based on the types of secret codes identified
through manual analysis. We first perform a primary classifica-
tion of secret codes into Information Inquiry (functions related
to read operations), Debugging and Control (functions related
to write and execute operations), or Unhandled Execution (no
function is available due to unresolved Activity/Service/Broad-
cast Intent). Then, we conduct a secondary classification to
further subdivide the function within the first three primary
categories and assess its risk level.
(1) Information Inquiry. This category of secret code is used
to retrieve hardware or software information from the device.
Based on the relevance of the retrieved information to the user
or the device, the codes are classified into three risk levels:
• Unique Device Identifier Codes. Data such as IMEI and

IMSI [6], can uniquely identify a user or device and enable
tracking across apps and platforms. Even if the user clears
app data or resets the device, the information may still be
used to re-establish identity, posing a high security risk.

• Potential Threat Codes. While data such as software and
firmware versions is not uniquely identifying in isolation, it
can pose a significant risk when aggregated. For instance,
attackers can leverage version numbers to infer the pres-
ence of unpatched vulnerabilities and subsequently launch
targeted attacks. Thus, the combination of multiple such
individual attributes can enable software fingerprinting or
facilitate the exploitation of known vulnerabilities, consti-
tuting a moderate security risk.

• General Device Status Codes. This type of data, which
includes common information like screen parameters and
battery status, is used primarily for device adaptation or
status detection and has only a weak connection to user
identity or system security. Although it could potentially
be used for fingerprinting and tracking through excessive
aggregation, these attacks are typically complex and offer
limited benefits in normal use cases. Therefore, it is
considered a low security risk.

(2) Debugging and Control. This category covers secret codes
used for sending control commands, device diagnostics, and
configuration changes. Based on their functionality, they can
be further divided into the following three categories:
• Configuration Operation Codes. These codes perform

write or reset operations, affecting both app-level and
system-level configurations. Examples include enabling
ADB over USB or triggering a factory reset. Since these
codes can change system states and user data, they are
prone to causing misconfigurations or data loss. Due to
their potential impact on user privacy and system integrity,
they present a higher security risk.

• USSD Codes. These codes initiate Unstructured Supple-
mentary Service Data (USSD) network requests [18] used



for purposes such as setting up call forwarding. If an
attacker uses USSD codes for call forwarding to redirect
all incoming calls to their own number, the user will not
receive other calls. Furthermore, the attacker could also
take over accounts, reset passwords, and ultimately hijack
funds or services. Therefore, they pose a high security risk.

• Diagnostic Test Codes. These codes are used to trigger
diagnostic tests and help users identify basic issues. For
example, they can be used to check whether components
such as the microphone or camera are functioning properly.
However, if the operator lacks certain specialized knowl-
edge, improper operation can still cause abnormal behav-
ior. Since their working mechanism is limited to activating
test modules and does not modify system settings, user
data, or firmware, they do not endanger the device’s core
functionality or data integrity, resulting in a low overall
security risk.

(3) Unhandled Execution. Secret codes in this category fail
due to interrupted inter-app transition. When an app (caller)
sends an Intent to another app’s component, if the target app
is unavailable on some devices, the secret code’s request goes
unanswered, making it impossible to determine or analyze its
intended function. Since the secret code request fails to execute
the function, it does not affect user data, system settings, or
device state, and also poses no direct security risks such as
data leakage, configuration corruption, or device failure. The
potential harm to the device is minimal. Therefore, unhandled
execution codes are considered low risk.
Secret Code Auditing. To assess the potential security risks
of secret codes, we manually verified those previously flagged
as medium- and high-risk on seven real-world devices from
6 different brands, released between 2020 and 2025. We
adopted this focused strategy because low-risk secret codes
generally pose a minor actual threat, as they typically involve
high exploitation costs, offer low rewards, or have restricted
functionality. By concentrating on the most critical areas,
we aim to accurately identify every risk point that poses a
substantial threat and analyze it in depth.

In addition, to enhance the security and privacy of the
device, we use the LLM to assess the redundancy of secret
codes, excluding those categorized as “Unhandled Execution”.
Specifically, in official consumer-facing devices, the primary
users are the device owners, and after-sales services may need
to access the device in case of malfunctions. Therefore, if any
functionality of a secret code is not useful to the user or for
after-sales services, a redundancy problem exists.

IV. MEASUREMENT AND FINDINGS

This section summarizes the key findings from our empirical
research, which addresses the research questions in Section I.
� RQ1. What functions do secret codes provide in
mobile phones?

Distribution Overview. We systematically evaluated the se-
cret codes in 673 firmware samples from 18 brands, totaling
218,354 APKs. The results are shown in Table I. Due to

the uneven distribution of firmware images from different
manufacturers in the dataset, the number of firmware samples
we collected for each brand also shows a similar imbalance,
with Samsung, Motorola, and Vivo having the largest number
of samples. Overall, 5.58% of the apps contain secret codes,
with an average of 103 secret codes per firmware. This indi-
cates that the secret codes in each firmware are not centrally
managed by a single Dialer app or EngineerMode app but
are instead distributed across multiple apps, which increases
the difficulty of security auditing. In addition, although only
5.58% of system apps in every firmware include secret codes,
these codes are widely distributed across different firmware
samples, suggesting that many devices integrate secret code
functionality as part of their system-level design.

As shown in Table I, however, the number and distribu-
tion of these codes vary significantly from brand to brand.
Notably, Samsung stands out with the highest proportion of
apps containing secret codes (7.47%) and has the highest
average number of secret codes per firmware (249), signif-
icantly exceeding other brands. The main reason is that
all Samsung firmware includes the DeviceKeystring app
(com.sec.android.app.factorykeystring), which con-
tains a series of secret codes to implement a full suite of fac-
tory testing and diagnostic functions. Its functionalities cover
device information queries (e.g., serial number, manufacturing
origin, CPU version, battery status), support for firmware
version checks, OTP verification, and failure history access.
It also provides various sensor and audio tests, along with
operations such as S-Pen testing, vibration testing, firmware
updates, and UART enabling. Although the exact number of
secret codes within this app varies slightly between firmware
versions, it contains at least 74 and up to 94 codes. The number
of secret codes in this single app alone exceeds the average
number of codes per firmware for all brands except Tecno.

Function Categories. Based on the detection results, the
primary function of secret codes in most vendor devices
is diagnostic testing. These codes allow testing of various
components, including the SIM, key, touchpanel, display color,
speaker, microphone, GPS, Wi-Fi, and charging. They can be
used to assist in detecting device status during the development
stage, daily use, or maintenance processes, ensuring both
software and hardware features are operating correctly. The
general device status codes under the Information Inquiry
category also serve a similar role. These codes display basic
device information, such as battery status, light sensor lux
value, LCD type, RTC time, and SAR values, which help
verify whether relevant functions are working as expected.

Configuration operation codes also make up a significant
portion of the firmware across most manufacturers and serve
various functions. They can open feedback pages, allowing
users to record screen activity when issues occur and send
the recordings back to the manufacturer. Other codes support
logging features such as ModemLog, and NetworkLog. Some
codes enable debugging features for individual apps, such as
activating tracedebug, 3A async debug, or color dump in the



TABLE I: Distribution and Characteristics of Secret Codes.

# Vendor Firmware APKs SCs APKs with SCs SCs / F
Information Inquiry Debugging and Control Unhandled

ExecutionUDI (H) PT (M) GDS (L) CO (H) USSD (H) DT (L)
1 Google 22 3876 197 70 (1.80%) 9 27 0 4 102 10 23 31 (15.74%)
2 Honor 11 3265 396 100 (3.06%) 36 40 6 28 39 73 188 22 (5.56%)
3 iQOO 8 2493 421 105 (4.21%) 53 71 9 30 85 17 170 39 (9.26%)
4 Lenovo 7 1563 205 75 (4.80%) 29 14 14 31 67 4 64 11 (5.37%)
5 Meizu 28 6415 803 267 (4.16%) 29 74 33 58 170 52 321 95 (11.83%)
6 Motorola 110 38757 6147 1852 (4.78%) 56 289 89 443 3136 153 1646 391 (6.36%)
7 Nokia 57 13747 1824 727 (5.29%) 32 156 61 88 522 67 686 244 (13.38%)
8 Nubia 11 5132 439 97 (1.89%) 40 30 3 33 100 74 172 27 (6.15%)
9 OnePlus 34 10693 1838 518 (4.84%) 54 93 52 87 775 75 591 165 (8.98%)
10 OPPO 13 4483 935 180 (4.02%) 72 54 51 38 438 35 289 30 (3.21%)
11 Panasonic 3 885 56 20 (2.26%) 19 6 0 6 9 6 23 6 (10.71%)
12 Realme 22 7039 1609 333 (4.73%) 73 80 95 76 701 66 554 37 (2.30%)
13 Redmi 28 7646 1958 527 (6.89%) 70 86 19 153 387 133 716 464 (23.70%)
14 Samsung 171 67579 42617 5046 (7.47%) 249 1433 1550 3225 8944 2031 12744 12690 (29.78%)
15 Tecno 19 5241 1544 215 (4.10%) 81 40 40 29 528 69 501 337 (21.83%)
16 Vivo 88 27120 5945 1454 (5.36%) 68 490 80 528 1391 240 2805 411 (6.91%)
17 Xiaomi 27 7963 1672 463 (5.81%) 62 82 32 143 316 112 802 185 (11.06%)
18 ZTE 14 4457 589 132 (2.96%) 42 42 3 38 178 113 202 13 (2.21%)

Total 673 218354 69195 12181 (5.58%) 103 3107 2137 5038 17888 3330 22497 15198 (21.96%)
Note: SCs: secret codes, APKs with SCs: number of apps containing secret codes, SCs/F: secret codes / firmware, UDI: unique device identifier codes, PT: potential threat codes,
GDS: general device status codes, CO: configuration operation codes, USSD: USSD codes, DT: diagnostic test codes, H: High Risk, M: Medium Risk, L: Low Risk.

camera app. Additional functions include enabling the device’s
debugging port or restoring the device to factory settings.

For unhandled executions, we analyze the reasons why
a secret code cannot successfully trigger its intended be-
havior. There are two causes: (1) Invalid Component Dec-
laration. A non-standard component name declaration pre-
vents the system from correctly resolving the compo-
nent and, therefore, causes the secret code’s execution
to fail. For example, Google’s CalendarProvider app
(com.android.providers.calendar) declares a component
named CalendarDebugReceiver. Since the declaration for
this receiver uses neither a fully qualified name nor a relative
package name (e.g., .CalendarDebugReceiver), the system
cannot locate the component, resulting in an execution failure.
(2) Target Component Missing. This includes two scenarios.
The first is an internal component inconsistency, in which an
app’s manifest file declares a receiver, but the corresponding
code implementation is missing from the app. The second
is a cross-app dependency failure, where an app needs to
start another target app via an Intent to complete the process,
but that target app is not installed on the device. For exam-
ple, Xiaomi’s Catchlog app (com.bsp.catchlog) declares a
.CatBroadcastReceiver component, but the concrete imple-
mentation of this component does not exist within the app.

Answers to RQ1

Secret codes mainly support diagnostic testing and con-
figuration operation tasks, such as logging and debugging.
They are widely present across firmware, especially in apps
from major vendors like Samsung. However, some codes
fail due to invalid declarations or missing components.

� RQ2. Are there any secret codes that are redundant
or pose security risks?

Redundant Secret Codes. By analyzing the complete func-
tionalities of each secret code, we found that many codes
contain redundant operations. We calculated the percentage
of redundant secret codes for each vendor. For most vendors,
this ratio ranges between 20% and 40%. The percentages
of four vendors, Realme (57.99%), OPPO (54.65%), Tecno
(44.75%), and Xiaomi (42.52%), exceed 40%. In contrast,
Google (17.26%) and Panasonic (3.57%) have fewer redundant
codes, both below 20%. This indicates that the redundancy
is not an isolated issue in the industry but a fairly prevalent
problem. Moreover, the usage of redundant secret codes varies
significantly across manufacturers.

Leaving redundant secret codes in officially released smart-
phones introduces several risks. These codes are primarily
designed for developers and internal testing (e.g., configuring
system properties, managing logs), which do not align with
the actual needs of users. Users’ daily operations and after-
sales maintenance are typically handled through secure, stable
graphical interfaces, making these residual background func-
tions unnecessary in the final product. This functional redun-
dancy not only leads to software bloat and expands the device’s
attack surface, but can also introduce potential security risks if
these codes are misused to modify system behavior, ultimately
increasing the device’s long-term maintenance costs.
Risky Secret Codes. Based on the methodology proposed in
Section III-B, we identified secret codes on seven real devices
from six different brands, including Honor, Huawei, iQOO,
OPPO, Redmi, and Vivo. We then used the LLM to assess the
security risk levels of these secret codes and manually verified
142 codes classified as medium and high risk. To ensure the



reliability of our findings, each code was evaluated twice.
Although some codes cannot be activated on real devices, this
comprehensive audit still revealed three critical and exploitable
vulnerabilities related to USB debugging.

Normally, enabling ADB debugging requires a multi-step
process: tapping the Build number seven times, enabling the
developer options page, turning on USB debugging, and finally
confirming the RSA key. On certain devices, password authen-
tication is also required during this process to restrict ADB
access and protect the device. However, by entering certain
secret codes, we were able to bypass the password check
on Huawei and Honor devices or the RSA key confirmation
on the Vivo device, effectively circumventing the protection
mechanisms enforced by the security model.

Similarly, when an Honor device is connected by USB for
file transfer, a password is required for secondary confirmation.
Using the secret code, we can also bypass this verification and
directly enable the corresponding function.

We reported the three discovered vulnerabilities to the
corresponding vendors. Honor confirmed our findings, while
Huawei and Vivo responded with explanations indicating that
there were no security concerns. Huawei stated that such
functionality needs the device to have been authorized for
USB debugging, and the authorization information must not
have been cleared. The current functionality is consistent with
the design specification. Likewise, Vivo explained that this
feature requires actively entering the secret code and enabling
the “Debugging Port” option, and that the UI label “Debugging
port” already indicates its function.

Answers to RQ2

Redundant secret codes are commonly found in devices
from various brands, resulting in software bloat and an
increased attack surface. Risky secret codes also exist and
can be exploited to bypass ADB security measures, posing
serious security threats by enabling unauthorized access
and control.

� RQ3. What has been the trend of secret codes over
the years?

We analyzed the annual average number of secret codes in
firmware in the dataset from 2020 to 2025: 93, 94, 92, 110,
135, and 132, respectively, indicating an overall upward trend.
The increase is mainly caused by two factors: on one hand, this
might be due to manufacturers reserving more entry points for
testing, after-sales maintenance, and debugging during feature
integration; on the other hand, it reflects that some manufac-
turers tend to retain engineering interfaces when balancing
security and maintainability, aiming to reduce support costs
and improve development efficiency.

This upward trend reflects a deeper issue: although the
industry has made progress in general security measures,
considerations of development convenience seem to take
precedence over the security principle of minimizing attack
surfaces in final products when handling engineering in-

terfaces such as secret codes. However, this general trend of
prioritizing convenience does not mean the issue is completely
ignored. Our analysis reveals that some manufacturers, in
particular, are aware of the existence of high-risk secret codes
and have begun to take targeted measures to control them.
For example, during our manual analysis of secret codes, we
observed that the activation conditions for the same secret code
can vary across versions of the same app. We will illustrate this
point using the secret code ⁎#8011# on two OPPO devices:
the A32 released in 2020 and the A3i Plus released in 2025.

On OPPO A32, enabling the ADB mode typically requires
a series of steps: navigating to Settings - “About Phone”
- “Version”, tapping the Build number seven times, enter-
ing the lock screen password, and then accessing developer
options to enable USB debugging. This process enforces user
verification before allowing debugging access. However, when
entering ⁎#8011# on the A32, a pop-up message appears
stating: “this command only for debug, please reset adb
switch in development options to fix it.” In this case, the
OppoEngineerMode app (com.oppo.engineermode), which
handles the secret code, first calls the UsbConfigManager
(context).enableAdbFunction(true) method, and then
uses the Settings.Global.putInt method to set the value
of adb_enabled to 1, enabling ADB debugging.

In contrast, on OPPO A3i Plus, entering the same secret
code no longer enables the ADB function. During the reverse
engineering of the APK, we found that although the secret
code cannot be used to execute the same function, the code
to set adb_enabled to 1 still exists within the handling
logic of ⁎#8011# in the OplusCommercialEngineerMode app
(com.oplus.engineermode, a newer version of OppoEngi-
neerMode). Before this method is called, a whitelist filtering
is applied. Only the specified secret codes can execute their
functions, preventing the other secret codes from being pro-
cessed. As a result, it is no longer possible to enable ADB
debugging using this secret code.

Answers to RQ3

Secret codes have increased over the years due to devel-
opment needs, but some manufacturers are now applying
controls to reduce risks. This shows growing awareness and
improving management of secret codes in real devices.

V. CASE STUDIES

This section presents three real-world case studies, each
illustrating a distinct category of problematic secret codes
discovered in our analysis: unhandled, unnecessary, and risky.

A. Case Study 1: Unhandled Secret Codes

When we enter the secret code ⁎#1111# in the dialer
app on the Vivo Y300, the system sends a broadcast and
uses the setPackage method to specify the DemoVideo app
(com.vivo.demovideo) to handle this secret code. However,
the DemoVideo app does not actually exist on the Vivo Y300
device. As a result, there is no app on the device capable of



receiving this broadcast, causing the secret code’s processing
flow to be interrupted, making it an unhandled secret code.
Impact. Such unhandled secret codes are remnants of depre-
cated or incomplete functionality in the system. It not only re-
flects poor maintenance or oversight in firmware customization
but also exposes the system to potential security risks. From
a security perspective, this misconfiguration creates a clear
attack vector. An attacker could craft a malicious app with
the exact same package name (i.e., com.vivo.demovideo) and
trick the user into installing it. Once installed, the malicious
app could intercept broadcasts intended for internal system
components, and executing unauthorized actions could lead to
data leakage or privilege escalation.

B. Case Study 2: Unnecessary Secret Codes

When the secret code ⁎#⁎#7562#⁎#⁎ is entered on an
OPPO A3i Plus device, the system triggers the launch of
the CalendarDeveloperModeActivity component within the
Calendar app (com.coloros.calendar). This activity serves
as a “Calendar Developer Page,” offering features such as bulk
importing 1,000 schedule entries, switching cloud services and
account environments to testing or development modes, and
resetting the version number of public holiday data. However,
users typically use the Calendar app to view, create, and edit
events, meaning the functionality triggered by this secret code
does not align with regular user interactions with the app.
Moreover, even if the device or app encounters issues and
is sent for repair, these developer features do not assist in
restoring the device. As a result, despite the presence of these
developer features in officially released devices, they have no
practical use case and are considered unnecessary secret codes.
Impact. The internal testing tools on this page, such as bulk
data import and environment switching, are not designed for
end users and pose multiple security risks. First, they threaten
the integrity of user data, as debugging operations like “bulk
import” or “resetting versions”, if misused, lead to data cor-
ruption or deletion. Second, attackers can exploit this by using
social engineering strategies to deceive users into entering the
code, enabling them to remotely damage data or configure the
device maliciously. Furthermore, exposing developer features
in consumer-facing products directly violates the core security
principle of least privilege, unnecessarily expanding the attack
surface and weakening the overall security of the product.

C. Case Study 3: Risky Secret Codes

On Honor Play 9T Pro and Honor Magic 6 devices, under
normal circumstances, when the device is connected to a
computer via USB, the user must enter the lock screen
password to authenticate before enabling developer mode and
ADB debugging. However, as shown in Figure 1b, by entering
⁎#⁎#2846579#⁎#⁎ in the dialer app, the engineering menu in
ProjectMenu (com.hihonor.android.projectmenu) app can
be accessed. Within the engineering menu, under Background
Settings - USB Port Settings, selecting Manufacture
Mode allows ADB debugging to be activated without requiring
lock screen password authentication.

Likewise, users are typically required to authenticate by en-
tering the lock screen password on the device before they can
change the USB mode from “Charge only” to “Transfer files”.
By entering the secret code ⁎#⁎#2846579#⁎#⁎ to open the
engineering menu in ProjectMenu app, and selecting HiSuite
Mode under Background Settings - USB Port Settings, the
device can switch from “Charge only” to “Transfer files” mode
without lock screen password verification.
Impact. This vulnerability poses serious security risks. An
attacker who gains physical access to the device or tricks
the user into entering a specific secret code can bypass
critical system security policies. It could allow the attacker
to establish an ADB connection or enable USB-based file
transfer mode without requiring any authentication from the
user. Once these features are enabled, the attacker can perform
malicious activities such as unauthorized command injection
or the leakage of sensitive data. These actions may not
only compromise the device’s confidentiality and integrity but
also enable further exploitation. Honor’s security team has
confirmed the vulnerability and awarded a bounty for it.

VI. DISCUSSION

In this section, we propose mitigation measures and present
the threats to the validity of our study.

A. Mitigation Measures

Based on our research findings, we propose the following
mitigation measures to address the security risks posed by
secret codes in production devices:
Strict Code Management for Production Builds. The most
effective mitigation strategy is to remove unnecessary secret
codes from consumer-facing firmware. Manufacturers should
leverage build configurations (e.g., distinguishing between
user and userdebug/eng builds) to separate from internal
debugging features from official release versions. Developer
menus, diagnostic tools, and other engineering-only features
should be stripped from production builds during the final
packaging stage. This approach aligns with the least privilege
principle and fundamentally reduces the attack surface.

Additionally, to mitigate the risks caused by flawed se-
cret code implementations, manufacturers should verify the
correctness of BroadcastReceiver declarations to prevent
invalid component formats and validate the Intent dispatch
logic to ensure that any target package invoked by a secret code
(as demonstrated in our detailed Vivo case) is present in the
final build, preventing unhandled secret codes in production.
Enforce Access Control on Retained Codes. If certain secret
codes must be retained, such as those required for specific
user-facing features or after-sales support, their execution logic
should be protected by the security mechanisms. For example,
high-privilege operations like enabling ADB or modifying
system configurations should always follow the standard user
authentication process. These sensitive actions must only be
executed after the system has successfully verified the user’s
identity through established and reliable methods, such as a
lock screen password, PIN code, or biometric authentication.



B. Threats to Validity

Internal Validity. Due to custom implementations by manu-
facturers, even though we’ve summarized the forms of secret
codes by combining AOSP and manually extracted vendor-
specific features, it remains challenging to cover all vendors’
secret codes. If developers do not follow reasonable naming
patterns when setting actions, our heuristic approach may miss
the Intent related to secret codes. Moreover, in the extraction
of the secret code, we did not analyze the native code, which
could potentially also implement secret codes.

In addition, static analysis is limited in determining whether
a secret code works on real devices, as apps often include
conditions that rely on nested function calls and variable
propagation. It leads to discrepancies between analysis results
and real device behavior: some codes may appear executable
under static analysis but remain untriggered on actual devices.
While this constraint does not affect the detection of redundant
secret codes, we still rely on manual testing to verify risky
codes to ensure the accuracy of our results.
External Validity. To support secret code handling, manu-
facturers can define custom Broadcast Intent actions. In our
analysis, we manually identified and summarized the custom
actions used by 18 major vendors. However, for devices
from other manufacturers, it remains necessary to manually
inspect for custom Intent actions when analyzing secret codes.
Otherwise, some vendor-specific codes may be missed.
Construct Validity. We use the LLM to classify secret codes
and assess their redundancy in released mobile devices. We
construct prompts using available information extracted from
the secret code invocation flow. However, such input infor-
mation is not always sufficient for the LLM for accurate
LLM secret code classification and redundancy inference. In
addition, even we use a voting method, the LLM may produce
hallucinated content that cannot be fully eliminated.

VII. RELATED WORK

OEM Customization Security. Existing research revealed
the security issues introduced by Android customizations. Wu
et al. [37] analyzed firmware and found that most cases of
over-privileged apps and vulnerabilities stemmed from vendor
modifications rather than the original AOSP code. Elsabagh et
al. [24] proposed the FirmScope to identify numerous privilege
escalation vulnerabilities in pre-installed apps which expose
the large attack surface. Possemato et al. [30] extract the
customization layers of each ROM and evaluate them using
several metrics. Hou et al. [25] further supported these findings
through large-scale firmware measurements, providing solid
evidence of the security risks posed by customization.

Researchers also uncovered attack vectors introduced by
vendor customizations. Zhou et al. [43] developed the AD-
DICTED tool, which revealed multiple vulnerable drivers
caused by insufficient protection. Aafer et al. [19] performed
differential analysis on customized ROMs and identified many
exploitable inconsistencies resulting from altered security fea-
tures. El-Rewini et al. [23] introduced the concept of “Residual

APIs”, which are often neglected in maintenance and are
prone to access control vulnerabilities. At the same time, to
automate the discovery of such deep-seated vulnerabilities,
many static [32], [42], [44], [35], [36] and dynamic [26], [38],
[39], [23], [21] analysis methods have been developed.
Analysis of Hidden Features. Prior research has revealed
the prevalence and security implications of hidden behaviors
in Android apps. Shan et al. [34] characterized self-hiding
behaviors (SHBs). Similarly, Pham et al. [29] proposed Hide-
MyApp, which shows that app fingerprinting via installed app
lists is a widespread threat. Chen et al. [20] focused on hidden
privacy settings, revealing that over one-third of apps often
defaulting to permissive data sharing. Yang et al. [40] and Diao
et al. [22] explored the misuse of non-SDK and accessibility
APIs, both frequently exploited for stealthy operations or
privileged access. Pourali et al. [31] presented ThirdEye to
detect extensive use of multi-layer encryption and insecure
custom protocols. Meanwhile, Sun et al. [35] and Samhi et
al. [33] introduced HiSenDroid and Difuzer respectively. Their
work demonstrated that attackers often obfuscate or delay the
execution of privacy-violating code to evade analysis.

While the security risks of secret codes have been previously
studied, prior research largely consisted of isolated vulnera-
bility case reports. For instance, a pre-installed engineering
app on OnePlus devices could grant full root access [1], and
fuzzing tools revealed specific vulnerabilities like unauthorized
factory resets [2]. While these studies highlight severe risks,
our research provides the first comprehensive, multi-vendor
analysis, uncovering more hidden secret codes and systemati-
cally characterizing this under-documented attack surface.

VIII. CONCLUSION

In this work, we conducted a large-scale study on the
customization of secret codes in the Android ecosystem. We
built a dataset of 673 firmware images from 18 different
brands to analyze and explain how manufacturers implement
and use secret codes. We summarized the usage patterns of
secret codes in different functional categories, revealed that
redundant codes are commonly found in multiple brands, and
uncovered the trend in the development of secret codes. Then,
we further validated our findings on seven real-world devices
and identified three vulnerabilities that allow bypassing verifi-
cation when enabling ADB debugging. Our research suggests
the need for device manufacturers to enhance the review of
secret codes, improving the stability and security of devices.

DATA AVAILABILITY

We have provided the prototype implementation on GitHub:
https://github.com/Lynnrya/SecretCodes. For security
reasons, the specific secret codes extracted are not disclosed.
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