l‘)

Check for
updates

Understanding Android Obfuscation
Techniques: A Large-Scale Investigation
in the Wild

Shuaike Dong', Menghao Li2, Wenrui Diao®, Xiangyu Liu?, Jian Liu2(®),
Zhou Li®, Fenghao Xu', Kai Chen?, XiaoFeng Wang®, and Kehuan Zhang'(®®

! The Chinese University of Hong Kong, Sha Tin, Hong Kong
{ds016,x£f016,khzhang}@ie. cuhk.edu.hk
2 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
{limenghao,liujian6,chenkai}@iie.ac.cn
3 Jinan University, Guangzhou, China
diaowenrui@link.cuhk.edu.hk
4 Alibaba Inc., Hangzhou, China
eason.lxy@alibaba-inc.com
5 ACM Member, Boston, MA, USA
lzcarl@gmail.com
6 Indiana University Bloomington, Bloomington, IN, USA

xw7@indiana.edu

Abstract. Program code is a valuable asset to its owner. Due to the
easy-to-reverse nature of Java, code protection for Android apps is of
particular importance. To this end, code obfuscation is widely utilized by
both legitimate app developers and malware authors, which complicates
the representation of source code or machine code in order to hinder the
manual investigation and code analysis. Despite many previous studies
focusing on the obfuscation techniques, however, our knowledge of how
obfuscation is applied by real-world developers is still limited.

In this paper, we seek to better understand Android obfuscation and
depict a holistic view of the usage of obfuscation through a large-scale
investigation in the wild. In particular, we focus on three popular obfus-
cation approaches: identifier renaming, string encryption and Java reflec-
tion. To obtain the meaningful statistical results, we designed efficient
and lightweight detection models for each obfuscation technique and
applied them to our massive APK datasets (collected from Google Play,
multiple third-party markets, and malware databases). We have learned
several interesting facts from the result. For example, more apps on
third-party markets than malware use identifier renaming, and malware
authors use string encryption more frequently. We are also interested in
the explanation of each finding. Therefore we carry out in-depth code
analysis on some Android apps after sampling. We believe our study
will help developers select the most suitable obfuscation approach, and
in the meantime help researchers improve code analysis systems in the
right direction.

Keywords: Android - Obfuscation - Static analysis - Code protection

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
R. Beyah et al. (Eds.): SecureComm 2018, LNICST 254, pp. 172-192, 2018.
https://doi.org/10.1007/978-3-030-01701-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01701-9_10&domain=pdf
https://doi.org/10.1007/978-3-030-01701-9_10

Understanding Android Obfuscation Techniques 173

1 Introduction

Code is a very important intellectual property to its developers, no matter if they
work as individuals or for a large corporation. To protect this property, obfusca-
tion is frequently used by developers, which is also considered as a double-edged
sword by the security community. To a legitimate software company, obfuscation
keeps its competitors away from copying the code and quickly building their own
products in an unfair way. To a malware author, obfuscation raises the bar for
automated code analysis and manual investigation, two approaches adopted by
nearly every security company. For a mobile app, especially the one targeting
Android platform, obfuscation is particularly useful, given that the task of dis-
assembling or decompiling Android app is substantially easier than doing so for
other sorts of binary code, like X86 executables.

Android obfuscation is pervasive. On the one hand, there are already more
than 3.5 million apps available for downloading just in one app market, Google
Play, up to December 2017 [13]. On the other hand, many off-the-shelf obfus-
cators are developed, like ProGuard [14], DashO [7], DexGuard [8], DexPro-
tector [9], etc. Consequently, the issues around app obfuscation attract many
researchers. So far, most of the studies focus on the topics like what obfuscation
techniques can be used [20], how they can be improved [38], how well they can be
handled by state-of-art code analysis tools [37], and how to deobfuscate the code
automatically [22]. While these studies provide solid ground for understanding
the obfuscation techniques and its implications, there is still an unfilled gap in
this domain: how is obfuscation actually used by the vast amount of developers?

We believe this topic needs to be studied, and the answer could enlighten new
research opportunities. To name a few, for developers, learning which obfuscation
techniques should be used is quite important. Not all obfuscation techniques are
equally effective, and some might even have bad influence on the performance of
a program. Plenty of code analysis approaches were proposed, but their effects
are usually hampered by obfuscation and the impact greatly differs based on
the specific obfuscation technique in use, e.g., identifier renaming is much less of
an issue comparing to string encryption. Knowing the preferences of obfuscation
techniques can better assist the design of code analysis tools and prioritize the
challenges need to be tackled. All roads paving to the correct conclusions call for
measurement on real-world apps, and only the result coming from a comprehen-
sive study covering a diverse portfolio of apps (published in different markets,
in different countries, from both malware authors and legitimate companies) is
meaningful.

Our Work. As the first step, in this paper, we systematically study the obfus-
cation techniques used in Android apps and carry out a large-scale investigation
for apps in the wild. We focus on three most popular Android obfuscation tech-
niques (identifier renaming, string encryption, and Java reflection) and measure
the base and popular implementation of each technique. To notice, the exist-
ing tools, like deobfuscators, cannot solve our problem here, since they either
work well against a specific technique or a specific off-the-shelf obfuscator (e.g.,

174 S. Dong et al.

ProGuard). As such, they cannot be used to provide a holistic view. Our key
insight into this end is that instead of mapping the obfuscated code to its orig-
inal version, a challenge not yet fully addressed, we only need to cluster them
based on their code patterns or statistical features. Therefore, we built a set of
lightweight detectors for all studied techniques, based on machine learning and
signature matching. Our tools are quite effective and efficient, suggested by the
validation result on ground-truth datasets. We then applied them on a real-world
APK dataset with 114,560 apps coming from three different sources, including
Google Play set, third-party markets set, and malware set, for the large-scale
study.

Discoveries. Our study reveals several interesting facts, with some confirming
people’s intuition but some contradicting to common beliefs: for example, as
an obfuscation approach, identifier renaming is more widely-used in third-party
apps than in malware. Also, though basic obfuscation is prevalently applied in
benign apps, the utilization rate of other advanced obfuscation techniques is
much lower than that of malware. The detailed statistical results are provided
in Sect. 4. We believe these insights coming from “big code” are valuable in guid-
ing developers and researchers in building, counteracting or using obfuscation
techniques.

Contributions. We summarize this paper’s contributions as below:

— Systematic Study. We systematically study the current mainstream
Android obfuscation techniques used by app developers.

— New Techniques. We propose several techniques for detecting different
obfuscation techniques accurately, such as n-gram -based renaming detection
model and backward slicing-based reflection detection algorithm.

— Large-scale Evaluation. We carried out large-scale experiments and
applied our detection techniques on over 100K APK files collected from three
different sources. We listed our findings and provided explanations based on
in-depth analysis of obfuscated code.

Roadmap. The rest of this paper is organized as follows: We systematically sum-
marize popular Android obfuscation techniques in Sect.2.2. Section 3 overviews
the high-level architecture of our detection framework. The detailed detection
strategies and statistical results on large-scale datasets are provided in Sect. 4.
Also, we discuss some limitations and future plans in Sect. 5. Section 6 reviews
the previous research on Android obfuscation, and Sect. 7 concludes this paper.

2 Background

In this section, we briefly introduce the structure of APK file and overview some
common Android obfuscation techniques.

Understanding Android Obfuscation Techniques 175

2.1 APK File Structure

An APK (Android application package) file is a zip compressed file contain-
ing all the content of an Android app, in general, including four directo-
ries (res, assets, 1ib, and META-INF) and three files (AndroidManifest.xml,
classes.dex, and resources.arsc). The purposes of these directories and files
are listed as below.

res This directory stores Android resource files which will be mapped to the .R
file in Android and allocated the corresponding ID.

assets This directory is similar to the res directory and used to store static
files in the APK. However, unlike res directory, developers can create subdi-
rectories in any depth with the arbitrary file structure.

1lib The code compiled for specific platforms (usually library files, like .so) are
stored in this directory. Subdirectories can be created according to the type
of processors, like armeabi, armeabi-v7a, x86, x86_64, mips.

META-INF This directory is responsible for saving the signature information of a
specific app, which is used to validate the integrity of an APK file.

AndroidManifest.xml This XML file is the configuration of an APK, declaring
its basic information, like name, version, required permissions and compo-
nents. Each APK has an AndroidManifest file, and the only one.

classes.dex The dex file contains all the information of the classes in an app.
The data is organized in a way the Dalvik virtual machine can understand
and execute.

resources.arsc This file is used to record the relationship between the resource
files and related resource ID and can be leveraged to locate specific resources.

2.2 Android Obfuscation Characterization

In general, obfuscation attempts to garble a program and makes the source or
machine code more difficult for humans to understand. Programmers can delib-
erately obfuscate code to conceal its purpose or logic, in order to prevent tam-
pering, deter reverse engineering, or behave like a puzzle for someone reading
the code. Specifically, there are several common obfuscation techniques used by
Android apps, including identifier renaming, string encryption, excessive over-
loading, and so forth.

Identifier Renaming. In software development, for good readability, code iden-
tifiers’ names are usually meaningful, though developers may follow different
naming rules (like CamelCase, Hungarian Notation). However, these meaning-
ful names also accommodate reverse-engineers to understand the code logic and
locate the target functions rapidly. Therefore, to reduce the potential informa-
tion leakage, identifier’s names could be replaced by meaningless strings. In the
following example, all identifiers in class Account are renamed.

| public class af{
2 private Integer a;

176 S. Dong et al.

3 private Float = b;

4 public void a(Integer a, Float b){
5 this.a = a + Integer.valueOf(b)
6 }

String Encryption. Strings are very common-used data structures in software
development. In an obfuscated app, strings could be encrypted to prevent infor-
mation leakage. Based on cryptographic functions, the original plaintexts are
replaced by random strings and restore at runtime. As a result, string encryp-
tion could effectively hinder hard-coded static scanning. The following code block
shows an example.

String option = "@"@#\x ‘1 m*7 Yx*9_!v";
this.execute (decrypt(option));

[\v]

Java Reflection. Reflection is an advanced feature of Java, which provides
developers with a flexible approach to interact with the program, e.g., creating
new object instances and invoking methods dynamically. One common usage is
to invoke nonpublic APIs in the SDK (with the annotation @hide). The following
code gives an example of reflection that invokes a hidden API batteryinfo.

Object object = new 0Object();

2| Method getService = Class.forName("android.os.
ServiceManager").getMethod("getService", String.class);

Object obj = getService.invoke(object, new 0Object []{new
String ("batteryinfo")});

w

As an obfuscation technique, reflection is a good choice of hiding program
behaviors because it can transfer the control to a certain function implicitly,
which can not be well handled by state-of-the-art static analysis tools. Therefore,
malware developers usually heavily employ reflection to hide malicious actions.

3 System Design

Our target is to systematically study the Android obfuscation techniques and
carry out a large-scale investigation. As the first step, we design an efficient
Android code analysis framework to identify the obfuscation techniques used
by developers. Here we overview the high-level design of this framework and
introduce the datasets prepared for the subsequent large-scale investigations.

3.1 System Overview

To detect the usage of obfuscation techniques, we propose an architecture to
analyze APK files automatically, as illustrated in Fig.1. After the APK files
collected from several channels (details are provided in Sect. 3.2) are stored on

Understanding Android Obfuscation Techniques 177

our server, this detection framework will try to unpack them for the primary
testing. Some damaged APK files failing to pass this step will be discarded and
manually checked to make sure the samples used in the following phases are
valid. Then this framework applies three targeted detection methods to identify
obfuscated Smali code blocks. These detection methods could be classified into
two categories: signature-based and machine learning-based.

> Google Play N\ APK Repository

£ g s RIAIC Training Phase @ F-Droid

N I ()

s\;\\ WEE) o= l
Testing Phase

Success

Qiﬁﬁ!ﬁﬁmﬁ ” ill\iK Unpack @ — Identifier Renaming

— String Encryption

. VirusShare.com

_ Signature Searching Statistical D:I]j]
ﬂ tOta| j Check — Reflection Result

Fig. 1. Android app obfuscation detection framework

3.2 APK Dataset

We are interested in the obfuscation usage status of apps in different types, so
three representative APK datasets were used in our experiment: Google Play
set (26,614 samples), third-party market set (65,666 samples), and malware set
(22,280 samples). These samples were collected during 2016 and 2017. In total,
our experiment dataset contains 114,560 sample with the size of around 1.521TB.
More details are given in Table 1.

As the official app store for Android, Google Play is the main Android app
distribution channel. Thus, its sample set could reflect the deployment status of
obfuscation used by mainstream developers. Also, due to the policy restriction,
in some countries (such as China), Google Play is not available, and users have
to install apps from third-party markets. Therefore, in the second dataset, we
select six popular app markets from China (say Anzhi [4], Xiaomi [19], Wandou-
jia [18], 360 [1], Huawei [10], and AppChina [5]) and developed the corresponding
crawlers to collect their apps. Note that the replicated samples from different
markets have been excluded. Lastly, except for legitimate app samples, we are
also curious about whether malware authors heavily use obfuscation skills to
hide their malicious intentions. So, the last dataset contains the malware sam-
ples coming from VirusShare [16] and VirusTotal [17,30].

4 Obfuscation Detection and Large-Scale Investigation

In this section, we introduce the detection approaches for each obfuscation tech-
nique and summarize our findings based on large-scale experiments.

178 S. Dong et al.

Table 1. APK dataset for investigation

Type Source Number
Official Market Google Play | 26,614
3rd-party Market | Wandoujia 8,979

360 18,724
Huawei 22,048
Anzhi 7,121
Xiaomi 4,649
AppChina 4,145
Malware VirusShare | 19,004

VirusTotal 3,267

4.1 Identifier Renaming

Generally, in the software development, the names of identifiers (variable names,
function names, and so forth) are usually meaningful, which could provide good
code readability and maintainability. However, such clear names may leak much
information due to the easy-to-reverse feature of Java. As a solution, identifier
renaming is proposed and widely used in practice.

The renaming operation can be appended at different stages of APK file
packaging. For example, ProGuard [14] and Allatori [2] work at the source-code
level, mapping the original names to mangled ones based on the user’s configura-
tion. The other obfuscators, like DashO [7], DexProtector [9], and Shield4J [15],
can work directly on APK files, modifying .class and .dex files.

Given an identifier, we can easily tell whether some obfuscator has renamed
it based on the information it contains. In other words, if an identifier name is
obscure and meaningless, it can be regarded as obfuscated because it tries to hide
the actual intention. A typical renaming operation is changing the original name
to a single character (like “a”, “b”) or some kind of puzzling string (like “lIINII",
“00000000”) [20]. However, the manual check is obviously not qualified for our
large-scale scanning goal. Moreover, we focus on the whole APK contents rather
than a single identifier. Therefore, we need to design a representation which can
measure the overall extent of identifier renaming given an app.

Beyond that, as a special case of identifier renaming, the excessive overloading
technique utilizes the overloading feature of Java and could map irrelevant iden-
tifier names to the same one, making the code more confusing to analysts [21].
For example, in the sample idfhn!, more than 46 functions are named as idfhn
(the same as the package name). Though the compiler could distinguish these
variables with the same name, security analysts have to face more troubles. In
our research, we also paid attention to the application of overloading feature and
its impact on code analysis.

! MD5: 7d9eb791c09b9998336e£00bf 6d43387.

Understanding Android Obfuscation Techniques 179

Identifier Renaming Detection. To the above challenges and targets, we
combine the computational linguistics and machine learning techniques for accu-
rate renaming detection. The high-level idea is based on the probabilistic lan-
guage model. The insight is that identifier renaming will lead to the abnormal
distribution of characters and character combinations, which distinguishes from
normal ones (non-obfuscated). The model outputs 1 or 0 according to whether
the app is judged as using identifier renaming. Here we give our three-step app-
roach:

1. Data Pre-processing. All the identifier names of the target APK sample are
extracted as the training candidates. Note that, software developers often
introduce third-party libraries into their apps. However, those third-party
libraries may contain obfuscated code, which does not reflect the protection
deployed by developers. Therefore we also pre-removed over 12,000 common
third-party libraries to avoid the inference using the approach of Li et al. [32].

2. Feature Generation. The amount of identifiers varies among different apps.
To build a uniform expression, we apply the n-gram algorithm [12] to gener-
ate a fixed-length 2 feature vector for each app. An n-gram is a contiguous
sequence of n items from a given sequence of text or speech. Through our
small-scale tests, we found 3-gram 2 can well depict the distribution of char-
acter combinations while restricting the length of the vector. Then we applied
it to traverse each name string in extracted raw name set to form the feature
vector. Each element of the vector records the frequency of a certain charac-
ter combination and will be normalized. Note that, the vector also involves
the frequencies of fewer-than-three character combinations (a, ab, etc.) due
to the length of an identifier may be smaller than three.

3. Classification. We collected apps from F-Droid and applied different obfus-
cators on them to generate the training set. Due to our model is a two-class
classifier, we decided to use Supported Vector Machine (SVM) as the classi-
fication algorithm for its powerful learning ability. After the training phase,
we applied it to our large-scale dataset.

Experiment Settings. We implemented a prototype of our detection model
based on Androguard [3] with more than 1,500 Python lines of code. For training,
we downloaded 3,147 apps with their corresponding source code from F-Droid.
Two obfuscators, ProGuard and DashO, were used to generate variant obfus-
cated samples because they have different renaming policies. Note that, due to
the diversity of apps’ project configurations, not all of them can be processed by
both ProGuard (2,107 successful samples) and DashO (654 successful samples).
Among them, we randomly chose 500 original apps and 500 successful obfus-
cated apps (250 from Proguard and 250 from DashO) as the training set. We

2 The length is restricted by the legal characters sets used for contracting a name in
Java: [“a_Z”’ “ A_Z”’ “0_9777 “777’ “$77’ 45\77].

3 For example, if there is a string “abcdefgh”, all of the 3-gram sequences it contains
are {abc, bed, cde, def, efg, fgh}.

180 S. Dong et al.

then randomly selected 500 original, 250 Proguard-obfuscated and 250 DashO-
obfuscated apps from the remaining set to do the validation. Our model reached
0.6% FN rate and 0.0% FP rate, which is quite satisfactory. We then collected
another testing set consisting of 200 samples obfuscated by another obfuscator
called Allatori. The completely successful classification results showed the strong
generalization ability of our model.

Large-Scale Investigation and Findings. We carried out a large-scale detec-
tion on the three typical datasets (Google Play, third-party markets, and mal-
ware) mentioned in Sect. 3.2. The obfuscation detection result by dataset is given
in Fig. 2. According to such statistics, we have two immediate findings:

Google Play Third-party Markets Malware

e e

[Obfuscated (Renaming)
1 Non-obfuscated (Renaming)

Fig. 2. Ratio of identifier renaming in three datasets

= 1. Compared with the apps on Google Play, the ones from third-party
markets apply more renaming operations.
= 2. Over one third of malware don’t apply identifier renaming.

To the first finding, we ascribe it to the discrepancy between app market
environments. The piracy issue in Chinese app markets are quite severe, say
nearly 20% apps are repacked or cloned [24]. Such situation urges developers to
put more effort into protecting their apps. On the other hand, Google Play pro-
vides more strict and timely supervision, which mitigates the severity of software
piracy largely. The better application ecosystem makes many developers believe
obfuscation is just an optional protection approach.

To the second finding, the percentage of malware utilizing identifier renaming
is only 63.5%, slightly less than third-party apps, which is opposite our tradi-
tional opinion. After manually checking the code of malware without renaming-
obfuscation, we conclude that two aspects contribute to such phenomenon.

— Script Kiddies. Many entry-level malware authors only could develop simple
malicious apps and lack the knowledge of how to disguise malicious behaviors
through obfuscation. A few codes and clumsy class structures are two main

Understanding Android Obfuscation Techniques 181

features of those entry-level apps. The vicious behaviors of the malware are
usually exposed to analysts due to the rough implementation.

— False Alarmed “Malware”. For some apps, their main bodies are benign and
non-obfuscated, while the imported third-party libraries contain some kinds
of sensitive and suspicious behaviors which are recognized as malicious by
some anti-virus software. A common example is the advertising library.

In addition, we explored the difference in renaming implementation between
malware and benign apps. The result reflects:

= 1. Malware authors prefer to use more complex renaming policies.
= 2. Malware may use irrelevant names to hide the true intention.

We find that, in benign apps (the samples on Google Play and third-party
markets), most identifier names are mapped to {a, b, aa, ab, aaa, ...} and so
on, in lexicographic order. In fact, such renaming rules accord with the default
configurations of many obfuscators (such as ProGuard). That is to say, app
developers do not intend to change the renaming rules to more ingenious ones.
However, malware authors usually put more effort into configuring the renaming
policies. For example, some malware samples utilize special characters (encoded
in Unicode) as obfuscated names (e.g., E, 6), which seems very odd but still
be regarded as legal by Java compilers. Also, some dazzling weird names (like
{1111, 00000000, . .. }) could be found. Such renaming policy can actually make
manual analysis more strenuous.

Apart from that, we find that overloading, as a grammar feature pro-
vided by Java, is also applied by malware to confuse analysts. In sample
tw.org.ncsist. mdm?, the name of overloaded function attachBaseContext
(A protected method in class android.app.Application) will mislead security
analysts because the logic of this function is actually implemented for encryption.

4.2 String Encryption

The strings in a .dex (Dalvik executable) file may leak a lot of private informa-
tion about the program. As security protection, those hard-coded texts can be
stored in an encrypted form to prevent reverse analysis. In this section, we take
a deep insight into the string encryption and focus on two aspects:

1. Detect whether an app uses the string encryption.
2. Analyze the cryptographic functions invoked by apps.

String Encryption Detection. Similar to the approach for identifier renam-
ing detection (Sect.4.1), we trained a machine-learning based model to classify
encrypted strings and plain-text strings. We reused the 3-gram algorithm, SVM
algorithm, and the open-source apps from F-Droid. Here we only describe the
different steps. At first, all strings appeared in an app are extracted. Next, a

4 MD5: 01a93£7e94531e067310c1ee0£083c07.

182 S. Dong et al.

vector was generated for each app. Distinct from the setting for identifier renam-
ing detection, there is no restriction on the content of a string. Therefore, we
extended the acceptable character set to all ASCII codes®.

In the implementation, we reused most code of identifier renaming detection
model. Since string encryption is not a common function provided by off-the-
shelf obfuscators, we chose DashO and DexProtector to generate the ground
truth and finally obtained 737 string-encrypted samples for training. To avoid the
overfitting caused by unbalanced data, we randomly selected 500 original apps
and 500 string-encrypted apps to train our model. To verify the effectiveness, we
randomly selected another 100 original apps and 100 string-encrypted apps for
testing. The result shows our model could achieve 98.5% success rate with FP
1% and FN 2%.

Cryptographic Function Detection. Previous work has proposed various
approaches to identify cryptographic functions in a program, like [23,28,34].
Those methods were specifically designed for the identification of the standard,
modern cryptographic algorithms in binary code, like AES, DES, and RC4. The
features used by the previous commonly include entropy analysis, searchable
constant patterns, excessive use of bitwise arithmetic operations, memory fetch
patterns and so on, besides, the dynamic binary instrument is also widely-used
by analysts to better locate and identify the cryptographic primitives. However,
previous approaches do not fit android platform very well due to three rea-
sons: (1) Smali instructions have different representations from the x86 assembly
language, especially for memory access. (2) Java provides the complete imple-
mentations of standard cryptographic algorithms through Java Cryptography
Extension [11]. Therefore, in most cases, developers do not need to implement
cryptographic related functions again. (3) Java provides a series of string & char-
acter operations, like concat (), substring(), getChars(), strim() and so on,
which can be used to build an encrypted string.

To better handle the identification in Android apps, we extended the previous
approaches with more empirical features, shown as below.

The ratio of bit and loop operations.

— The usage of Java Cryptography Extension API invoking.

— The amount of operations on string & character variables.

The frequency of encrypted strings as function parameters (for decryption).

Large-Scale Investigation and Findings. We applied our string encryption
detection model on the testing datasets. The results are presented in Fig. 3. The
direct findings are that:

= 1. Nearly all benign apps don’t use string encryption.
= 2. String encryption is more popular in malware.

5 Unicode codes can be represented in the form of \uzzzz, where zxzz is a 4-digit
hexadecimal number.

Understanding Android Obfuscation Techniques 183

Google Play Third-party Markets Malware

0.0% 0.1%
100.0% 99.9%

[Obfuscated (Encryption)
[Non-obfuscated (Encryption

Fig. 3. Ratio of string encryption in three datasets

These statistical results comply with our perception, and we could under-
stand it from three perspectives. (1) String encryption is not a common feature
provided by off-the-shelf obfuscators (Proguard). The obfuscators offering the
string encryption feature are expensive (DexGuard, DexProtector). (2) Many
developers may lack the knowledge or awareness of deploying more advanced
obfuscation techniques. They may believe the default identifier renaming is
enough for code protection and it is not necessary to consider other techniques.
(3) String encryption can help malware evade the signature scanning of some
anti-virus software and hidden the intention effectively, leading to a higher rate
of utilization than benign apps.

We then manually analyzed the implementations of cryptographic functions
extracted from malware set and got the following findings.

= The cryptographic functions usually disguise its true intention by changing
to an irrelevant name.

For instance, in sample com.solodroid.materialwallpaper®, the decryp-
tion function is disguised as a common legitimate API NavigationItem;->
getDrawable () which should be used for retrieving a drawable object.

= About 17.6% of string-encrypted malware implement multiple crypto-
graphic functions and take turns to use them in a single app.

In sample com.yandex.metrica’, four different cryptographic functions were
implemented. All of them first initialize the key, then doing the encryption/de-
cryption. However, the key initialization procedures are quite different from each
other. As a result, the workload of restoring rises significantly for analysts.

1| // In class com.yandex.metrica.impl.ad;
2| static final String a(String str){
3lif (¢ == null){

5 MD5: £ab2711b0b55eb980f44bfebc2c1 711,
" MD5: 95£7d37a60ef6d83ae7443a3893bb246.

184 S. Dong et al.

A al13840(); // key initialization function

o
[}

Continue

~
[}

[:> The secret keys can be either statically defined or dynamically generated.]

In the static case, the key is either hard-coded or directly imported as the
parameter, which can be easily located and obtained. On the other hand, the
dynamic key is usually generated at runtime and even could be fluctuating in
different runtime context, which is nearly impossible to be handled by static
analysis. The following code snippet shows an example of dynamic key genera-
tion, in which elements[3] is not a fixed value because of the uncertain stack
trace at runtime.

StackTraceElement [] elements = Thread.currentThread().
getStackTrace () ;

int hashCode = elements[3].getClassName ()+elements [3].
getMethodName () . hashCode () ;

[\

4.3 Reflection

Reflection allows programs to create, modify and access an object at runtime,
which brings many flexibilities. However, such dynamic feature also impedes
static analysis due to those reflective invocations, especially those invoking other
functions. Such uncertain behaviors could result in that the static analysis cannot
capture the real intention.

In this section, we explore two questions on reflection:

1. How widespread is the reflection used in the wild?
2. Among all the usage, how many of them are for the obfuscation purpose?

Reflection provides diverse APIs targeting at different objects like Class,
Method and Field. In practice, particular APIs are often executed in sequence
to achieve specific functionalities. In our study, we focus on the sequence pattern
[Class.forName() — getMethod() — invoke()] which is the most frequent
pattern for reflective calls mentioned by Li et al. [31]. Also, in this sequence,
the execution of the program is implicitly transferred to another function (the
function targeted by getMethod()), which has an obvious influence on program
status, especially the control flow.

Reflection Detection. First, we located the reflective invocations by searching
for the certain APIs, Class.forName(), etc. Then we managed to recover the
real target of the reflective calls, actually the parameters of Class.forName ()
and getMethod (). In theory, dynamic analysis is the best way to find the input
parameter. However, its low path coverage and efficiency issues are not suitable
for large-scale scanning. To balance the efficiency and coverage, we developed a

Understanding Android Obfuscation Techniques 185

light-weight tool to trace the input parameters. The high-level idea is to find the
real content of the parameters through backward slicing.

More details, first our tool scans the function body and locates two reflection
calls — Class.forName() and getMethod(). The parameter registers will be
set as slicing criterion. Then it traces back from the locations, analyzing each
instruction to find the corresponding slices. After that, this tool parses and
simulates each instruction in slices, and calculates the final value of the slicing
criterion.

Here, we use a real-world example (see the below code block) to illustrate
such work flow. In this case, our tool will mark the positions of blue-highlighted
reflective calls and trace the data flow of red-highlighted registers. The final
output would be {“android.os.SystemProperties”, “get”}.

const/4 vi, O

const-string ,’android.os.SystemProperties’

invoke-static ,Ljava/lang/Class;->forName (Ljava/lang/String
;)Ljava/lang/Class;

w N =

4| const-string , ’get’

5(...

6| invoke-virtual , , v3, Ljava/lang/Class;->getMethod(Ljava/
lang/String; [Ljava/lang/Class;)Ljava/lang/reflect/
Method;

Note that, to reduce the maintenance complexity, we do not carry out recur-
sive function invoking resolution. If the content of the target register is the return
value of another function, the metadata of that function will be recorded (name,
parameters, etc.). Besides, due to our tool works at the static level, predicates
(if and switch, etc.) may lead to the failure of recovering the real target. When-
ever the target can not be definitely obtained by our tool, a null will be recorded
instead. We then measured the successful recovery rate of our static-level tool.
Among all 121,262 occurrences of reflective calls, 116,595 (96.2%) non-null tar-
gets were recorded, which means our tool can work effectively.

Large-Scale Investigation and Findings. The implementation of our detec-
tion model (reflection usage and invoked functions in reflection) is still based on
Androguard with around 1600 Python lines of code. After experiments on our
APK dataset, the reflection statistics are shown in Fig. 4. We could find:

[ﬁ The proportions of reflection deployment in benign apps and malware are]
similar.

To the successfully recovered functions, we further explore why these reflec-
tion implementations are necessary. According to different APK dataset, the
most frequently invoked functions are listed in Tables2, 3, and 4 respectively.
These lists reflect:

= Most of the reflection cases are used to invoke hidden functions or to support
backward compatibility.

186 S. Dong et al.

Google Play Third-party Markets Malware

48.3% ' 49.7% ' 49.0%

[Reflection
[No Reflection

Fig. 4. Ratio of reflection in three datasets

Table 2. Functions invoked via reflection (Google Play)

Frequency Recovered Function
2,275 android.support.v4.content.LocalBroadcastManager.getInstance
1,297 android.webkit.WebView.onPause
1,250 android.os.SystemProperties.get
821 org.apache.harmony.xnet.provider. jsse.NativeCrypto.RAND_seed
523 com.google.android.gms.common.GooglePlayServicesUtil.

isGooglePlayServicesAvailable

Table 3. Functions invoked via reflection (3rd-p Market)

Frequency Recovered Function
3,859 android.os.SystemProperties.get
1,800 android.support.v4.content.LocalBroadcastManager.getInstance
1,158 org.apache.harmony.xnet.provider. jsse.NativeCrypto.RAND_seed
721 android.os.ServiceManager.getService
613 android.os.Build.hasSmartBar
Table 4. Functions invoked via reflection (malware)
Frequency Recovered Function
2,977 java.lang.String.valueOf
2,142 android.telephony.gsm.SmsManager.getDefault
687 android.os.SystemProperties.get
518 java.lang.String.charAt
352 java.lang.String.equals

Understanding Android Obfuscation Techniques 187

In Android system, the functions related to the Android framework and
OS itself are usually annotated with the label “@hide”, which can only be
called through reflection. In above three tables, all functions starting with
android.os.* and android.webkit.* are hidden-annotated.

We also manually checked the use case of android.support.vé4.content.
LocalBroadcastManager.getInstance. We found that the corresponding
reflective calls are usually enclosed in a try-catch block, aiming to handle the not-
found exception caused by discrepancy among systems with different versions.
Such pattern is a programming standard recommended by the official Android
documents [6].

To malware samples, we find:

= Compared with benign apps, malware prefers to use more complex reflec-
tion invoking patterns to hide its intentions.

= String operations are usually combined with reflection to enhance the com-
plexity of the code.

For example, the following code block is extracted from an obfuscated mal-
ware®. After analysis, the function invoked by reflection could be restored as:

1|if ('d.trim() .toLowerCase () .contains (0("G))OCH")))

As a comparison, the original code is shown below. In this case, all string
operations can be written in non-reflection forms. We could find such reflection
usage makes the code structure more complicated and confusing, which enhances
the effect of code obfuscation.

if (!((Boolean) Class.forName("java.lang.String").
getMethod ("contains", new Class({CharSequence.class}).
invoke (Class.forName (" java.lang.String").getMethod ("
toLowerCase", null).invoke(Class.forName("java.lang.
String") .getMethod ("trim", null).invoke(d, null), null)
, new Object[1{0("G))OCH")})).booleanValue())

5 Discussion

In this section, we discuss some limitations of our study and then describe the
future plan. Though we have conducted a large-scale investigation of mainstream
obfuscation techniques used in Android apps, we should point out there are still
some existing techniques not involved in our research, say control flow obfusca-
tion and native code obfuscation.

According to our investigation, the control flow obfuscation is non-universal
and only provided by two available Android obfuscators, DashO and Allatori.
Moreover, we believe both tools cannot provide a strong control flow obfusca-
tion implementation as they claimed. In our experiments, less than 5% methods

8 MD5: 7ff1b8afd22c1ed77ed70bfc04635315.

188 S. Dong et al.

contained in our sample APKs were obfuscated in the control flow, and the
obfuscation implementations were trivial (such as only adding some simple “try-
catch” combinations). Therefore, at this moment, we cannot capture enough
meaningful (real-world) control-flow obfuscated samples for study.

Another topic not involved in this paper is native code obfuscation. As an
advanced programming skill, developers can implement components in native
code with the help of Android NDK. However, the implementation of native
code is quite different from Java-level techniques, which makes the native code
obfuscation could be treated as an independent research topic. Therefore, we
leave it as our future study.

6 Related Work

Obfuscation is always a hot research topic in Android ecosystem, and there are
several studies performed on how to obfuscate Android apps effectively and how
to measure the obfuscation effectiveness.

6.1 Obfuscation Measurement and Assessment

Obfuscation techniques have been widely used in the Android app development.
Naturally, in academia, researchers are interested in whether these techniques
do work. An early attempt is [27] which empirically evaluates a set of 7 obfus-
cation methods on 240 APKs. Also, Park et al. [35] empirically analyzed the
effects of code obfuscation on Android app similarity analysis. Recently, Faruki
et al. [26] conducted a survey to review the mainstream Android code obfus-
cation and protection techniques. However, they concentrated on the technical
analysis to evaluate different techniques, not like our work based on a large-
scale dataset. They show that many obfuscation methods are idempotent or
monotonous. Wang et al. [41] defined the obfuscator identification problem for
Android and proposed a solution based on machine learning techniques. The
experiments indicated that their approach could achieve about 97% accuracy to
identify ProGuard, Allatori, DashO, Legu, and Bangcle. Duan et al. [25] con-
ducted a comprehensive study on 6 major commercial packers and a large set
of samples to understand Android (un)packers. On the aspect of deobfuscation
research, Bichsel et al. [22] proposed a structured prediction approach for per-
forming probabilistic layout deobfuscation of Android APKs and implemented
a scalable probabilistic system called DeGuard.

Different from above research, our work is based on large Android app
datasets which cover official Google play store, third-party Android markets,
and update-to-date malware families. We attempt to understand the distribu-
tion of Android obfuscation techniques and provide the up-to-date knowledge
about app protection.

Understanding Android Obfuscation Techniques 189

6.2 Security Impact of Android Obfuscation

As discussed earlier, the obfuscation will create barriers for Android program
analysis. Works on clone/repackage detection [40,42] find that obfuscations can
impair detection results.

Studies of malware detection also showed that obfuscation is an obstacle
to malware analysis. Rastogi et al. [37] evaluated several commercial mobile
anti-malware products for Android and tested how resistant they are against
various common obfuscation techniques. Their experiment result showed anti-
malware tools make little effort to provide transformation-resilient detection (in
the year 2013). After that, Maiorca et al. [33] conducted a large-scale experiment
in which the detection performance of anti-malware solutions are tested against
malware samples under different obfuscation strategies. Their results showed
the improvement of anti-malware engines in recent years. Recently, Hoffmann et
al. [29] developed a framework for automated obfuscation, which implemented
fine-grained obfuscation strategies and could be used as test benches for eval-
uating analysis tools. Similar works are also completed by Preda et al. [36].
To handle obfuscated samples, Suarez-Tangil et al. [39] propose DroidSieve, an
Android malware classifier based on static analysis and deep inspection that is
resilient to obfuscation.

For malware detection, researchers mainly discussed arms race between obfus-
cation and malware detection. Although some malware detection tools claim to
still work well in the presence of obfuscation, none could eliminate the obfusca-
tion effects in their experimental evaluation. Our study focuses on the empirical
study of security impacts of obfuscation in the wild from different views, which
are complementary to existing works. That is, we statistically evaluate the distri-
bution of obfuscation methods from views of different markets, hardening capa-
bility of obfuscations and temporal evolution, with a light-weight and scalable
obfuscation detection framework. We believe some of our findings would be use-
ful for developers and researchers to better understand the usage of obfuscation,
for example, keeping pace with the development of obfuscation technique.

7 Conclusion

In this paper, we concentrate on exploring the current deployment status of
Android code obfuscation in the wild. For this target, we developed specific
detection tools for three common obfuscation techniques and performed a large-
scale scanning on three representative APK datasets. The results show that,
to different techniques and app categories, the status of code obfuscation dif-
fers in many aspects. For example, the basic renaming obfuscation has become
widely-used among Chinese third-party market developers, while still not perva-
sive in Google Play market. Besides, malware authors put great efforts on more
advanced code protection skills, like string encryption and reflections. Also, we
provide the corresponding illustrations to enlighten developers to select the most
suitable code protection methodologies and help researchers improve code anal-
ysis systems in the right direction.

190 S. Dong et al.

Acknowledgement. We thank anonymous reviewers for their insightful comments.
This work was partially supported by National Natural Science Foundation of China
(NSFC) under Grant No. 61572415 and 61572481, Hong Kong S.A.R. Research Grants
Council (RGC) Early Career Scheme/General Research Fund No. 24207815 and
14217816.

References

1. smartphone assistant. http://zhushou.360.cn/

2. Allatori. http://www.allatori.com/

3. Androguard. https://github.com/androguard/androguard

4. Anzhi. http://www.anzhi.com/

5. Appchina. http://www.appchina.com/

6. Backward compatibility for android applications. https://android-developers.

googleblog.com/2009/04 /backward-compatibility-for-android.html

7. DashO. https://www.preemptive.com/products/dasho/overview

8. Dexguard. https://www.guardsquare.com/en/dexguard

9. DexProtector. https://dexprotector.com/

0. Huawei appstore. http://appstore.huawei.com/

1. Java Cryptography Extension. http://www.oracle.com/technetwork/java/javase/

downloads/jce8-download-2133166.html

12. n-gram. https://en.wikipedia.org/wiki/N-gram

13. Number of available applications in the Google Play Store from December 2009 to
December 2017. http://www.statista.com/statistics/266210/number-of-available-
applications-in-the-google-play-store/

14. ProGuard. http://proguard.sourceforge.net/

15. Shield4J. http://shield4j.com/

16. Virusshare. https://virusshare.com/

17. Virustotal. https://www.virustotal.com/

18. Wandoujia. https://www.wandoujia.com/

19. Xiaomi application store. http://app.mi.com/

20. Apvrille, A., Nigam, R.: Obfuscation in android malware, and how to fight back.
Virus Bull. 1-10 (2014)

21. Balachandran, V., Tan, D.J., Thing, V.L.: Control flow obfuscation for android
applications. Comput. Secur. 61, 72-93 (2016)

22. Bichsel, B., Raychev, V., Tsankov, P., Vechev, M.T.: Statistical deobfuscation of
android applications. In: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security (CCS) (2016)

23. Calvet, J., Fernandez, J.M., Marion, J.: Aligot: cryptographic function identifica-
tion in obfuscated binary programs. In: Proceedings of the 19th ACM Conference
on Computer and Communications Security (CCS) (2012)

24. Chen, K., Liu, P., Zhang, Y.: Achieving accuracy and scalability simultaneously
in detecting application clones on Android markets. In: Proceeding of the 36th
International Conference on Software Engineering (ICSE) (2014)

25. Duan, Y., et al.: Things you may not know about android (un)packers: a systematic
study based on whole-system emulation. In: Proceedings of 25th Annual Network
and Distributed System Security Symposium (NDSS) (2018)

26. Faruki, P., Fereidooni, H., Laxmi, V., Conti, M., Gaur, M.S.: Android Code Pro-
tection via Obfuscation Techniques: Past, Present and Future Directions. CoRR
abs/1611.10231 (2016)

http://zhushou.360.cn/
http://www.allatori.com/
https://github.com/androguard/androguard
http://www.anzhi.com/
http://www.appchina.com/
https://android-developers.googleblog.com/2009/04/backward-compatibility-for-android.html
https://android-developers.googleblog.com/2009/04/backward-compatibility-for-android.html
https://www.preemptive.com/products/dasho/overview
https://www.guardsquare.com/en/dexguard
https://dexprotector.com/
http://appstore.huawei.com/
http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html
http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html
https://en.wikipedia.org/wiki/N-gram
http://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
http://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
http://proguard.sourceforge.net/
http://shield4j.com/
https://virusshare.com/
https://www.virustotal.com/
https://www.wandoujia.com/
http://app.mi.com/

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Understanding Android Obfuscation Techniques 191

Freiling, F.C., Protsenko, M., Zhuang, Y.: An empirical evaluation of software
obfuscation techniques applied to Android APKs. In: Tian, J., Jing, J., Srivatsa,
M. (eds.) SecureComm 2014. LNICST, vol. 153, pp. 315-328. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-23802-9_24

Grobert, F., Willems, C., Holz, T.: Automated identification of cryptographic prim-
itives in binary programs. In: Sommer, R., Balzarotti, D., Maier, G. (eds.) RAID
2011. LNCS, vol. 6961, pp. 41-60. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-23644-0_-3

Hoffmann, J., Rytilahti, T., Maiorca, D., Winandy, M., Giacinto, G., Holz, T.:
Evaluating analysis tools for android apps: status quo and robustness against obfus-
cation. In: Proceedings of the Sixth ACM on Conference on Data and Application
Security and Privacy (CODASPY) (2016)

Huang, H., et al.: Android malware development on public malware scanning plat-
forms: a large-scale date-driven study. In: Proceeding of the 2016 IEEE Interna-
tional Conference on Big Data (BigData) (2016)

Li, L., Bissyandé, T.F., Octeau, D., Klein, J.: DroidRA: taming reflection to sup-
port whole-program analysis of android apps. In: Proceedings of the 25th Interna-
tional Symposium on Software Testing and Analysis (ISSTA) (2016)

Li, M., et al.: LibD: scalable and precise third-party library detection in Android
markets. In: Proceedings of the 39th International Conference on Software Engi-
neering (ICSE) (2017)

Maiorca, D., Ariu, D., Corona, I., Aresu, M., Giacinto, G.: Stealth attacks: an
extended insight into the obfuscation effects on Android malware. Comput. Secur.
51, 16-31 (2015)

Matenaar, F., Wichmann, A., Leder, F., Gerhards-Padilla, E.: CIS: the crypto
intelligence system for automatic detection and localization of cryptographic func-
tions in current malware. In: Proceeding of the 7th International Conference on
Malicious and Unwanted Software (MALWARE), 16-18 October 2012, Fajardo,
PR, USA (2012)

Park, J., Kim, H., Jeong, Y., Cho, S., Han, S., Park, M.: Effects of code obfuscation
on Android app similarity analysis. J. Wirel. Mob. Netw. Ubiquitous Comput.
Dependable Appl. 6(4), 86-98 (2015)

Preda, M.D., Maggi, F.: Testing Android malware detectors against code obfusca-
tion: a systematization of knowledge and unified methodology. J. Comput. Virol.
Hacking Tech. 13(3), 209-232 (2017)

Rastogi, V., Chen, Y., Jiang, X.: DroidChameleon: evaluating Android anti-
malware against transformation attacks. In: Proceedings of the 8th ACM Sympo-
sium on Information, Computer and Communications Security (ASIACCS) (2013)
Shu, J., Li, J., Zhang, Y., Gu, D.: Android app protection via interpretation obfus-
cation. In: Proceeding of the 12th IEEE International Conference on Dependable,
Autonomic and Secure Computing (DASC) (2014)

Suarez-Tangil, G., Dash, S.K., Ahmadi, M., Kinder, J., Giacinto, G., Cavallaro,
L.: DroidSieve: fast and accurate classification of obfuscated Android malware. In:
Proceedings of the Seventh ACM on Conference on Data and Application Security
and Privacy (CODASPY) (2017)

Wang, H., Guo, Y., Ma, Z., Chen, X.: WuKong: a scalable and accurate two-phase
approach to Android app clone detection. In: Proceedings of the 2015 International
Symposium on Software Testing and Analysis (ISSTA), Baltimore, MD, USA, 12—
17 July 2015 (2015)

https://doi.org/10.1007/978-3-319-23802-9_24
https://doi.org/10.1007/978-3-642-23644-0_3
https://doi.org/10.1007/978-3-642-23644-0_3

192

41.

42.

S. Dong et al.

Wang, Y., Rountev, A.: Who changed you? Obfuscator identification for Android.
In: Proceedings of the 4th IEEE/ACM International Conference on Mobile Soft-
ware Engineering and Systems (MOBILESoft) (2017)

Zhang, F., Huang, H., Zhu, S., Wu, D., Liu, P.: ViewDroid: towards obfuscation-
resilient mobile application repackaging detection. In: Proceedings of 7th ACM
Conference on Security & Privacy in Wireless and Mobile Networks (WiSec) (2014)

	Understanding Android Obfuscation Techniques: A Large-Scale Investigation in the Wild
	1 Introduction
	2 Background
	2.1 APK File Structure
	2.2 Android Obfuscation Characterization

	3 System Design
	3.1 System Overview
	3.2 APK Dataset

	4 Obfuscation Detection and Large-Scale Investigation
	4.1 Identifier Renaming
	4.2 String Encryption
	4.3 Reflection

	5 Discussion
	6 Related Work
	6.1 Obfuscation Measurement and Assessment
	6.2 Security Impact of Android Obfuscation

	7 Conclusion
	References

