From Patterns to Precision: LLM-Guided Detection
of Signature Verification Flaws in Smart Contracts

Huixin Wang*, Kailun Yan!(®®, and Wenrui Diao*f(®0)
*School of Cyber Science and Technology, Shandong University
wanghuixin@mail.sdu.edu.cn, diaowenrui@link.cuhk.edu.hk
fState Key Laboratory of Cryptography and Digital Economy Security, Shandong University
Hnstitute for Advanced Study, Tsinghua University, kailun@mail.tsinghua.edu.cn

Abstract—Off-chain Signing and On-chain Verification
(OSOV) is a widely adopted contract pattern that enhances
user experience. However, existing studies primarily focus on
isolated defects, lacking a systematic understanding of the fun-
damental security requirements of OSOV. By analyzing OSOV
workflows and real-world implementations, this paper identifies
four security-critical fields in signed messages that together define
the essential security boundary. In practice, these fields exhibit
diverse implementation styles, making it difficult for rule-based
inspection to achieve comprehensive and accurate detection. To
address this challenge, we propose a two-stage LLLM-based sum-
marization approach that automatically extracts implementation
patterns of these fields from large-scale signature verification
functions (VFs) and uses the summarized patterns to guide the
construction of detection rules. We implement these rules in a
fine-grained static analysis tool, VCSCOPE, and evaluate it on
22,374 real-world VFs. Experimental results demonstrate that
mainstream LLMs effectively perform the field summarization
task and that our approach reduces token consumption by 74.3%.
VCSCOPE achieves 98.7% precision, 93.1% recall, and a 95.8%
F1-score, revealing widespread security risks in current OSOV.

I. INTRODUCTION

Off-chain Signing and On-chain Verification (OSOV) is a
common pattern in decentralized applications (Dapps), allow-
ing users to authorize operations by signing messages off-chain
and submitting them on-chain for verification and execution.
OSOV has powered a wide range of innovations in decen-
tralized systems, including tokens [9], [10], [12], NFT mar-
ketplaces [19], and decentralized voting and governance [15].
In decentralized exchanges (DEXs), OSOV enables off-chain
signed orders to be executed only when matched on-chain. As
of December 2024, DEXs reached a record monthly trading
volume of $462 billion [2], with Uniswap [18] accounting for
over $100 billion. Similarly, NFT platforms like OpenSea [1],
peaking at $3.4 billion monthly, rely on OSOV to facilitate
off-chain listings and seamless on-chain execution without
requiring sellers to stay online. Beyond trading, OSOV also
supports off-chain voting [17] and governance [4], where
signed messages are batch-submitted on-chain to improve
scalability and reduce costs.

Recently, researchers have begun to recognize the im-
portance of OSOV, leading to the development of various
analysis tools [36], [54], [45], [50], [31]. However, existing
work has not systematically examined the OSOV workflow.
Most studies lack a clear threat model and focus only on

1 2
ﬁ Attack @ Security
Scenarios If‘> Requirements

e
- 3 4
Verifier i. LLM - M Rule-based
Contracts If‘> Analysis if‘> Detection Tool E> Results
ZN
J

N

-\

’
14

Fig. 1: Overview of Our Detection Framework

individual flaws within signature verification. Furthermore,
these detection tools are typically built upon manual insights
or heuristic rules, making it difficult to effectively capture the
range of diverse implementations deployed in practice.

Our Work. This work conducts a comprehensive analysis of
signature verification security in smart contracts. We define a
threat model and three attack scenarios covering both on-chain
and off-chain workflows. Based on this model, we identify
four security-critical fields that together form the minimal
security boundary of any verification function (VF). We utilize
a Large Language Model (LLM) as an automated auditor to
mine and summarize implementation patterns of these fields,
which in turn guide the construction of a rule-based detection
tool. Finally, we develop a static analysis tool to automatically
detect and validate the implementation correctness of security-
critical fields in VFs. Figure 1 presents an overview of our
detection framework.

Specifically, we employ LLMs to mine implementation
patterns of security-critical fields in VFs. We first extract
structural features from the signature-verification segment of
each VF as its fingerprint, and group functions sharing the
same fingerprint. For each group, only one representative
sample is analyzed by the LLM, avoiding redundant analysis
due to code reuse. The LLM then extracts implementation
patterns of four security fields, followed by a two-stage sum-
marization to merge similar patterns. Experiments show that
five state-of-the-art LLMs capture over 81% of patterns, and
the summarized representative patterns achieve 100% coverage
of all mined patterns. This demonstrates the strong capability
of LLMs in mining and summarizing code patterns. Moreover,
our grouping strategy reduces token consumption by 74.3%.

Based on the patterns extracted by LLMs, we design
seven detection rules and develop VCSCOPE (Verifier Contract

Scope), a fine-grained static analysis tool. The core idea of
our detection approach is to classify variables involved in the
signature verification process into trusted and untrusted sets.
The tool then checks whether the untrusted variables satisfy
the constraints defined by the detection rules, thereby veri-
fying whether the security-critical fields are correctly imple-
mented. We apply VCSCOPE to 22,374 real-world verification
functions (VFs). While 80.5% of on-chain VFs verify the
signer, only 41.0% include a nonce and 33.4% incorporate
the chainld, leaving them partially exposed to replay attacks.
Moreover, 40.9% omit the verifying contract address, enabling
potential cross-contract replays.

Finally, we compare our rule-based static tool with
the LLM-based detection approach. The rule-based method
achieves higher precision (98.7% vs. 88.5%), recall (93.1%
vs. 72.8%), and F1-score (95.8% vs. 80.0%). Further analysis
shows that our static tool excels at tracking inter-procedural
control and data flows, enabling more accurate identification
of implicit verification logic. Nevertheless, the semantic under-
standing capability of LLMs allows them to handle complex
cases that are difficult to formalize through rules.
Contributions. The main contributions are as follows:

e Boundary Definition of Secure Verification. We investigate
OSOV workflows and real-world scenarios to define the
minimal security boundary, identifying four security-critical
fields that should be enforced in all verification functions.

o LLM-based Pattern Mining. We propose an LLM-based
approach to mine implementation patterns of four security-
critical fields, using fingerprint-based grouping and two-
stage summarization for efficient and comprehensive anal-
ysis. Experiments confirm that state-of-the-art LLMs effec-
tively accomplish this task.

e Static Detection Tool. We develop a fine-grained static
analysis tool with seven LLM-guided rules to verify the
correct implementation of security-critical fields, achieving
high precision in practice.

o Large-scale Measurement. We conduct a large-scale mea-
surement to assess the implementation of security-critical
fields across 22,374 real-world verification functions, re-
vealing widespread security risks.

II. BACKGROUND

This section provides the necessary background related to
signature verification within smart contracts.

A. Off-chain Signing with On-chain Verification (OSOV)

OSOV is a widely adopted pattern in smart contract de-
sign [23], [32]. In this scenario, users sign intent messages
off-chain using their private keys, and contracts verify the
signatures on-chain before executing actions. This design elim-
inates the need for on-chain approval state management and
multiple transactions, enabling gasless approvals and deferred
execution. OSOV is extensively used across decentralized ap-
plications (Dapps), including token exchanges [18], NFT mar-
ketplaces [14], and governance platforms. It supports common
features such as delegated tokens or NFT transfers, airdrop

claims, DAO voting and delegation [29], [49]. In practice,
signature verification is encapsulated in a dedicated Verifier
Contract (VC), which contains the verification functions (VFs)
that check signed messages.

B. Digital Signatures in Ethereum

Digital signatures rely on asymmetric cryptography: users
sign messages with private keys, and anyone can verify the
signatures using the corresponding public keys to confirm
message integrity and authenticity. In Ethereum, signatures use
the Elliptic Curve Digital Signature Algorithm (ECDSA) [21].
Solidity provides a built-in function, ecrecover [13], which
takes a message hash and a signature (v, r, s), and returns
the address that created the signature. This recovered address
is commonly used to enforce access control in smart contracts.
However, ECDSA signatures are malleable, meaning different
signatures can be valid for the same message. To prevent this,
Ethereum requires the s value in the signature to be in the
lower half of the elliptic curve’s order [6].

To ensure consistent and secure signature usage, the
Ethereum community has proposed several standards and
libraries. EIP-712 [7] defines typed structured data signing
with domain separation to prevent cross-context replay attacks.
EIP-4494 [12] extends the NFT standard (EIP-721 [11]) with
a permit function for gasless approvals. The OpenZeppelin
Contracts library [16] also provides reusable implementations
of these standards for safer and simpler signature verification.

III. THREAT ANALYSIS AND SECURITY BOUNDARY

This section first presents the OSOV workflow, then intro-
duces the threat model and three attack scenarios, and finally
defines a minimal security boundary.

A. Motivating Example

The OSOV pattern allows users to authorize sensitive ac-
tions off-chain. Figure 2 shows a typical NFT transfer using
EIP-4494 [12], where Alice authorizes Bob to transfer her
NFT via an off-chain signature, and Bob submits it on-chain.
The workflow involves three steps:

Step 1. Off-Chain Signing. Alice signs a message (Msg)
authorizing the transfer and sends it with the signature (Sig)
to Bob through an off-chain channel.

Step 2. Transaction Submission. Bob can optionally verify
the signature off-chain using a read-only function from the VC,
avoiding gas costs. If valid, he submits an on-chain transaction,
paying the gas himself, to call the contract’s verification
function (VF) with the signed message as input.
Step 3. On-Chain Verification. The contract verifies the
message and signature, and if valid, transfers the NFT. The
change is recorded on-chain upon transaction confirmation.
The OSOV workflow involves four main entities, each with
a distinct role in the authorization and execution process:
o Signer (Alice): The asset owner who authorizes actions
by signing structured messages with a private key. Alice
performs all operations entirely off-chain.

A 4 ———= S \
Message - | Off-chain Submit
Signing Msg, Sig 2| pre-verification ! Transaction

@ Alice Bob
m (Signer) Iy (Tx Submitter)
Message |4 ... —--| As2 (vc clone) [--------""=""=""777"
Generation
Msg e -

§ Blockchain

&8,
External Observers
Verify Signature
& Transfer NFT

Fig. 2: The Process of Off-Chain Signing and On-Chain Verification (OSOV)

« Submitter (Bob): The recipient who submits the signature
to the VC for on-chain execution. Bob may be the counter-
party or a service platform. He covers the gas cost and may
optionally verify the signature off-chain before submission.

o Verifier Contract (VC): A smart contract that verifies
signatures and executes authorized actions. It contains an
on-chain verification function (VF) and may expose a view
function (e.g., ERC-1271 [8]) for off-chain verification.

« External Observers: Third parties with access to public
blockchain data, such as bots, traders, indexers, or attackers.
They can monitor signed messages and transactions and
may attempt to exploit weaknesses in the OSOV design.

B. Threat Model

We assume the underlying blockchain and standard cryp-
tographic primitives, such as digital signatures, are secure.
Misuse stems from flaws in contract logic rather than weak-
nesses in the cryptography itself. Specifically, adversaries
act as regular blockchain users. They can access public on-
chain data, send transactions, deploy contracts, and locally
simulate verification logic. We consider two types of ad-
versaries: Submitters and External Observers. These actors
may exploit weaknesses in the OSOV workflow or VC logic
to bypass verification, perform unauthorized actions, or gain
unfair advantages. Such attacks can lead to asset losses for
the VC or the signer. In some cases, even the submitter may
become a victim when the adversary is an external observer.

C. Attack Scenarios

Prior work has mainly focused on flaws in verification logic,
with limited analysis of how these issues lead to real-world
attacks in OSOV workflows. Here, we present three common
attack scenarios in OSOV workflows: two on-chain (AS1 and
AS2) and one off-chain (AS3).

AS1: Signature Forgery. If the VC fails to correctly verify
signatures or match signers with the expected addresses, at-
tackers may forge or misuse signatures to bypass checks [13],
leading to unauthorized execution of sensitive operations.

AS2: Replay Attacks and VC Cloning. Traditional replay
attacks reuse signed messages across different execution con-
texts, including single-contract, cross-contract, and cross-chain
scenarios. We identify a variant in which an attacker deploys a
clone of the VC and tricks the signer (e.g., Alice) into signing

on the clone. If the original contract does not bind the message
to its own address, the attacker can reuse the signature on the
original contract to bypass verification.

AS3: Pre-Verification Exploit. Some VCs offer read-only
pre-verification, allowing users to check signatures before
submitting transactions. If this function shares flaws from AS1
or AS2, attackers can mislead the submitter (e.g., Bob) into
accepting invalid or replayed signatures, potentially causing
failed transactions or economic loss.

D. Security Boundary

Building on the prior threat model and attack scenarios, we
surveyed secure implementations such as OpenZeppelin [16]
and identified four critical fields forming the minimal security
boundary for OSOV. These fields must be enforced by all
VCs to prevent AS1 and AS2, and by any off-chain pre-
verification logic to mitigate AS3. They jointly ensure three
essential properties: (1) Authenticity: verifies the message
origin; (2) Non-reusability: binds the signature to a specific
state or context; (3) Unforgeability: prevents valid signatures
from being forged without the private key.

1| contract NFTPermit{
2| mapping(address => uint) public nonces;
mapping(uint => address) public owners; // NFT ownership

function permit(address from, address to, uint tokenId,
uint nonce, uint deadline, uint8 v, bytes32 r,
bytes32 s) public {

7 require(block.timestamp <= deadline, "Permit expired");
8 require(nonces[tokenId] == nonce, "Invalid nonce");

10 bytes32 structHash = keccak256(abi.encodePacked("
PermitNFT", from, to, tokenId, nonce, deadline,
block.chainid, address(this)));

11 bytes32 msgHash = structHash.toEthSignedMessageHash();

13 address signer = ecrecover(msgHash, v, r, s);
14 require(signer != address(0), "Invalid signature");
15 require(signer == from, "Invalid signature");

1 nonces[tokenId] += 1; // Invalidate the used nonce

19 // Execute token transfer

20 require(owners[tokenId] == from, "Not token owner");
21 owners[tokenId] = to; // Update ownership

Listing 1: Example of Verifier Contract.

Signer. Ensures the message originates from the legitimate
asset owner. Without verification, attackers can forge signa-
tures (AS1). In Listing 1, ecrecover extracts the Signer and
checks if it matches from (lines 13 to 15), ensuring the request
comes from the rightful asset owner.

Nonce. A unique identifier for each message, used to prevent
replay attacks by enforcing one-time use. It protects against
single-contract replay attacks, as described in AS2. In List-
ing 1, each NFT (tokenId) has a corresponding Nonce stored
in a mapping. The contract verifies the submitted Nonce (line
8) and increments it after execution (line 17), ensuring each
message is bound to a specific state and cannot be reused.

VC Address. Binds the signed message to a specific contract,
preventing attackers from using cloned contracts to harvest
signatures for replay on the original contract (AS2). Without
it, cross-contract replays are possible even if nonces match, as
attackers can craft messages targeting the original contract.

Chainld. Binds the signed message to a specific blockchain,
preventing cross-chain replay attacks, as seen in AS2. List-
ing 1 includes block.chainid in the message hash, ensuring
signatures are valid only on the intended chain.

Additional fields (e.g., deadline) are excluded from the
minimal boundary for two reasons: (1) they serve application-
specific purposes rather than core verification security; (2)
their integrity is already ensured by the four fields.

IV. LLM-BASED FIELD PATTERN MINING FRAMEWORK

This study aims to evaluate whether existing OSOV im-
plementations satisfy the minimal security requirements by
examining whether their verification contracts (VCs) correctly
implement the four critical security fields. We first analyze the
limitations of existing methods and then introduce an LLM-
based method for variant mining of security fields. Based on
the mined results, we design a static detection tool to evaluate
real-world OSOV implementations in Section V.

A. Overview

In practice, the four security fields exhibit substantial imple-
mentation diversity. Developers may adopt different variable
names, data structures, or control logic to achieve the same
semantics. For example, the nonce field may appear as a
global integer variable (e.g., globalNonce) controlling all
signatures, or as a mapping (e.g., nonces) maintaining a
separate counter for each address. Such diversity makes it
difficult for existing static detection methods [26], [38] to
achieve comprehensive coverage, as their handcrafted rules
often rely on pattern matching and prior experience rather than
semantic understanding.

To address these challenges, we exploit the semantic reason-
ing capabilities of large language models (LLMs) to compre-
hensively summarize real-world implementations of security-
critical fields, thereby enabling the formulation of more accu-
rate detection rules. As illustrated in Figure 3, our approach
consists of several stages. We first apply Verification Function
Grouping (Section I'V-B) based on signature logic fingerprints
to eliminate unrelated code and duplicates, yielding a concise

0

Verification
Functions

Implementation
Instances

v RO

89 E> Middle
(large scale) (B8 Summary

|

|

|

I

|

|

|

I' | Function ‘]-
I Grou

| ping
|

|

|

|

|

|

iol
in
Representative
Functions
(small scale

Fig. 3: The Workflow of LLM-Based Variant Mining

@ Fields

Analysis

set of implementation variants. Next, the LLM acts as an
automated contract auditing expert to examine the presence
and correctness of each security field and to extract rele-
vant code snippets (Section IV-C). We then employ a two-
stage summarization process to generalize the results: (1) the
middle summary condenses similar implementations to reduce
redundancy; and (2) the meta summary performs higher-level
abstraction to unify semantically equivalent implementations
and reveal common field-level patterns. Finally, these patterns
capture real-world implementation diversity and form a finite,
analyzable set that guides the development of our static
detection tool in Section V.

B. Verification Function Grouping

Our investigation reveals that verification functions (VFs)
exhibit substantial diversity yet frequent repetition. On the
one hand, even when the security function is identical, de-
velopers often differ in variable naming, encapsulation, and
data handling. For instance, the Nonce field may be linked
to a tokenId, bound to the from address, or implemented
as a global counter. On the other hand, many contracts reuse
nearly identical verification logic, often derived from shared
libraries or duplicated across multiple functions, differing only
in their application-specific business logic. Analyzing each
VF in isolation is therefore inefficient. Such redundancy not
only increases computational overhead but also diffuses the
LLM’s attention, potentially leading it to overlook rare but
valid implementation variants.

To balance coverage and efficiency, we extract and group the
core verification logic using structural fingerprints, producing
a compact yet representative set of implementations. This
approach effectively reduces redundancy while preserving
semantic diversity. As shown in Section VI, our method
compresses the dataset to less than 25% of its original size.
The grouping process involves four key steps:

o Step 1. Function Parsing. This step parses each VF
into its Abstract Syntax Tree (AST) and generates its
Intermediate Representation (IR). During generation, the
analysis recursively expands external calls to obtain their
IR, ensuring complete coverage of the verification logic.

o Step 2. Verification Logic Identification. This step per-
forms backward analysis on the IR to locate cryptographic

primitives such as ecrecover, then traces upward to extract
the code slice responsible for signature verification.

o Step 3. Structure Extraction. This step simplifies the
extracted slice by removing irrelevant instructions and dis-
carding names, retaining only types and data dependencies
to produce a canonical logic structure.

« Step 4. Fingerprinting and Grouping. The final step
computes the SHA-256 hash of the code structure as the
function’s fingerprint. All functions with identical finger-
prints are grouped together.

C. Field Pattern Analysis via LLMs

We employ LLMs to extract and analyze the implementation
patterns of security-critical fields. This process consists of
three main stages: security field analysis, middle summary, and
meta summary, ultimately producing a finite and analyzable set
of representative implementations that guide the development
of our static detection tool. All prompts used in this study are
publicly available in our open-source repository.

Security Fields Analysis. As demonstrated in Section VI,
most state-of-the-art LLMs are capable of extracting ver-
ification function (VF) code snippets with high precision,
achieving over 80% accuracy even in the least effective model.
Based on this capability, we leverage an LLM to identify
field-level patterns in real-world VFs. For each VF group
identified during the grouping phase, we randomly select one
representative function. The LLM, acting as an automated
contract auditing expert, examines whether the target security
field is present and correctly implemented.

To improve clarity, we format prompts using Markdown,
following best practices from prior work [27], [28], [39],
[41], [52], [53]. The System Prompt defines the LLM’s role
and outlines its tasks: checking the presence, correctness, and
implementation of the field. The User Prompt provides task-
specific details, including the target field’s security definition,
the required checks, and the expected JSON output format.
To support accurate reasoning, the prompt includes not only
the core VF but also relevant state variable declarations and
external function calls. Finally, we aggregate all valid results
for subsequent summarization and exclude samples in which
the target field is absent.

Middle Summary. Using an LLM to summarize a large
number of results presents two key challenges. First, the
limited context length of the LLM prevents us from feeding
all sample code into a single pass for summarization. Second,
giving too much input at once can lead the model to overlook
rare but valid implementation patterns.

To address challenges, we introduce a batch-wise recursive
summarization approach, called the middle summary. Struc-
tured outputs from the previous stage serve as inputs for each
round, where inputs are grouped into batches and summarized
by the LLM. The resulting summaries are then used as input
for the next round. If the number of summaries still exceeds
the batch size or a predefined threshold, the process repeats.
This method compresses the input logarithmically. Given N
results and batch size b, the number of rounds is bounded

=" Results

=—| Verification
— Function

2

i Fields
IR Parsing & Trust / Untrust .. s
Context Building E> Set Building E> ?geftg)?r;

Fig. 4: The Workflow of VCSCOPE

by O(log, N). For example, with N = 10,000 and b = 10,
only about four rounds are needed. The total number of LLM
requests is approximately N/(b—1).

The prompt structure follows that of the earlier analysis step
but shifts focus to identifying and generalizing implementation
patterns. Our prompt also instructs the LLM to ignore surface-
level differences such as variable names and formatting, en-
couraging abstraction based on logic and structure.

Meta Summary. After the middle summary phase, we per-
form a final summarization called the meta summary. The
LLM generates a report describing each representative pattern,
providing example code snippets, and explaining its strengths
or weaknesses. These results directly inform rule-based detec-
tion tools by showing how each field is implemented in prac-
tice. Specifically, the LLM distills common implementation
paradigms from the aggregated batch summaries. The prompt
for this stage extends the middle summary template and adds
three guiding questions: (1) Can multiple implementations be
abstracted into a unified pattern? (2) If correct, what are the
security advantages of the implementation? (3) If incorrect,
what causes the implementation to fail?

Implementation Patterns. From the summary results, the
LLM identified diverse implementation patterns for each
security-critical field. Specifically, the LLM extracted 17 pat-
terns for Signer, 22 for Nonce, 12 for ChainID, and 12
for VC address. Further details are provided in Section VI.
We manually reviewed all outputs, focusing on implemen-
tation diversity rather than LLM accuracy, and consolidated
semantically similar implementations into a smaller set of
representative patterns for rule-based detection.

V. VCScoOPE: A FINE-GRAINED DETECTION TOOL

Building on the LLM-summarized field patterns, we derive
a concise set of detection rules that ensure comprehensive
coverage across diverse implementations. This section presents
our fine-grained detection tool, VCSCOPE. Section V-A details
its architecture, while Section V-B elaborates on its detection
methodology and rule design.

A. Architecture Overview

VCScoOPE (Verifier Contract Scope) is a static analysis
tool that leverages Slither’s [24] Intermediate Representation
(IR) to detect the implementation of critical security fields
in signature verification. As shown in Figure 4, for a given
verification function (VF), VCSCOPE first parses the contract
into IR and constructs its contextual representation. This
includes identifying functions along the call chain, variable
read/write sets, control-flow conditions, and parameter-passing

relationships. Using this context, VCSCOPE constructs two
variable sets: a trusted set (e.g., state variables, blockchain
variables) and an untrusted set (e.g., user-supplied inputs).
These concepts will later be formalized in Section V-B. It
then performs backward tracking from critical cryptographic
primitives such as ecrecover, analyzing related conditional
checks and assignments to iteratively update the trusted set.
Finally, the tool applies predefined Rules 1-7 (Table I) to
validate the correctness of the four security fields and outputs
the detection results.

As a fine-grained tool, VCSCOPE thoroughly accounts for
Solidity-specific features during context building. It employs
extraction and expansion strategies to handle inline assembly,
structs, arrays, and other constructs, and incrementally updates
the call graph when constructor-initialized variables introduce
new dependencies, ensuring comprehensive analysis coverage.

For AS1 and AS2, the tool analyzes all functions declared
with public or external visibility as potential external entry
points. For AS3, functions marked as view or pure are further
examined if they return boolean values, as such functions are
typically involved in off-chain verification. View functions can
read but not modify contract state, allowing relaxed Nonce
requirements, while pure functions cannot access any state
and are directly flagged as potential risks.

B. Detection Methodology and Rule Design

This subsection formalizes the detection process by model-
ing verification functions (VFs), defining trusted and untrusted
variables, and specifying how detection rules ensure the cor-
rectness of security field implementations.

Detection Methodology. We propose to assess the trustworthi-
ness of variables in VFs to determine whether security-critical
fields are correctly implemented. Variables are categorized into
two disjoint sets: the trusted set 7 and the untrusted set U.
The trusted set 7 contains variables defined internally by the
VF and cannot be controlled by users. In contrast, variables
in U are considered untrusted, as they may be controlled by
users (attackers). We define a set of detection rules to identify
potential vulnerabilities. These rules examine how predicates
in the VF constrain untrusted variables using trusted values.
A secure VF must verify all security-critical variables, either
through cryptographic bindings or conditional checks. If such
checks are missing or insufficient, the function is marked as
potentially vulnerable.

Next, we formalize the structure of verification functions
and define related concepts such as cryptographic primitives
and conditional constraints.

Verification Function. Let VC be a verifier contract, and let
VF denote its signature VE. We model VF as an abstract
semantic triple: VF = (Z,C,S), where:

o 7 is the set of input parameters explicitly passed to V.F.
These parameters are user-controlled, so they are consid-
ered untrusted variables, denoted as Z C U{.

e C is the set of contextual variables that VJF depends
on, including: 1) Contract state variables; 2) Blockchain

global variables (e.g., block.chainid); 3) Contract meta-
data (e.g., address(this)). These variables are considered
trusted, denoted as C C 7.

e S is the set of expression statements within VF, encom-
passing cryptographic primitives, conditional statements,
and assignments.

Cryptographic Primitives. The VF relies on two essential
cryptographic primitives from S to verify external inputs:

o The hash function H maps a structured message M =
(x1,22,...) to a fixed-length digest h = H(M). In
Solidity, H is typically instantiated as keccak256, and h
is a 256-bit digest.

o The signature recovery function R takes as input a message
hash h and a signature sig. It returns the Ethereum address
a that produced the signature if it is valid, and the zero
address 0x0 otherwise. In Solidity, this primitive is provided
by the built-in ecrecover function.

Conditional Statements. The V F typically performs signature
verification using conditional statements, commonly imple-
mented with if or require in Solidity. These conditional
statements correspond to a set of Boolean predicates P con-
tained in the statement set S. Each predicate ¢ € P imposes
constraints over variables drawn from Z U C, where 7 C U
(untrusted) and C C T (trusted).

Trust Propagation. During the analysis, we continuously up-
date the trusted set 7 to include variables that have been prop-
erly verified. We define a trust propagation mechanism that
expands 7 based on cryptographic guarantees and program
semantics. First, if the output of a cryptographic operation is
trusted, its inputs can also be regarded as trusted due to the
one-way and collision-resistant properties of hash functions.
Second, trust can propagate through assignments: if a variable
is directly assigned from a trusted one (e.g., x = y with
y € T), then z is added to 7.

Detection Rules. Table I summarizes our detection rules
for identifying vulnerabilities, which are derived from imple-
mentation patterns identified in Section IV. The detection of
Signer is fundamental, as it relies on the message and sig-
nature, which contain all critical fields. If Signer verification
fails, checks on the other fields lose their meaning. Thus, rules
1 and 2 focus on Signer verification, while rules 3 to 7 build
on that foundation to validate the remaining fields.

Signer Detection. To ensure Signer integrity, the VJF must
include a condition ¢ € P that checks the validity of the
recovered address signer = R(h, sig). Based on the behavior
of ecrecover, we define two detection rules:

o R1: Trusted Address Check. The condition ensures that
stgner equals a trusted address a, and a is a state variable.

¢ R2: Non-Zero Address Check. The condition ¢ ensures
signer # 0x0, indicating successful signature recovery.

Satisfying either rule is sufficient for considering the Signer
valid. With trust propagation, a trusted signer also implies
trust in h, sig, and the message M used to compute h.

TABLE I: Detection Rules for Verification Functions

Field Rule Formal Definition
Siener R1: Trusted Address Check signer = R(h,sig), 3 p € P:signer ==a, a€CCT
g R2: Non-Zero Address Check signer = R(h,sig), d ¢ € P : signer # 0x0
R3: State-Based Nonce Check 3 nonce € MNC, s € S : s =nonce := _,
7 o — —
R4: Input-Based Nonce Check d nonce € C, 4 nonce’ € ./\l/l NZ, dseS:s= no/nce =_
Nonce 3 ¢ € P : nonce == nonce’ V nonce|_] == nonce’,
o dnonce € C, ¢ € P : nonce[sig] == false,
RS: Sig-Based Nonce Check ds € §: s =nonce[sig] := true, 3¢’ € P : sig, < SECP256K1N/2
Chain ID Ré6: Blockchain Check JpeP: d2 € M:x==Dblock.chainld
VC Address R7: Contract Address Check JpeP: dox e M:x==address(this)

Nonce Detection. As shown in Listing 2, the Nonce field may
take different forms, but secure usage must satisfy three core
properties: it must be stored in state (nonce € C), updated after
use (3s € S : s = nonce := _), and included in the signed
message (nonce € M). We define three detection rules:

« R3: State-Based Nonce Check. The message directly
includes a state variable (nonce € M N C). In this case,
Signer verification (Rule 1 or 2) usually ensures Nonce
correctness without requiring an explicit condition.

« R4: Input-Based Nonce Check. The nonce is given as
input and included in the message (nonce’ € M NZI). The
contract must check that nonce’ matches the stored value,
typically via nonce == nonce’. For per-user mappings,
the condition becomes nonce[_] == nonce’.

« RS: Sig-Based Nonce Check. The nonce is derived from
the signature. The contract must ensure it has not been used
by checking nonce[sig] == false, then marking it as
used. To avoid malleability, the signature must also satisfy
sig, < SECP256KIN/2.

Chain ID and VC Address Detection. The YV F must ensure the
message is bound to the correct execution context, including
the current blockchain and contract address.

« R6: Blockchain Check. This rule identifies conditions that
explicitly compare a message field z € M with the current
blockchain, i.e., x == block.chainId.

e R7: Contract Address Check. This rule detects compar-
isons between a message field € M and the current VC
address, i.e., * == address(this).

In practice, ChainID and VC address are sometimes hard-
coded in the message rather than provided as inputs. This is
similar to Rule 3, where the message M directly includes the
relevant values. As a result, we do not define separate rules
for these cases in Table I.

VI. EVALUATION

This section evaluates our approach. First, we assess the
effectiveness of our LLM-based method. We then analyze the
implementation of four security-critical fields across 22,374
real-world verification functions (VFs). Finally, we compare
our rule-based detection tool with an LLM-based approach.
Specifically, we address the three research questions:

TABLE II: LLM Performance Comparison

Model R1 R2 R3 Mean Std

DeepSeek-V3 0.860 0.850 0.860 0.857 0.0047
DeepSeek-R1 0.860 0.880 0.850 0.863 0.0125
Gemini-2.5-pro 0.850 0.830 0.810 0.830 0.0163
o4-mini-high 0.850 0.840 0.850 0.847 0.0047
GPT-5 0.820 0.800 0.810 0.810 0.0082

Note: R1-R3 denote accuracy in three independent testing rounds.

« RQ1: Does the LLM-based pattern mining approach effec-
tively capture representative patterns?

« RQ2: Do real-world verification functions correctly imple-
ment all four security-critical fields?

« RQ3: How does the rule-based tool compare to the LLM-
based approach in accuracy and robustness?

Dataset. We constructed our dataset based on the CryptoScan
project [50], which includes 22,374 externally callable func-
tions (public/external) from 14,581 smart contracts. Among
them, 2,795 functions are read-only (view/pure).

Setup. Experiments were conducted on a server running
Ubuntu 22.04.5 LTS with Python 3.12.10, two AMD EPYC
9654 processors (384 cores), and 1 TB of RAM. We employed
the DeepSeek-V3-0324 [5] model as the LLM due to its
overall performance (Section VI-A). Each field was analyzed
independently to avoid cross-sample interference. Following
existing studies [25], [48], we set the temperature to 0.7 to
balance exploration and stability. The tool’s deployment is
not dependent on any specific model, and with eight parallel
threads, the entire experiment finished in under one hour.

A. RQI: Effectiveness of LLM-Based Pattern Mining

To answer RQI, we evaluate our approach from three
complementary perspectives: (1) the capability of LLMs to
perform pattern mining; (2) the coverage and consistency of
two-stage summarization; and (3) the efficiency gain achieved
through the verification function (VF) grouping.

Capability of LLMs. We first investigate whether state-of-
the-art LLLMs can accurately extract implementation patterns.

We selected five representative models, including DeepSeek-
V3, DeepSeek-R1, Gemini-2.5-Pro, o4-mini-high, and GPT-5,
based on the benchmark results of the public LLM leader-
board [3]. We then randomly sampled 100 VFs and executed
each model in three independent runs, manually inspecting the
correctness of the outputs to assess their capability.

As shown in Table II, all models achieved accuracy above
81%, indicating that state-of-the-art LLMs can reliably capture
the implementation logic of security-critical fields. DeepSeek-
RI achieved the best overall performance, yet it suffered
from slow responses due to its extended reasoning phase
and incurred higher token costs. Therefore, we employed
DeepSeek-V3 in the subsequent experiments, which provides
comparable accuracy with faster responses and lower costs.

//Case 1 (Correct, 101 VFs): In-Place Incremented Nonce

2| mapping(address => uint256) public nonces;

3| function Noncel(address _owner, ...) public {

bytes32 digest = keccak256(abi.encodePacked(
nonces[_owner]++, ...))

70}

9| //Case 2 (Correct, 13 VFs):
0] uint256 public globalNonces;
11| function Nonce2(uint _nonce, ...
2| {...}

13| modifier useNonce(uint _nonce) {
14 require(globalNonces++ == _nonce, "Inv");

15 }

Modifier-Based Nonce Management

) external useNonce(_nonce)

17| //Case 3 (Correct, 124 VFs): Signature-Based Nonce
18| mapping(bytes => bool) public signatureUsed;

19| function Nonce3(..., bytes memory _sig) external {

20 require(!signatureUsed[_sig], "used");

21 require(recover(..., _sig), "Inv");
require(uint256(_sig.s) <= Ox7FFF...20A0, "Inv")
signatureUsed[_sig] = true;

}

//Case 4 (Incorrect, 50 VFs): Ineffective Nonce

address public signer; // a global signer

function Nonce4(..., uint nonce, bytes memory sig) external{
require(getSigner(..., nonce, sig) == signer, "Inv");

R
S ®

Listing 2: Examples of Nonce Usage Patterns.

Two-Stage LLM Summarization. To assess the effectiveness
of our two-stage summarization, we conducted both coverage
and consistency evaluations on the generated meta-patterns. In
a random sample of 100 VFs, every function was covered by
at least one summarized pattern, confirming comprehensive
coverage of both common and edge-case implementations.
Repeated summarization produced consistent results, with the
number of extracted patterns per field varying by fewer than
three across trials. These minor variations are primarily due to
differences in the granularity of LLM categorization, which do
not affect the eventual rule derivation, as the resulting variants
are semantically equivalent.

Listing 2 presents several representative Nonce handling
patterns discovered in real-world VFs. Compared with prior
experience-based studies [26], [38], our LLM-based analysis

TABLE III: Security Field Implementation Statistics in VFs

Field AS1, AS2 (On-chain) AS3 (Off-chain)
Signer 80.5% (15,762) 73.7% (868)
Nonce 41.0% (8,022) 23.8% (280)
ChainlD 33.4% (6,533) 24.4% (287)
VC Address 59.1% (11,562) 39.1% (460)
Total VFs 19,579 1,177

uncovered a broader range of implementation patterns. Case
1 (101 VFs) represents the most typical design, where a per-
user Nonce is incremented in place and tightly bound to the
signer. Case 2 (13 VFs) maintains a global counter through a
modifier; Case 3 (124 VFs) adopts a signature-based scheme
that enforces uniqueness by marking used signatures. Case 4
(50 VFs) reflects an ineffective pattern in which the Nonce is
included but never validated.

Note that in this step, our goal is to use the LLM to capture
diverse implementation patterns. Occasionally, the LLM may
misclassify certain patterns, for example, treating an incorrect
implementation as a correct one. However, such misclassifica-
tions do not affect rule extraction, as we manually refine these
cases during rule construction. A detailed comparison of the
LLM’s detection capability is provided in RQ3 (Section VI-C).
Efficiency of Verification Function Grouping. We evaluated
our VF grouping strategy on a dataset of 22,374 real-world
VFs. After applying structural fingerprinting, the number of
unique VF clusters was reduced to 5,404, representing 24.2%
of the original dataset. Since each field analysis requires both
code and prompt tokens, token consumption scales linearly
with the number of analyzed functions. Without grouping, the
total token usage reached 29.65 million. By analyzing only
representative samples from each group, this number dropped
to 7.62 million, yielding a 74.3% reduction.

B. RQ2: Security-Critical Fields in VFs

Table III presents the detection results for VFs. Among
the 22,374 VFs analyzed, 19,579 are marked as public or
external, which are relevant to AS1 and AS2. Additionally,
2,795 are read-only functions, related to AS3. Of these, 1,177
are view functions returning a boolean value and were subject
to further analysis. We also identified 846 pure functions,
including 223 that return a boolean. The pure functions cannot
access state variables, so we flag these as security risks. Next,
we begin by analyzing the field usage in on-chain scenarios,
followed by those related to off-chain scenarios.

On-chain AS. Among the VFs used in on-chain scenarios,
about 80.5% include the Signer, but other critical fields
are often missing: Only 41.0% include the Nonce, and just
33.4% make use of the ChainID. The absence of security-
critical fields does not immediately indicate a vulnerability,
as business-related code often includes additional checks. For
example, the transfer function in Listing 1 verifies whether
the from address is the actual token owner (line 20). However,

the best practice is to ensure signature validity within the
verification logic itself, rather than relying on specific business
logic. We provide a detailed analysis of each field below.

Signer. According to Rule 1, the recovered address should be
compared to a trusted state variable or at least checked against
the zero address. However, we observe that some developers
only compare the recovered address with an input parameter
(referred to as local_signer). This allows an attacker to craft
a malformed signature that causes ecrecover to return 0x0,
then set local_signer to 0x0, thereby passing the signer ==
local_signer check. This pattern matches the typical bypass
described in AS1. We found that some VFs are protected by
mechanisms such as onlyOwner, which restrict access from
regular users. However, as noted earlier, VFs should still
perform complete signature verification.

Nonce. Our analysis reveals that many VFs either omit Nonce
usage entirely or contain flawed implementations. Only 41.0%
handle Nonces properly. A common flaw is using a message
hash as the Nonce without marking it as used, failing to prevent
replays. Some VFs use signatures as Nonces but do not verify
the s value of each signature, as highlighted in Rule 5. Due to
ECDSA malleability, this oversight allows an attacker to forge
a different signature to bypass the nonce check.

Chain ID. ChainID shows the lowest correct implementation
rate at only 33.4%. This indicates that many contracts fail
to consider the risk of cross-chain replay attacks. Some VFs
hardcode the ChainID using a fixed integer value, which
violates best practices. If the contract is redeployed to another
chain, developers may forget to update the hardcoded value,
leading to potential cross-chain replay vulnerabilities.

VC Address. Over 40% of VFs fail to implement the VC
address correctly. As discussed in Section III-B, this omission
not only exposes the contract to cross-contract replay attacks,
but also enables adversaries to deploy a clone contract that
mimics the original VC. Such clones can be used to proactively
initiate forged interactions, posing a serious threat to the
integrity of the verification process.

Off-chain AS. The correct implementation rate of security-
critical fields in off-chain (view) VFs is significantly lower
compared to their on-chain counterparts. This suggests that
many developers do not apply the same level of security rigor
when designing view VFs, thereby introducing the risk of
AS3. We also identified 223 pure VFs that exhibit AS3-related
security risks. Since pure functions cannot access contract
state, they are unsuitable for off-chain pre-verification. These
functions were mainly intended for on-chain use but were
mistakenly labeled as public or external, exposing them to
unintended access. To prevent misuse, such functions should
be marked as private or internal, restricting external calls.

C. RQ3: Rule-Based vs. LLM-Based Detection

This section compares the detection performance of our
rule-based static analysis tool with that of a pure LLM-based
detection approach. As introduced in Section IV-C, the LLM
is directly prompted to evaluate the correctness of security-

TABLE 1V: Detection Performance of VCSCOPE vs. LLM

Field Precision Recall Fl-score FP FN
Signer LLM 89.1% 932% 91.1% 10 6
Tool 100.0% 96.6% 983% 0 3
Nonce LLM 862% 595% 703% 4 17
Tool 96.6% 77.8% 864% 1 8
ChainID LLM 786% 478% 59.6% 3 12
Tool 100.0% 100.0% 100.0% 0 O
LLM 955% 553% 69.7% 1 17
VO Addr ol 955% 1000% 97.7% 1 0
Total LLM 885% 72.8% 80.0% 18 52
Tool 98.7% 931% 958% 2 11

critical fields. Therefore, we compare its results with those
obtained from our static analysis tool.

We randomly selected 100 VFs. Two researchers indepen-
dently reviewed the detection results and resolved inconsis-
tencies through discussion. The final results are shown in
Table IV. Overall, VCSCOPE achieves superior performance
across all metrics, with an Fl-score of 95.8%, significantly
outperforming the LLM baseline, which achieves 80.0%. The
performance gap is particularly pronounced in fields such as
ChainID and VC address. To better understand this discrep-
ancy, we conducted an in-depth analysis of both approaches
and examined their respective strengths and weaknesses.

Function Call Resolution. Our tool can accurately resolve
deeply nested function calls and track the propagation of
security-critical fields. For example, it reliably identifies how
variables such as ChainID and VC address are passed through
multiple intermediate functions. In contrast, the LLM often
fails to trace these intermediate calls, leading to incorrect
detections and false positives.

Misleading Variable Names. The LLM heavily relies on
variable names and tends to assume that variables with
security-related names, such as nonce, correctly implement the
intended security logic without further verification. This su-
perficial reliance often leads to false positives when the actual
validation logic is missing. In contrast, VCSCOPE identifies
variable semantics based on predefined behavioral rules rather
than names, effectively avoiding such misinterpretations.

Implicit Checks. Our rule-based detection approach can effec-
tively handle implicit validation cases. For example, a check on
one variable (e.g., Signer) may implicitly ensure the validity
of another (e.g., Nonce). In contrast, the LLM often overlooks
such implicit logic, leading to false negatives.

Semantic Understanding and Inference. Developers some-
times assign semantic roles to specific addresses, such as
signer, executor, or transmitter, based on contextual logic. In
such cases, our tool may fail to recognize these associations
because they cannot be defined through a general rule. By
leveraging its semantic reasoning capability, the LLM can
often infer the intended role of certain variables, particularly
those like signer.

VII. DISCUSSION

This section discusses the limitations of our detection frame-
work and the potential threats to its validity. We first present
the inherent limitations of our detection tool, then analyze
validity threats from two perspectives: the reliability of LLM-
based detection and the representativeness of the dataset.

Limitation. This work focuses on four security-critical fields
that define the minimal security boundary of the OSOV (Oft-
chain Signing and On-chain Verification) workflow. However,
our detection does not account for additional checks embedded
in the business-logic portion of verification functions. In
some implementations, verification functions are protected by
modifiers such as onlyOwner or by other context-specific
constraints, which are beyond the scope of our current de-
tection tool. However, we believe that a verifier contract
should independently validate these critical fields to ensure
the integrity and consistency of signature verification, rather
than relying on specific business logic.

Threats to Validity. The reliability of LLM-based detection
represents a potential threat to the validity of our results.
LLM performance may vary across model versions, training
data, or fine-tuning alignment, which can affect both reasoning
quality and output consistency. Moreover, LLM outputs are
inherently sensitive to prompt design and temperature settings.
In our evaluation, all models were tested using the same set
of prompts, and the temperature was selected based on prior
studies and empirical experience. However, it is possible that
certain LLMs could achieve better performance under refined
prompts or different parameter configurations.

Another potential threat arises from the dataset. Our dataset
primarily collected from Ethereum, which may limit the gen-
eralizability of our findings to other ecosystems. In principle,
the OSOV workflow and the definitions of security-critical
fields are applicable across different platforms. In addition,
we only included contracts with available Solidity source
code. This restriction may introduce a bias in the mined
patterns, as bytecode-only contracts might follow different
design conventions that are not reflected in our dataset.

VIII. RELATED WORK

This section reviews existing research on signature vulnera-
bilities, static analysis techniques for smart contracts, and the
emerging use of LLMs in vulnerability detection.

Existing studies have explored security risks from multiple
perspectives in signature vulnerability detection, including
the misuse of off-chain signing methods, flaws in on-chain
verification logic, and weaknesses in cryptographic implemen-
tations. SigScope [35] was the first to systematically analyze
the security risks of off-chain message signing in decentral-
ized applications, revealing several typical types of signature-
related vulnerabilities. Web3AuthChecker [47] proposed a
dynamic analysis tool to detect blind message attacks in Web3
authentication processes, also focusing on off-chain signing
scenarios. CryptoScan [50] analyzed a large number of real-
world security audit reports and defined twelve common cate-
gories of cryptographic defects in smart contracts. Siguard [51]

applied symbolic execution at the bytecode level to identify
security flaws in verification logic, with particular attention to
missing contract addresses or storage variables. Beyond these
studies focusing on signing and cryptographic mechanisms,
researchers have developed a range of static analysis tools for
smart contract vulnerability detection, such as Eth2vec [20],
eThor [37], Securify [43], SmartCheck [42], and Naga [46].
These tools detect various classes of security flaws, including
reentrancy, access control, and other common vulnerabilities.

Unlike prior studies, our work takes a holistic view of the
OSOV workflow and defines its minimal security boundary.
We identify four critical security fields that must be properly
validated in verification functions. Whereas existing research
focuses on specific vulnerabilities, our work emphasizes the
correctness of the verification logic itself, representing a differ-
ent research perspective. Rather than depending on manually
crafted rules or audit reports, our method employs an LLM to
extract implementation patterns of key security fields, which
then guide rule construction and improve coverage.

Recent studies have demonstrated the potential of LLMs in
vulnerability detection [40], [30], [44], automated repair [22],
and security suggestion generation [34], [33]. LLMs pos-
sess strong semantic understanding and contextual reasoning
abilities, which enable them to capture boundary logic that
traditional static analysis tools may miss. However, directly
applying LLMs to vulnerability detection remains challeng-
ing due to difficulties in tracking inter-procedural calls and
handling complex data-flow dependencies. Therefore, instead
of using LLMs for direct detection, our work leverages their
strength to summarize implementation patterns, which then
guide the design of our rule-based detection tool.

IX. CONCLUSION

This paper systematically examines the security of Off-chain
Signing and On-chain Verification (OSOV) and defines its
minimal security boundary through four essential fields. By
leveraging LLMs, we effectively uncover diverse implementa-
tion variants of these fields across real-world verifier contracts,
which in turn guide the design of our fine-grained static de-
tection tool, VCSCOPE. Experimental results demonstrate both
the capability of LLMs and the effectiveness of our detection
tool, and further reveal that a significant portion of existing
verifier contracts fail to meet these basic security requirements.
While LLMs are still limited as standalone detectors, their
semantic understanding effectively complements rule-based
analysis. Future work can explore hybrid frameworks for more
adaptive and comprehensive security auditing.

DATA AVAILABILITY

All research artifacts, including the LLM prompts for pat-
tern mining (Section IV), the static analysis tool VCSCOPE
(Section V), and the datasets used in the experiments (Sec-
tion VI), are available at https://github.com/w030w/VCS
cope.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their insightful
comments. This work was partially supported Natural Science
Foundation of Shandong Province (Grant No. ZR2023MF043)
and Taishan Young Scholar Program of Shandong Province,
China (Grant No. tsqn202211001).

[1]

[2]

[3]
[4]

[6]
[7]
[8]

[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

REFERENCES

OpenSea Now Has a Valuation of $13.3 Billion. https://coinmarket
cap.com/academy/article/opensea-now-has-a-valuation-of-1
3-3-billion, 2022. (Accessed on 10/10/2025).

Decentralized exchange volume hits record high of $462B in December.
https://cointelegraph.com/news/dex-all-time-high-monthly
-volume-462-billion, 2024. (Accessed on 10/10/2025).

Artificial Analysis. https://artificialanalysis.ai/, 2025.
(Accessed on 10/10/2025).

Compound Governance. https://compound.finance/governance/co
mp, 2025. (Accessed on 10/10/2025).

DeepSeek. https://www.deepseek.com/, 2025.
10/10/2025).

EIP-2: Homestead Hard-fork Changes. https://eips.ethereum.org/
EIPS/eip-2, 2025. (Accessed on 10/10/2025).

EIP-712: Typed structured data hashing and signing. https://eips.e
thereum.org/EIPS/eip-712, 2025. (Accessed on 10/10/2025).
ERC-1271: Standard Signature Validation Method for Contracts. ht
tps://eips.ethereum.org/EIPS/eip-1271, 2025. (Accessed on
10/10/2025).

ERC-2612: Permit Extension for EIP-20 Signed Approvals. https://ei
ps.ethereum.org/EIPS/eip-2612, 2025. (Accessed on 10/10/2025).
ERC-4494: Permit for ERC-721 NFTs. https://eips.ethereum.or
g/EIPS/eip-4494, 2025. (Accessed on 10/10/2025).

ERC-721: Non-Fungible Token Standard. https://eips.ethereum.
org/EIPS/eip-721, 2025. (Accessed on 10/10/2025).

ERC-7604: ERC-1155 Permit Approvals. https://eips.ethereum.or
g/EIPS/eip-7604, 2025. (Accessed on 10/10/2025).

Ethereum: A Secure Decentralised Generalised Transaction Ledger. ht
tps://ethereum.org/content/developers/tutorials/yellow-pap
er-evm/yellow-paper-berlin.pdf, 2025. (Accessed on 10/10/2025).
Opensea. https://opensea.io/, 2025. (Accessed on 10/10/2025).
OpenZeppelin Governor Module. https://docs.openzeppelin.com/
contracts/4.x/governance, 2025. (Accessed on 10/10/2025).
Openzepplin. https://docs.openzeppelin.com/, 2025. (Accessed
on 10/10/2025).

Snapshot. https://snapshot.box/, 2025. (Accessed on 10/10/2025).
uniswap. https://v4.uniswap.org/, 2025. (Accessed on 10/10/2025).
Wyvern Protocol. https://wyvernprotocol.com/, 2025. (Accessed
on 10/10/2025).

Nami Ashizawa, Naoto Yanai, Jason Paul Cruz, and Shingo Okamura.
Eth2Vec: Learning Contract-Wide Code Representations for Vulnera-
bility Detection on Ethereum Smart Contracts. In Proceedings of the
3rd ACM International Symposium on Blockchain and Secure Critical
Infrastructure, (BSCI 2021), 2021.

Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan,
Joshua A. Kroll, and Edward W. Felten. SoK: Research Perspectives and
Challenges for Bitcoin and Cryptocurrencies. In Proceedings of 2015
IEEE Symposium on Security and Privacy, (IEEE S&P 2015), 2015.
Islem Bouzenia, Premkumar T. Devanbu, and Michael Pradel. Re-
pairAgent: An Autonomous, LLM-Based Agent for Program Repair. In
Proceedings of 47th IEEE/ACM International Conference on Software
Engineering, (ICSE 2025), 2025.

Vitalik Buterin. A Next-Generation Smart Contract and Decentralized
Application Platform. https://ethereum.org/en/whitepaper/,
2014. (Accessed on 10/10/2025).

Josselin Feist, Gustavo Grieco, and Alex Groce. Slither: a static analysis
framework for smart contracts. In Proceedings of the 2nd International
Workshop on Emerging Trends in Software Engineering for Blockchain,
(WETSEB@ICSE 2019), 2019.

Chang Gao, Haiyun Jiang, Deng Cai, Shuming Shi, and Wai Lam. Strat-
egyLLM: Large Language Models as Strategy Generators, Executors,
Optimizers, and Evaluators for Problem Solving. In Proceedings of
Neural Information Processing Systems 38, (NeurlPS 2024), 2024.

(Accessed on

[26]

(27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

Asem Ghaleb and Karthik Pattabiraman. How Effective are Smart
Contract Analysis Tools? Evaluating Smart Contract Static Analysis
Tools Using Bug Injection. In Proceedings of 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis, (ISSTA
2020), 2020.

Zeyu He, Saniya Naphade, and Ting-Hao Kenneth Huang. Prompting
in the Dark: Assessing Human Performance in Prompt Engineering for
Data Labeling When Gold Labels Are Absent. In Proceedings of the
2025 CHI Conference on Human Factors in Computing Systems, (CHI
2025), 2025.

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li,
Xiapu Luo, David Lo, John Grundy, and Haoyu Wang. Large Language
Models for Software Engineering: A Systematic Literature Review. ACM
Trans. Softw. Eng. Methodol., 2024.

Kexin Hu and Zhenfeng Zhang. Fast Lottery-Based Micropayments
for Decentralized Currencies. In Proceedings of the 23rd Information
Security and Privacy - Australasian Conference, (ACISP 2018), 2018.
Zongwei Li, Xiaoqi Li, Wenkai Li, and Xin Wang. SCALM: Detecting
Bad Practices in Smart Contracts Through LLMs. In Proceedings of the
AAAI Conference on Artificial Intelligence, (AAAI 2025), 2025.

Zeqin Liao, Zibin Zheng, Xiao Chen, and Yuhong Nan. SmartDagger:
a bytecode-based static analysis approach for detecting cross-contract
vulnerability. In Proceedings of 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis, (ISSTA 2025), 2022.

Qi Lin, Binbin Gu, and Faisal Nawab. RollStore: Hybrid Onchain-
Offchain Data Indexing for Blockchain Applications. [EEE Trans.
Knowl. Data Eng., 2024.

Ye Liu, Yue Xue, Daoyuan Wu, Yuqiang Sun, Yi Li, Miaolei Shi,
and Yang Liu. PropertyGPT: LLM-driven Formal Verification of
Smart Contracts through Retrieval-Augmented Property Generation. In
Proceedings of 32nd Annual Network and Distributed System Security
Symposium, (NDSS 2025), 2025.

Wei Ma, Daoyuan Wu, Yugiang Sun, Tianwen Wang, Shangqing Liu,
Jian Zhang, Yue Xue, and Yang Liu. Combining Fine-Tuning and LLM-
Based Agents for Intuitive Smart Contract Auditing with Justifications.
In Proceedings of 47th IEEE/ACM International Conference on Software
Engineering, (ICSE 2025), 2025.

Sajad Meisami, Hugo Dabadie, Song Li, Yuzhe Tang, and Yue Duan.
SigScope: Detecting and Understanding Off-Chain Message Signing-
related Vulnerabilities in Decentralized Applications. In Proceedings of
the ACM on Web Conference 2025, (WWW 2025), 2025.

Daniel Perez and Benjamin Livshits. Smart Contract Vulnerabilities:
Vulnerable Does Not Imply Exploited. In Proceedings of 30th USENIX
Security Symposium, (USENIX Security 2021), 2021.

Clara Schneidewind, Ilya Grishchenko, Markus Scherer, and Matteo
Maffei. eThor: Practical and Provably Sound Static Analysis of
Ethereum Smart Contracts. In Proceedings of ACM SIGSAC Conference
on Computer and Communications Security, (CCS 2020), 2020.
Tanusree Sharma, Kyrie Zhixuan Zhou, Andrew Miller, and Yang
Wang. A Mixed-Methods Study of Security Practices of Smart Contract
Developers. In Proceedings of 32nd USENIX Security Symposium,
(USENIX-Sec 2023), 2023.

Hari Subramonyam, Divy Thakkar, Andrew Ku, Jiirgen Dieber, and
Anoop K. Sinha. Prototyping with Prompts: Emerging Approaches
and Challenges in Generative AI Design for Collaborative Software
Teams. In Proceedings of the 2025 CHI Conference on Human Factors
in Computing Systems, (CHI 2025), 2025.

Yugiang Sun, Daoyuan Wu, Yue Xue, Han Liu, Haijun Wang, Zhengzi
Xu, Xiaofei Xie, and Yang Liu. GPTScan: Detecting Logic Vulnerabil-
ities in Smart Contracts by Combining GPT with Program Analysis.
In Proceedings of the 46th IEEE/ACM International Conference on
Software Engineering, (ICSE 2024), 2024.

Jiajin Tang, Ge Zheng, Jingyi Yu, and Sibei Yang. CoTDet: Affordance
Knowledge Prompting for Task Driven Object Detection. In Proceedings
of IEEE/CVF International Conference on Computer Vision, (ICCV
2023), 2023.

Sergei Tikhomirov, Ekaterina Voskresenskaya, Ivan Ivanitskiy, Ramil
Takhaviev, Evgeny Marchenko, and Yaroslav Alexandrov. SmartCheck:
Static Analysis of Ethereum Smart Contracts. In Proceedings of Ist
IEEE/ACM International Workshop on Emerging Trends in Software
Engineering for Blockchain, (WETSEB@ICSE 2018), 2018.

[43]

[44]

[45]

[46]

[47]

[48]

Petar Tsankov, Andrei Marian Dan, Dana Drachsler-Cohen, Arthur
Gervais, Florian Biinzli, and Martin T. Vechev. Securify: Practical
Security Analysis of Smart Contracts. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, (CCS
2018), 2018.

Haijun Wang, Yurui Hu, Hao Wu, Dijun Liu, Chenyang Peng, Yin Wu,
Ming Fan, and Ting Liu. Skyeye: Detecting Imminent Attacks via
Analyzing Adversarial Smart Contracts. In Proceedings of the 39th
IEEE/ACM International Conference on Automated Software Engineer-
ing, (ASE 2024), 2024.

Libin Xia, Jiashuo Zhang, Che Wang, Zezhong Tan, Jianbo Gao, Zhi
Guan, and Zhong Chen. Cryptcoder: An Automatic Code Generator
for Cryptographic Tasks in Ethereum Smart Contracts. In Proceedings
of IEEE International Conference on Software Analysis, Evolution and
Reengineering, (SANER 2024), 2024.

Kailun Yan, Jilian Zhang, Xiangyu Liu, Wenrui Diao, and Shanqing
Guo. Bad Apples: Understanding the Centralized Security Risks in
Decentralized Ecosystems. In Proceedings of the ACM Web Conference
2023, (WWW 2023), 2023.

Kailun Yan, Xiaokuan Zhang, and Wenrui Diao. Stealing Trust: Unrav-
eling Blind Message Attacks in Web3 Authentication. In Proceedings of
the 2024 ACM SIGSAC Conference on Computer and Communications
Security, (CCS 2024), 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths,
Yuan Cao, and Karthik Narasimhan. Tree of Thoughts: Deliberate
Problem Solving with Large Language Models. In Proceedings of
Neural Information Processing Systems 36, (NeurlPS 2023), 2023.

[49]

[50]

(51]

[52]

[53]

[54]

Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi.
Town Crier: An Authenticated Data Feed for Smart Contracts. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, (CCS 2016), 2016.

Jiashuo Zhang, Jiachi Chen, Yiming Shen, Tao Zhang, Yanlin Wang,
Ting Chen, Jianbo Gao, and Zhong Chen. When Crypto Fails: De-
mystifying Cryptographic Defects in Ethereum Smart Contracts. [EEE
Trans. Software Eng., 2025.

Jiashuo Zhang, Yue Li, Jianbo Gao, Zhi Guan, and Zhong Chen. Siguard:
Detecting Signature-Related Vulnerabilities in Smart Contracts. In
Proceedings of 45th IEEE/ACM International Conference on Software
Engineering: ICSE 2023 Companion Proceedings, (ICSE-Companion
2023), 2023.

Tanghaoran Zhang, Yue Yu, Xinjun Mao, Shangwen Wang, Kang Yang,
Yao Lu, Zhang Zhang, and Yuxin Zhao. Instruct or interact? exploring
and eliciting llms’ capability in code snippet adaptation through prompt
engineering. In Proceedings of 47th IEEE/ACM International Confer-
ence on Software Engineering, (ICSE 2025), 2025.

Ruilin Zhao, Feng Zhao, Long Wang, Xianzhi Wang, and Guandong
Xu. KG-CoT: Chain-of-Thought Prompting of Large Language Models
over Knowledge Graphs for Knowledge-Aware Question Answering.
In Proceedings of the Thirty-Third International Joint Conference on
Artificial Intelligence, (IJCAI 2024), 2024.

Huijuan Zhu, Lei Yang, Liangmin Wang, and Victor S. Sheng. A Survey
on Security Analysis Methods of Smart Contracts. IEEE Trans. Serv.
Comput., 2024.

