
Identifying the BLE Misconfigurations of IoT

Devices through Companion Mobile Apps

Jianqi Du∗†, Fenghao Xu‡(B), Chennan Zhang∗†, Zidong Zhang∗†, Xiaoyin Liu∗†, Pengcheng Ren∗†,

Wenrui Diao∗†(B), Shanqing Guo∗†, and Kehuan Zhang‡

∗School of Cyber Science and Technology, Shandong University

{dujianqi, zcn, kee1ongz, liuxiaoyin, 201911899}@mail.sdu.edu.cn, {diaowenrui, guoshanqing}@sdu.edu.cn
†Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong University

‡The Chinese University of Hong Kong, xf016@link.cuhk.edu.hk, khzhang@ie.cuhk.edu.hk

Abstract—Bluetooth Low Energy (BLE) is widely deployed
and has become the de-facto communication standard in the
IoT ecosystem. Naturally, the security of BLE received much
attention from both researchers and attackers. In another aspect,
the BLE specifications provide the security guidelines for BLE
deployments. Due to various reasons, the developers do not follow
the guidelines in the implementation process, which introduces
the misconfiguration issue. However, identifying these BLE mis-
configurations in IoT device firmware is quite challenging. In
this work, we do not handle the BLE-enabled devices directly.
Instead, we focus on the security misconfiguration issues in
their companion mobile apps, which can reflect the deployment
conditions of the corresponding devices. Further, we designed
an analysis tool – BSC-Checker to detect the misconfigurations
based on pre-defined checking strategies. With BSC-Checker, we
conducted large-scale experiments on 4,589 apps from multiple
app markets. The result shows that the BLE configurations of
most BLE apps disobey at least one security rule, and the current
BLE deployment status is not optimistic.

I. INTRODUCTION

Bluetooth Low Energy (BLE) is a wireless network technol-

ogy designed for low-power and low-cost devices. Currently,

it has become the de-facto communication standard in the

IoT ecosystem. According to a recent statistics report, there

are more than 8 billion BLE-enabled devices all over the

world [7], supporting the deployment of smart home, health

management, media sharing, sensing network, etc.

Naturally, the popularity of BLE has received much atten-

tion in the security research community. Its protocol design

has been carefully reviewed from various aspects, and multiple

flaws were identified, preventing the potential security risks of

pairing downgrade attack [29], privilege escalation [28], and

data spoofing [27]. These previous works will be reviewed in

detail in Section VII. In addition, the BLE specifications [8]

provide the deployment guidelines for data encryption, authen-

tication, and authorization in the communication. However,

due to the tight product cycle and the lack of security knowl-

edge, BLE product vendors and developers may not implement

the required security practices correctly, introducing the secu-

rity mis-configurations. For example, every BLE device will be

assigned a Bluetooth MAC address for data communication.

If such an address keeps static, the device user will face the

privacy risk of identity tracking. A more secure practice is to

deploy the dynamic address generation technique. However,

on the whole, there is still a lack of rounded analysis on the

security misconfiguration issues of the BLE deployments.

Motivation. In the IoT ecosystem, the BLE-enabled device

is often delivered with a companion mobile app to facilitate

user control, called BLE app for short. Since this mobile

app needs to communicate with the IoT device through BLE,

it has (almost) the same BLE configurations as the device.

On another aspect, binary-based device firmware analysis is

quite challenging. Even worse, the corresponding firmware is

usually not available. Therefore, from the feasibility analysis,

the BLE apps can be treated as the mirror of the BLE

configurations in BLE-enabled devices.

Our Work. Inspired by the typical <device-app> commu-

nication architecture, in this work, we do not handle the

challenging firmware analysis. Instead, we focus on analyzing

the BLE configurations on the companion mobile apps of

BLE-enabled IoT devices. As mentioned above, the BLE

configurations of BLE apps can reflect the conditions of BLE-

enabled devices indirectly. This work aims to investigate the

wild status of security misconfiguration issues of the BLE

deployments in the IoT ecosystem.

Concretely, we designed an analysis framework – BSC-

Checker, which takes an APK file as the input and outputs

a misconfiguration report. BSC-Checker contains three main

modules: 1) data collection and pre-processing; 2) security

configuration checking; 3) report generation. Note that we

built a series of configuration detection rules based on the

suggestions of the official documents and previous research,

covering the configuration requirements of Bluetooth MAC

address, UUID (Universal Unique Identifier), pairing method,

data encryption, and device authentication. Under these mis-

configurations, it will bring various security risks, like identity

tracking, eavesdropping, and unauthorized accessing.

With BSC-Checker, we conducted a large-scale experiment

on 226,181 apps collected from multiple app markets. After

filtering, 4,589 BLE apps were used for further security

analysis. The results show that most BLE apps still use static

Bluetooth MAC addresses (4,002, 87.2%) and static UUIDs

(3,954, 86.2%). The pairing methods of 93.2% apps are based

on the insecure “Just Work” mode or even do no deploy

pairing checking. On the aspect of data transmission, the data

2022 19th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

978-1-6654-8643-9/22/$31.00 ©2022 IEEE 343

20
22

 1
9t

h
An

nu
al

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

en
sin

g,
 C

om
m

un
ic

at
io

n,
 a

nd
 N

et
w

or
ki

ng
 (S

EC
O

N
) |

 9
78

-1
-6

65
4-

86
43

-9
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
SE

CO
N

55
81

5.
20

22
.9

91
85

97

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on November 02,2022 at 14:14:45 UTC from IEEE Xplore. Restrictions apply.

encryption is rarely deployed, saying less than 14%. Worse

yet, rare apps implement application layer authentication. To

sum up, the BLE configurations of most BLE apps disobey at

least one security rule. Accordingly, the configuration situation

of the BLE deployments in the wild is not optimistic. To

demonstrate the immediate security risks and the effectiveness

of our framework, we provide two concrete case studies in

Section V.

Contributions. The main contributions of this paper are:

• Problem Identification. This work studied the security

misconfiguration problems of the BLE deployments and

summarized five detection strategies.

• Tool Design. We designed an analysis tool, BSC-Checker,

for detecting the security misconfigurations in BLE apps,

which can reflect the corresponding BLE-enabled IoT

device conditions.

• Evaluation and Measurement. With BSC-Checker, we

conducted a large-scale experiment on 4,589 BLE apps.

The result shows that misconfiguration problems are quite

common in the BLE deployments.

Roadmap. The rest of this paper is organized as follows.

Section II provides the necessary background of BLE. In Sec-

tion III, based on the threat model and identified security risks,

we overview the security misconfigurations under detection.

Section IV gives the detailed design of BSC-Checker. The

results are summarized in Section V. Some limitations of this

work are discussed in Section VI. Section VII reviews the

related work, and Section VIII concludes this paper.

II. BLUETOOTH LOW ENERGY

This section presents the necessary background about Blue-

tooth Low Energy (BLE), focusing on BLE workflow and

Bluetooth MAC address.

BLE was first introduced in Bluetooth Specification 4.0 by

the Bluetooth Special Interest Group (Bluetooth SIG) [5]. In

contrast to Bluetooth Classic, BLE is designed for significantly

lower power consumption. It has been widely deployed in

energy-constrained IoT devices with many practical applica-

tions, such as healthcare, smart home, fitness, and beacons.

A. BLE Workflow

In the design of BLE, the typical communication between

two devices involves three stages: (1) Connection, (2) Pairing

and Bonding, and (3) Communication [8]. Also, during this

process, one device acts as BLE master (e.g., mobile phone),

and the other one as slave (e.g., IoT device). Figure 1 illus-

trates such a workflow. Note that the behaviors of the phone

are controlled by the BLE apps running on the phone through

Bluetooth APIs [2]. Therefore, three parties are involved in

this figure.

1) Connection Stage. When a smartphone wishes to establish

a connection with an IoT device, the IoT device must be in the

discovery mode. The device under this mode will broadcast ad-

vertising packets to nearby devices to indicate its availability.

These advertising packets contain identity information such

6.Connection request

10.Key distribution

Master
Device

Slave
Device

BLE App
(on the phone)

1.Broadcast 3.Scan

Connection

8.Exchange pairing feature

9. Authentication & key generation

Pairing and Bonding

Communication

Write value on characteristic

Read value on characteristic

2.startLeScan()

4.Device list <>

5.connectGatt()

7.createBond()

writeCharacteristic()

readCharacteristic()

Fig. 1: BLE workflow with a mobile app.

as the device name, Bluetooth MAC address, and primary

services.

Then the smartphone running in the scan mode can receive

the advertising packets and further request additional data from

the device. Based on the received data, if the smartphone is

interested in this device, it will send a connect request to the

device. After the above processes, the connection between the

phone and the device will be established.

2) Pairing and Bonding Stage. Pairing and bonding is

a mechanism to achieve secure communication, which has

two security goals: protection against passive eavesdropping

and active man-in-the-middle (MITM) attacks. Initially, the

smartphone and IoT device exchanged their pairing features

(I/O capabilities and security requirements). Further, these

features are used to determine the concrete pairing method.

BLE supports four pairing methods, including Just Works,

Passkey Entry, Numeric Comparison, and Out of Band (OOB).

Just Works is the weakest pairing method, suffering the risk

of MITM attacks [8]. Only the Passkey Entry and Numeric

Comparison methods can defend against MITM attacks. Note

that the security of OOB method depends on how it is imple-

mented, such as via QR code or NFC channel. Besides, the

I/O capabilities also affect the method selection. For example,

Passkey Entry requires the user to enter a 6-digit passcode from

the display of the other device. Numeric Comparison requires

the user to confirm that the same 6-digit passcode is displayed

on both devices. If either device has no I/O capabilities (e.g.,

display or keyboard), the Just Works method has to be used.

After selecting the pairing method, the smartphone and

IoT device negotiate a long-term key (LTK) to encrypt the

communication channel in the pairing stage. Then, the Identity

Resolving Key (IRK) and Connection Signature Resolving

Key (CSRK) are generated from one device and distributed to

the other. CSRK is used for signature generation/verification,

and IRK for identity resolution. In the bonding stage, LTK

will be stored in two devices for further communication.

2022 19th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

344Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on November 02,2022 at 14:14:45 UTC from IEEE Xplore. Restrictions apply.

Bluetooth Address Types

Public Address Random Address

Static Address Private Address

Resolvable Address Non-Resolvable Address

Fig. 2: Types of Bluetooth MAC address.

3) Communication Stage. Now, the smartphone and the IoT

device can exchange data. The basic data unit for reading and

writing in BLE is called attribute, and its format follows the

Generic Attribute Profile (GATT). An attribute involves four

properties: handle, UUID, value, and permission. A UUID is

a 128-bit number used to identify a specific BLE attribute,

including service, characteristic, and descriptor.

B. Bluetooth MAC Address

There are two types of Bluetooth MAC addresses: public

address and random address, as shown in Figure 2. A Blue-

tooth public address is a fixed global address that must be

registered with IEEE [12]. The random address contains two

sub-types – static address and private address. The random

static address can be fixed throughout the device’s lifespan

or changed only when rebooted. The random private address

is specially used for the privacy protection of a Bluetooth

device by hiding the identity and averting the device tracking

risk. The random private addresses can be resolvable or non-

resolvable, as introduced below.

• Resolvable Random Private Address – This kind of

address is "resolvable" by using IRK shared with a

particular trusted device. Usually, we call it the dynamic

address generation technique.

• Non-Resolvable Random Private Address – Its main dif-

ference from resolvable addresses is that any other device

cannot resolve it. This type is uncommon and is only used

in non-connectable mode (e.g., beacons).

III. PROBLEM OVERVIEW

In this section, we first summarize four typical attacks

against BLE-enabled devices. By analyzing the causes of the

attacks, we then identify five common BLE misconfigurations

on the devices.

A. BLE Attacks

Threat Model. In this work, we focus on the smart IoT devices

which use BLE to communicate with their companion mobile

apps. Under this scenario, we assume the attackers can sniff

all Bluetooth packets transmitted over the air. For example,

the attacker can use a Bluetooth dongle, such as the CC2540

sniffer from Texas Instrument [9], to capture packets broadcast

and transmitted from all IoT devices or a particular device

within a reasonable distance.

Attack Categories. Based on the attackers’ capabilities, the

main security threats caused by BLE misconfigurations are as

follows.

A1) Eavesdropping. The attacker can monitor the unencrypted

BLE communications to steal data as it is being sent or

received by the user.

A2) Identity Tracking. The attacker can keep track of the

IoT device through the identity information broadcast by the

device. There are two types of identity information that can be

abused for tracking – static Bluetooth MAC address and static

UUID. When broadcasting, a BLE device will notify its MAC

address for the peer to connect with it. If the MAC address

is static, it will open up the possibility of an identity tracking

attack [8]. Also, after the mobile phone initiates a connection

to the IoT device, the device will return the UUIDs of its

available services to the phone. Similarly, the static UUIDs

also can lead to an identity tracking attack.

A3) Man in the Middle (MITM). Except for the passive eaves-

dropping, the attacker can maintain two separate connections

with each BLE entity and relay their messages in the middle.

In this case, the entire communication session is under the

attacker’s control (i.e., MITM attack). Before the attack, if the

connection has already been established, the attacker may need

to use a signal jammer to trigger a re-connection by preventing

the data broadcasting.

A4) Unauthorized Access. Unauthorized access allows attack-

ers to read/write data or issue commands to IoT devices. Note

that a secure pairing method cannot authenticate the current

user’s identity. The attacker can still physically access the

deployed IoT device and complete the pairing. If the IoT

devices lack the application layer authentication, they cannot

verify the entity’s identity that sends the control command,

resulting in unauthorized access.

B. BLE Security Misconfigurations

The above security threats can be avoided if the developers

comply with Bluetooth specifications and configure the BLE

devices correctly. On the contrary, misconfigurations may be

introduced by developers. To investigate the existing security

risks and measure the affected scope, this paper proposes five

questions on misconfigurations derived from the above BLE

attacks (the associated attack is marked within each question).

Q1) Does the device use a static Bluetooth MAC address?

(A2) As mentioned before, the static MAC address of a BLE

device can be leveraged to identify that device uniquely. The

dynamic MAC address generation technique should be adopted

to mitigate such risk.

Q2) Does the device use static UUIDs? (A2) The UUIDs

are used initially to recognize BLE attributes, such as BLE

services and characteristics. They can be retrieved from the ad-

vertising data or communication data. The recent research [31]

showed that the static UUIDs could enable an attacker to

precisely fingerprint an IoT device. The correct configuration

is to generate UUIDs dynamically or use encrypted UUIDs.

2022 19th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

345Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on November 02,2022 at 14:14:45 UTC from IEEE Xplore. Restrictions apply.

App

Unlock Command

IoT device

Challenge

nonce

Decryption

Verification
Unlock Successfully

Response

Encryption

Fig. 3: Challenge-response authentication.

Q3) Does the device use an insecure pairing method?

(A3) Just Works is the weakest pairing method and can not

prevent the MITM attacks. The developers should use the other

methods – Passkey Entry, Numeric Comparison, or OOB.

Q4) Does the device use plaintext for data transmission?

(A1) In the BLE link layer, the communication channel will

be encrypted after the pairing stage. In the application layer,

the mobile app can achieve proprietary key agreement with

IoT devices and further use the secret key to encrypt their

communication. If neither of the approaches is taken, resulting

in plaintext transmission, the attacker is able to eavesdrop on

the BLE communication.

Q5) Does the device use the application layer authentication?

(A4) Although the BLE pairing enforces device authentication

against MITM attacks, it also has the limitation of user

authentication, leading to unauthorized access. The developers

should deploy the application-layer authentication for access

control, such as the challenge-response authentication protocol

as shown in Figure 3. This protocol usually employs a crypto-

graphic nonce as the challenge to ensure that every challenge-

response sequence is unique, which is against eavesdropping

with a subsequent replay attack [10]. First, the IoT device

sends a challenge (nonce) to its companion app. The app

processes this challenge to generate an answer and sends it

back to the IoT device. Finally, the IoT device verifies this

answer to ensure the app’s identity.

IV. DESIGN OF BSC-CHECKER

In this section, we first present the high-level idea

of our analysis framework – BSC-Checker (BLE Security

Configuration Checker). We then introduce the detailed detec-

tion strategies to identify the BLE security misconfigurations

in companion mobile apps.

Motivation. In order to discover vulnerabilities in BLE-

enabled IoT devices, one way is to analyze the device

firmware. However, due to the difficulties in obtaining and

investigating firmware, large-scale analysis of IoT devices is

quite challenging. For example, even if we could successfully

...
Apps in app markets (Xiaomi,
APKPure, Lenovo, Huawei, …)

Crawl

App dataset
Filter

BLE apps

Result Report

Analyze

API checking

S1

API checking

S1

API checking

S3

API checking

S3

Expression match
Backward slicing

S2

Expression match
Backward slicing

S2

API checking
Backward slicing

S4

Taint analysis

S5

Taint analysis

S5

Fig. 4: Analysis framework.

extract and reverse-engineer the device firmware, the Blue-

tooth driver and application-layer BLE APIs may vary across

different vendors.

By contrast, we found it more feasible and efficient to an-

alyze the companion mobile apps that are usually responsible

for interacting with the IoT devices. Android (the leading

mobile OS) system provides built-in support for BLE [2]. Apps

can conveniently discover BLE devices, query for services,

and transmit data through unified APIs. Meanwhile, Android

apps can be massively obtained from mainstream app markets.

More importantly, the companion apps must share the same

set of configurations with the corresponding devices and will

reflect the devices’ security states. For instance, the app can

only use an identical MAC address and UUIDs on the device

side for communication. Any application layer encryption or

authentication implementation on the device will have its

counterpart on the app side. Therefore, we can effectively mea-

sure the device misconfigurations (questions in Section III-B)

through a large-scale analysis of the companion apps.

A. Analysis Workflow

In our framework – BSC-Checker, to detect the misconfig-

uration issues, we first need to obtain the companion apps of

BLE-enabled IoT devices. Then we evaluate each misconfig-

uration case on the collected BLE apps. In this process, we

applied different program analysis techniques (such as taint

analysis and backward slicing) with our detection strategies.

Figure 4 shows the overall workflow of BSC-Checker. In

summary, the main steps include:

1) App Pre-processing. First, we construct an app dataset

and then filter out the apps related to BLE.

2) Strategy Checking. Next, we input the collected BLE

app dataset into the BSC-Checker detection module and

analyze each app based on our detection strategies.

2022 19th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

346Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on November 02,2022 at 14:14:45 UTC from IEEE Xplore. Restrictions apply.

3) Report Output. In the last step, the framework outputs a

report that indicates the misconfigurations in IoT devices

based on the detection results of companion apps.

App Pre-processing. After collecting massive apps from app

markets, we first filter out the apps that declare Bluetooth

permissions (i.e., BLUETOOTH and BLUETOOTH_ADMIN). Since

the app filtered by Bluetooth permissions may include Blue-

tooth Classic and BLE simultaneously, we then use the BLE-

related classes (e.g., android.bluetooth.BluetoothGatt) as

a condition to further filter out BLE apps. Note that the

permission checking relies on the app Manifest files without

the need to disassemble code, which significantly speeds up

the process.

Strategy Checking. Given a group of Android BLE apps,

BSC-Checker uses a toolset to perform basic analysis on

each app. Our approach targets the Dalvik bytecode of An-

droid apps directly. We build our analysis framework on top

of Androguard [1] and FlowDroid [14]. Androguard is an

open-sourced static analysis tool. BSC-Checker utilizes it to

decompile an app into classes, methods, basic blocks, and

individual instructions. FlowDroid is an open-sourced taint

analysis framework. BSC-Checker incorporates it to construct

call graph, control graph, and perform taint analysis on apps.

Once the above basic analysis is done, BSC-Checker uses

these preliminary results to detect the misconfigurations ac-

cording to our proposed detection strategies. We carefully

design each detection strategy in order to answer each question

(in Section III-B). Our detection tool will locate the key code

snippet that reveals the possible BLE misconfigurations. We

elaborate the detection methods in detail in Section IV-B.

Report Output. The misconfigurations found from the app

imply that they are also present in the IoT devices. BSC-

Checker outputs a security report based on these misconfig-

uration results. The report reveals the security threats to real

IoT devices, such as identity tracking and MITM risks.

B. Detection Strategies

To answer the questions in Section III-B, we present our

detection solutions in detail.

S1) Does the device use a static Bluetooth MAC address?

As stated in Section II-B, both public address and static

address can be tracked. The non-resolvable address is only

adopted by unconnectable devices. So the resolvable address

(could be changed dynamically) should be used to defend

against identity tracking attacks. When this MAC address is

changed, the peer device could use the IRK to resolve the

updated one. The IRK is only negotiated and distributed in

the pairing and bonding stage. Thus, we conclude that if an

IoT device and a smartphone skip this stage when establishing

a connection, it must use a static MAC address. The API

createBond() is the only Android method that a BLE app

can invoke for initiating the pairing process. Therefore, our

strategy is to scan and check whether this API is invoked in

the BLE app.

S2) Does the device use static UUIDs? In principle, an IoT

device using static UUIDs is subject to the same identity

tracking attack as using a static MAC address [16] [31].

These static UUIDs are hard-coded in the firmware of the IoT

device. The developers often hard-code these UUIDs in the

companion apps for convenience as well. Thus, we consider

that if the app tries to read and write data using hard-coded

UUIDs, the corresponding IoT device must be using the same

static UUIDs. According to the BLE specification, the UUIDs

are typically 128-bit hexadecimal strings. In our detection,

we first extract all static UUID strings by regular expressions

matching over the app. But not all UUIDs are used in the BLE

communication (e.g., some Java objects in Android also have

the same formatted UUIDs). In order to determine whether the

static UUIDs are used in BLE, we apply the backward slicing

technique to locate the BLE methods that take these UUIDs

as parameters. If the UUIDs are hard-coded and invoked by

a BLE method, we conclude that the IoT device is vulnerable

to identity tracking (fingerprinting) attack.

S3) Does the device use an insecure pairing method? As

mentioned in Section II, BLE provides four pairing methods.

Except for OOB (need to manually specify), one of the other

three methods will be automatically selected based on the I/O

capabilities of the two devices. Although we intuitively believe

that OOB is a rarely-used pairing method, we still scanned

the usage of such a method to ensure the accuracy of the

detection. Android has a hidden API createoutofband() for

the OOB pairing method. So we first detect whether the app

uses the Java reflection technique to invoke this API. If not, the

pairing method will be chosen from Passkey Entry, Numeric

Comparison, and Just Work.

To determine which remaining method will be used, we

observed that if an IoT device requires MITM protection,

either Passkey Entry or Numeric Comparison pairing methods

will be enabled according to its I/O capability. For Passkey

entry, Android provides the API setpin() for prompting

the user to enter the PIN (e.g., 123456). When the API

setConfirmation() is called within the app, the user will

be prompted to confirm the passkey displayed on the screen.

If neither API is detected, then the Justwork method will be

used by default.

S4) Does the device use plaintext for transmission? There

are two ways to encrypt the communication between an

IoT device and its companion app to prevent eavesdropping

attacks. One is the link layer encryption supported by the

underlying Bluetooth protocol, and the other is the application

layer encryption that is customized by the device firmware and

its companion app.

Link Layer. According to the Bluetooth specification, the link

layer encryption of BLE is optional. For example, when an

IoT device acts as a GATT server, it can specify its attribute

permission as Encryption. In this case, if the companion app

acts as a GATT client to read/write that attribute of the device,

the link layer of this communication will be encrypted. To

achieve this, the device and app must establish the pairing and

2022 19th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

347Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on November 02,2022 at 14:14:45 UTC from IEEE Xplore. Restrictions apply.

bonding to negotiate the encryption key. So in the detection,

we check whether the corresponding API createBond() is

invoked in the app.

Although Android encapsulates the link layer encryption

functionality into a single API, it also states the risk of

using such method. The Android announcement says “When

a user pairs their device with another device using BLE,

the data that’s communicated between the two devices is

accessible to all apps on the user’s device” [6]. Therefore,

Android also recommends application layer encryption for

BLE communication.

Application Layer. The Bluetooth chip manufacturers (e.g.,

Nordic) usually provide their SDKs that include various crypto

libraries. In the firmware, the device developers can use

these crypto APIs to customize their own encryption schemes.

For BLE apps, Android provides the Java crypto libraries

(e.g., java.security and javax.crypto) for data encryption.

Sivakumaran et al. [22] developed a tool called BLECryptracer

for detecting BLE application layer security issues. To detect

whether an IoT device is using application layer encryption,

our solution is as follows.

In the IoT device firmware, data is encrypted by crypto

APIs and transmitted to the companion app via BLE. The app

must decrypt the received message to restore the plain data.

Thus, we could trace the data related to the BLE message

sending/receiving API (e.g., writeValue() and getValue())

and check whether the data is encrypted/decrypted in the

process. Initially, we consider tainting this data flow, which

makes the encryption method as the “source” and the BLE

message sending API as the “sink” to detect the existence of

such a path in the app. We compared the testing results with

BLECryptracer [22] and found that BLECryptracer is a bit

more accurate. The reason is that FlowDroid cannot process

the apps with native code and large size, causing a high failure

rate of the path-building. On the contrary, BLECryptracer

adopts a lightweight technical solution based on backward

slicing. Therefore, finally, we conducted our detection based

on BLECryptracer.

We first filtered out the apps with the objective method.

BSC-Checker is optimized based on BLECryptracer so that it

only detects the links between BLE and cryptographic func-

tions through direct register value transfers and direct results of

method calls. We eliminate the coarse-grained analysis method

in BLECryptracer, which could lead to false positives.

S5) Does the device use application layer authentication? In

a public environment, a BLE-enabled IoT device can interact

with multiple users. The BLE standard does not enforce the

requirement that only users with permissions can interact with

BLE devices. To address the unauthorized access problem,

an application layer authentication is necessary. Since there

is no uniform standard for the authentication protocol, each

device vendor could implement it in different ways [23], which

inevitably makes detection difficult.

As mentioned in Section III, we mainly focus on the

commonly deployed challenge-response protocol. Specifically,

the IoT device sends a challenge (nonce) to its companion

app, and this app will reply with an answer to the device.

A sample app code is shown in Listing 1. Our detection

method uses the “challenge” sent from the IoT device as

the taint source, the “challenge” processing by the app as

taint propagation, and sending the “response” to the IoT

device as the taint sink. So the target APIs we want to

monitor for receiving challenges are readCharacteristic()

and onCharacteristicChanged() , and the target API for

sending response is writeCharacteristic(). If FlowDroid

does not find the tainted path, we consider that the challenge-

response authentication protocol does not exist between the

IoT device and its companion app.

1 public void onResponse(Chanllenge ch) {

2 bAuth = ch.getIntValue (20,0);

3 Response re = authService.

getAuthVectorCharacteristic ();

4 re.setValue(AuthMath.secondStepSecret(

aAuth , bAuth , macAddress , key));

5 blueRock.writeCharacteristic(re, new

OperationCallback (){

6 public void onSuccess () {

7 BeaconAuthentication.onCompleted ();

8 }

9 public void onFailure () {

10 L.w("Authentication failed");

11 BeaconAuthentication.onFailed ();

12 }

13 }

14

15 public static byte[] secondStepSecret(long

aAuth , long bAuth , MacAddress macAddress

, byte[] key) {

16 try {

17 return aesDecrypt(sessionKey(aAuth ,

bAuth), aesEncrypt(key ,

macAddressToMacSecret(macAddress)));

18 } catch (Exception e) {

19 return null;

20 }

Listing 1: Code example of challenge and response.

V. RESULTS AND FINDINGS

We implemented the prototype of our analysis framework

BSC-Checker and conducted large-scale evaluations. Here we

summarized our findings.

A. Experiment Setup and Dataset

Since there is no available large-scale Android BLE app

dataset, we developed a crawler to download the latest Android

apps from popular app markets1. We selected 18 of them,

including 9Apps, 2265, Anzhi, APKPure, Baidu, Download-

PCAPK, FDroid, Gfan, Huawei, LapTopPCAPK, Lenovo,

LePlay, Leyou, Flyme, PC6, Yingyongbao, Uptodown, and Xi-

aomi. Finally, we collected 226,181 APKs from the above app

markets. To filter BLE-based apps among the collected APKs,

1Google Play did not support the app bulk downloading, we did not consider
it in our experiment.

2022 19th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

348Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on November 02,2022 at 14:14:45 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Overall results.

Questions Item Value Percentage

Q1) Static Bluetooth MAC
address identification

#Static MAC address identified 4002 87.2%

Q2) Static UUIDs
identification

#Static UUIDs identified 3954 86.2%

Q3) Insecure paring method
identification

#Just Works pairing method 298 6.5%

Q4) Plaintext transmission
identification

#Plaintext transmission identified 3960 86.3%

Q5) Application layer
authentication identification

#Application layer authentication 20 0.4%

we first filtered out 35,702 apps that use regular Bluetooth

permissions (i.e., BLUETOOTH and BLUETOOTH_ADMIN). Among

them, we further obtained 4,589 BLE apps.

Environment setup. Our evaluation consists of two sets of ex-

periments: the static analysis of BLE apps and attacks against

real-world BLE-enabled IoT devices. The static analysis was

conducted on a Linux server running Ubuntu 20.04 equipped

with Intel Xeon 6226R @2.90GHz and 256G memory. The

attacks were conducted by Raspberry Pi 4 and CC2540 BLE

USB Dongle.

B. Overall Results

We deployed BSC-Checker on these 4,589 BLE apps to

answer the research questions discussed in Section III, and

the final results are summarized in Table I.

R1) Static Bluetooth MAC address identification. BSC-

Checker discovered that most BLE apps (87.2%) used static

MAC addresses. We conducted a deeper analysis of these

misconfigurations. The developers store the MAC address in

their apps’ cache after the first successful connection for

convenience, which exposes that the MAC addresses of IoT

devices are constant.

R2) Static UUIDs identification. BSC-Checker found 86.2%

of BLE apps used static UUIDs. Since the UUID-based track-

ing attack was proposed in recent two years, many developers

may not be concerned about this issue. The correct approach is

not to hardcode the UUIDs in the app but use dynamic UUIDs

in the IoT device.

R3) Insecure pairing method identification. BSC-Checker

detected 588 apps (12.8%) using the pairing and bonding

methods. Among them, only 1 app uses the OOB paring

method, which is the least. There are 289 apps using secure

pairing methods (Passkey Entry or Numeric Comparison). Up

to half of them (298 apps) use the insecure pairing method

(Just Works). The corresponding IoT devices that use insecure

pairing methods may be due to their limited I/O capabilities.

R4) Plaintext transmission identification. BSC-Checker

found 4,002 apps that did not use Bluetooth link layer en-

cryption. Among them, only 42 apps used the application layer

encryption. That is, 3,960 apps (86.3%) transmit plaintext mes-

sages. For those IoT devices that use plaintext transmission,

they may be energy-sensitive devices.

R5) Application layer authentication identification. BSC-

Checker found that only a small portion of them (0.4%) used

application layer authentication. The corresponding devices

may have high-security requirements, such as smart locks.

C. Case Studies

In this subsection, we provide two cases to demonstrate the

effectiveness of BSC-Checker. The first one is to verify the

discovered app vulnerability in the device firmware. The sec-

ond one is to launch practical attacks exploiting the identified

vulnerability.

Verification in firmware. The first challenge is to obtain

the firmware. Many IoT devices support OTA (over-the-

air) services that allow regular firmware updates. The most

common way is to download the latest firmware from the

vendor’s server via the Internet. However, some device vendors

do not maintain the server for updating services due to cost

or technical issues. Instead, their method is to package the

new firmware in their device companion apps and publish the

apps to app markets. When the IoT device user updates the

companion app, the new firmware will be transmitted to the

device for updating. Therefore, we can unpack apps to find

the firmware-related binaries. Due to Nordic’s high market

share and detailed development documentation, our goal was

to find the firmware used for Nordic Bluetooth chips. The

basic approach is to match the features (e.g., magic number)

in the binaries related to the Nordic firmware.

In this case, we analyzed the app Findster (used for looking

for lost pets) – com.getfindster.android.findsterduo.

The report output by BSC-Checker shows that the correspond-

ing device is vulnerable to eavesdropping, identity tracking,

MITM, and unauthorized access attacks.

Then, we decompiled the extracted firmware using Binary

Ninja [4]. The Nordic firmware invokes the APIs related to

the BLE protocol stack through SVC interrupts [3]. Each

API corresponds to an SVC exception number (e.g., SVC

0x7D). We used FirmXray [25] to analyze the firmware for

Bluetooth link layer security vulnerabilities. According to

its detection report, we identified the static MAC addresses

through the first target API sd_ble_gap_addr_set. The sec-

ond target API sd_ble_gatts_service_add is used to gener-

ate the GATT service, which contains the UUIDs. Through the

third API sd_ble_gap_sec_params_reply, we can determine

which pairing method is used for IoT devices. The last

API sd_ble_gatts_characteristic allows us to determine

whether the IoT device needs the link layer encryption.

Based on the results, we determined that the corresponding

IoT device used static MAC addresses and static UUIDs.

No encryption and pairing methods are used at the BLE

link layer. We need further to check the application layer

encryption and authentication protocol. Nordic provides AES

encryption API sd_ecb_block_encrypt in the SDK [11].

The encryption API’s exception number is 0x48. Therefore,

we looked for the instruction SVC 0x48 in the firmware to

determine whether the application-layer encryption is be-

ing used. The results show that this firmware transmits

plaintext messages with its app. As for authentication, this

firmware uses application-layer authentication to generate

2022 19th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

349Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on November 02,2022 at 14:14:45 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Attacks on IoT devices.

Device
Questions Attacks

Q1 Q2 Q3 Q4 Q5 A1 A2 A3 A4

Smart Bulb Yes Yes Yes Yes No Yes Yes Yes Yes
Smart Lock Yes Yes Yes No Yes No Yes Yes No

a nonce as a challenge. Nordic provides a nonce gener-

ation API sd_rand_application_bytes_available_get().

We did not find the use of this API in the firmware. Combined

with the previous result of not using the application layer

encryption API, it suggests that this firmware does not use

application-layer authentication.

Attack on IoT devices. To confirm the vulnerabilities revealed

by BSC-Checker, we purchased 2 devices (LifeSmart smart

bulb LS030UN and OKLOK smart lock BL-80) to perform

practical attacks, as shown in Table II. To launch attacks, we

built an attacking device based on a Raspberry Pi 4 and a

CC2540 BLE USB Dongle.

First, we used the dongle to sniff the advertising pack-

ets broadcast by the devices. To Q1 & Q2: we saved the

MAC addresses and UUIDs obtained from the broadcast

packets, rebooted the device, and repeated this step. The

result revealed that these data did not change. To Q3: we

then connected to the devices and found that the companion

apps did not prompt pairing requests. To Q4: we hooked

the critical methods in the apps and compared the messages

before and after sending, and found that the smart bulb

app (com.ilifesmart.mslict_gp) uses plaintext transmis-

sion and the smart lock app (com.oklok.lock) uses ciphertext

transmission. To Q5: we used Raspberry Pi 4 to connect

the device and replay the control commands. The bulb app

responded correctly to the replayed command, but the lock app

did not. The report output by BSC-Checker shows that the lock

does not deploy the application layer authentication. However,

in the attack, it sent challenges (nonce). We further reverse-

engineered this app and found it used web-based techniques

(JavaScript) to implement the application layer authentication.

Therefore, it led to a false positive in our detection because

our tool only detects Java code.

VI. DISCUSSIONS

In this section, we discussed some limitations of this work.

Unavailable Code. Our BLE app analysis is based on the well-

established Flowdroid and Androguard. However, some APK

files cannot be unpacked or disassembled by them successfully,

which further affects the following analysis. It is mainly

caused by the code obfuscation and APK packing. In addition,

some apps implement certain processing logic in native code

(in the format of .so files) or web code, and our framework

only can handle Java/smali code.

App to Device. The discovered misconfigurations in BLE

apps can be the clues to identifying the same problems in

BLE-enabled devices. However, it is not easy to map the app

to its belonged device in some cases due to lacking product

information. Also, an app may correspond to multiple devices,

and not all device firmware exists the discovered problems.

VII. RELATED WORK

This section reviews the previous works about BLE security,

focusing on BLE vulnerability, privacy leakage, and automated

security analysis.

BLE Vulnerabilities. Since BLE has been widely applied for

many years, its vulnerabilities and corresponding defense mea-

sures have been well discussed. For example, Zhang et al. [29]

presented severe flaws of Secure Connections Only (SCO)

mode in case of improper handling of the BLE programming

framework of the initiator. It will result in that a fake device

can perform downgrade attacks to steal users’ sensitive data

by spoofing a victim BLE device through the BLE pairing

protocol. Tschirschnitz et al. [24] revealed a design flaw in

the inconsistent association model in the BLE pairing process

and taking advantage of this fact, the method confusion attack

can easily achieve a MITM position of two BLE devices. Wu

et al. [27] aimed at the reconnection procedure targeting the

BLE link-layer authentication mechanism. They proposed a

BLE spoofing attack in which an attacker can provide spoofed

data to a previously-paired BLE client device by pretending to

be a BLE server device. Other related works include reflection

attack [17], profile management flaw [28], key negotiation

downgrade attack [13], and malicious traffic injection [15].

BLE Privacy Leakage. The BLE-based IoT solutions enable

devices to exchange information efficiently in real-time. Nev-

ertheless, the potential leakage can also cause severe harm

to users’ privacy (e.g., user tracking and behavior monitor-

ing) [18], [20]. In the defense, Fawaz et al. [19] proposed

a device-agnostic system called BLE-Guardian. It determines

the entities that can observe the device’s existence through the

advertisements to ensure that only user-authorized entities can

connect to those BLE-equipped devices. However, it cannot

protect devices from spoofing attacks. Wu et al. [26] proposed

BlueShield utilizing the BLE device identity information car-

ried by advertising packets to filter out malicious packets from

an attacker, which better defend against spoofing attacks.

Automated Analysis. Some recent research concentrated on

designing automated analysis tools to discover BLE-related

bugs. Zuo et al. [31] performed an automatic tool BleScope

to scan BLE device’s vulnerabilities through its companion

mobile apps. A design flaw of its present implementation

enables an attacker to fingerprint a BLE device with static

UUIDs from the apps, causing the security risks of communi-

cation between these victim devices and their companion apps.

Sivakumaran et al. [22] introduced a static analysis tool called

BLECryptracer to investigate the application-layer security of

18,900+ BLE-enabled Android apps. Their result shows that

over 45% collected apps do not protect BLE data well. Ray

et al. [21] developed a framework that allows running MITM

attacks, flooding attacks, and fuzzing for BLE devices.

The closest works with our study were FirmXRay [25]

and BLESS [30]. Wen et al. [25] proposed a static analysis

tool FirmXRay to detect BLE link layer vulnerabilities. They

analyzed static MAC address, Just Works pairing, and key

exchange from the configurations of bare-metal firmware.

2022 19th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

350Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on November 02,2022 at 14:14:45 UTC from IEEE Xplore. Restrictions apply.

However, the correctness of firmware disassembling limits this

work, and not all of these three types of analysis are used. On

the contrary, our solution focuses the mirror of firmware – BLE

apps, and there is no firmware needed in the analysis process.

Zhang et al. [30] proposed a BLE app security scanning tool

(BLESS) to check the security practices of BLE products.

The checking focuses on the use of cryptographic keys and

nonces. Compared with this solution, we focus on the BLE

misconfiguration problems covering more detection strategies.

Also, our experiment scale is more extensive than this prior

study, say 1,073 apps vs. 4,589 apps, which provides enough

data to support the misconfiguration measurement.

VIII. CONCLUSION

This paper studied the BLE security misconfiguration prob-

lems in the IoT ecosystem. Specifically, we went through the

official documents and summarized five checking strategies.

Also, to avoid the challenges of device firmware analysis, our

solution tries to analyze the mirror of firmware – companion

mobile apps. We designed an automated analysis tool – BSC-

Checker, which can generate the configuration checking results

for the input apps. In the large-scale experiment, the result

shows that the security configurations of most BLE apps

disobey at least one security rule. Accordingly, most BLE

deployments in the wild are risky.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their insightful com-

ments. This work was partially supported by National Natural

Science Foundation of China (No. 61902148), Hong Kong

S.A.R. Research Grants Council (RGC) General Research

Fund (No. 14208019), and Shandong Provincial Natural Sci-

ence Foundation (No. ZR2020MF055, No. ZR2021LZH007,

No. ZR2020LZH002, and No. ZR2020QF045).

REFERENCES

[1] Androguard. https://github.com/androguard/androguard.
[2] Android Bluetooth APIs – android.bluetooth. https://developer.android.

com/reference/android/bluetooth/package-summary.
[3] ARM Instruction sets. https://developer.arm.com/architectures/instructio

n-sets.
[4] Binary Ninja. https://binary.ninja/.
[5] Bluetooth. https://www.bluetooth.com/.
[6] Bluetooth Low Energy. https://developer.android.com/guide/topics/con

nectivity/bluetooth/ble-overview.
[7] Bluetooth low energy (BLE) enabled devices market volume worldwide,

from 2013 to 2020. https://www.statista.com/statistics/750569/worldwi
de-bluetooth-low-energy-device-market-volume/.

[8] Bluetooth Specification Version 4.2. https://www.bluetooth.com/specif
ications/specs/core-specification-4-2/.

[9] CC2540 – Bluetooth Low Energy wireless MCU with USB. https://ww
w.ti.com/product/CC2540.

[10] Challenge-Response Authentication. https://en.wikipedia.org/wiki/Chal
lenge-response_authentication.

[11] Nordic SDK. https://infocenter.nordicsemi.com/index.jsp.
[12] M. Afaneh. Bluetooth Addresses & Privacy in Bluetooth Low Energy.

https://www.novelbits.io/bluetooth-address-privacy-ble/.
[13] D. Antonioli, N. O. Tippenhauer, and K. Rasmussen, “Key Negotiation

Downgrade Attacks on Bluetooth and Bluetooth Low Energy,” ACM
Transactions on Privacy and Security (TOPS), vol. 23, no. 3, pp. 14:1–
14:28, 2020.

[14] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. L.
Traon, D. Octeau, and P. D. McDaniel, “FlowDroid: Precise Context,
Flow, Field, Object-sensitive and Lifecycle-aware Taint Analysis for An-
droid Apps,” in Proceedings of the 2014 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), Edinburgh,
United Kingdom, June 9-11, 2014, 2014.

[15] R. Cayre, F. Galtier, G. Auriol, V. Nicomette, M. Kaâniche, and
G. Marconato, “InjectaBLE: Injecting Malicious Traffic into Established
Bluetooth Low Energy Connections,” in Proceedings of the 51st Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN), Taipei, Taiwan, June 21-24, 2021, 2021.

[16] G. Celosia and M. Cunche, “Fingerprinting Bluetooth-Low-Energy De-
vices Based on the Generic Attribute Profile,” in Proceedings of the 2nd
International ACM Workshop on Security and Privacy for the Internet-
of-Things (IoT S&P@CCS), London,UK, November 15, 2019, 2019.

[17] T. Claverie and J. Lopes-Esteves, “Bluemirror: Reflections on bluetooth
pairing and provisioning protocols,” in Proceedings of the 15th IEEE
Workshop on Offensive Technologies (WOOT), San Francisco, CA, USA,
May 27, 2021, 2021.

[18] A. K. Das, P. H. Pathak, C. Chuah, and P. Mohapatra, “Uncovering
Privacy Leakage in BLE Network Traffic of Wearable Fitness Trackers,”
in Proceedings of the 17th International Workshop on Mobile Computing
Systems and Applications (HotMobile), St. Augustine, FL, USA, Febru-
ary 23-24, 2016, 2016.

[19] K. Fawaz, K. Kim, and K. G. Shin, “Protecting Privacy of BLE
Device Users,” in Proceedings of the 25th USENIX Security Symposium
(USENIX-Sec), Austin, TX, USA, August 10-12, 2016, 2016.

[20] A. Korolova and V. Sharma, “Cross-App Tracking via Nearby Bluetooth
Low Energy Devices,” in Proceedings of the Eighth ACM Conference
on Data and Application Security and Privacy (CODASPY), Tempe, AZ,
USA, March 19-21, 2018, 2018.

[21] A. Ray, V. Raj, M. Oriol, A. Monot, and S. Obermeier, “Bluetooth low
energy devices security testing framework,” in Proceedings of the 11th
IEEE International Conference on Software Testing, Verification and
Validation (ICST), Västerås, Sweden, April 9-13, 2018, 2018.

[22] P. Sivakumaran and J. Blasco, “A Study of the Feasibility of Co-
located App Attacks against BLE and a Large-Scale Analysis of the
Current Application-Layer Security Landscape,” in Proceedings of the
28th USENIX Security Symposium (USENIX-Sec), Santa Clara, CA,
USA, August 14-16, 2019, 2019.

[23] D. Veilleux. (2017) Simple Application-level Authentication. https://de
vzone.nordicsemi.com/nordic/nordic-blog/b/blog/posts/simple-applicat
ion-level-authentication.

[24] M. von Tschirschnitz, L. Peuckert, F. Franzen, and J. Grossklags,
“Method Confusion Attack on Bluetooth Pairing,” in Proceedings of
the 42nd IEEE Symposium on Security and Privacy (Oakland), San
Francisco, CA, USA, 24-27 May 2021, 2021.

[25] H. Wen, Z. Lin, and Y. Zhang, “FirmXRay: Detecting Bluetooth Link
Layer Vulnerabilities From Bare-Metal Firmware,” in Proceedings of
the 2020 ACM SIGSAC Conference on Computer and Communications
Security (CCS), Virtual Event, USA, November 9-13, 2020, 2020.

[26] J. Wu, Y. Nan, V. Kumar, M. Payer, and D. Xu, “BlueShield: Detecting
Spoofing Attacks in Bluetooth Low Energy Networks,” in Proceedings
of the 23rd International Symposium on Research in Attacks, Intrusions
and Defenses (RAID), San Sebastian, Spain, October 14-15, 2020, 2020.

[27] J. Wu, Y. Nan, V. Kumar, D. J. Tian, A. Bianchi, M. Payer, and D. Xu,
“BLESA: Spoofing Attacks against Reconnections in Bluetooth Low
Energy,” in Proceedings of the 14th USENIX Workshop on Offensive
Technologies (WOOT), August 11, 2020, 2020.

[28] F. Xu, W. Diao, Z. Li, J. Chen, and K. Zhang, “BadBluetooth: Breaking
Android Security Mechanisms via Malicious Bluetooth Peripherals,” in
Proceedings of the 26th Annual Network and Distributed System Security
Symposium (NDSS), San Diego, California, USA, February 24-27, 2019,
2019.

[29] Y. Zhang, J. Weng, R. Dey, Y. Jin, Z. Lin, and X. Fu, “Breaking
Secure Pairing of Bluetooth Low Energy Using Downgrade Attacks,”
in Proceedings of the 29th USENIX Security Symposium (USENIX-Sec),
August 12-14, 2020, 2020.

[30] Y. Zhang, J. Weng, Z. Ling, B. Pearson, and X. Fu, “BLESS: A BLE
Application Security Scanning Framework,” in Proceedings of the 39th
IEEE Conference on Computer Communications (INFOCOM), Toronto,
ON, Canada, July 6-9, 2020, 2020.

[31] C. Zuo, H. Wen, Z. Lin, and Y. Zhang, “Automatic Fingerprinting of
Vulnerable BLE IoT Devices with Static UUIDs from Mobile Apps,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security (CCS), London, UK, November 11-15, 2019,
2019.

2022 19th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

351Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on November 02,2022 at 14:14:45 UTC from IEEE Xplore. Restrictions apply.

