
This paper is included in the Proceedings of the
32nd USENIX Security Symposium.

August 9–11, 2023 • Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium

is sponsored by USENIX.

Lost in Conversion: Exploit Data Structure Conversion
with Attribute Loss to Break Android Systems

Rui Li, School of Cyber Science and Technology, Shandong University; Key Laboratory
of Cryptologic Technology and Information Security, Ministry of Education, SDU;

The Chinese University of Hong Kong; Wenrui Diao and Shishuai Yang, School of
Cyber Science and Technology, Shandong University; Key Laboratory of Cryptologic

Technology and Information Security, Ministry of Education, SDU; Xiangyu Liu,
Alibaba Group; Shanqing Guo, School of Cyber Science and Technology, Shandong

University; Key Laboratory of Cryptologic Technology and Information Security,
Ministry of Education, SDU; Kehuan Zhang, The Chinese University of Hong Kong

https://www.usenix.org/conference/usenixsecurity23/presentation/li-rui

Lost in Conversion: Exploit Data Structure Conversion with Attribute Loss to
Break Android Systems

Rui Li∗†‡, Wenrui Diao∗†(B), Shishuai Yang∗†, Xiangyu Liu§, Shanqing Guo∗†, and Kehuan Zhang‡

∗ School of Cyber Science and Technology, Shandong University
leiry@mail.sdu.edu.cn, diaowenrui@link.cuhk.edu.hk

† Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, SDU
‡ The Chinese University of Hong Kong § Alibaba Group

Abstract
Inside the operating system, the processing of configura-

tion files tends to be complicated and involves various data
operation procedures. On Android, the processing of manifest
files (the principal configuration files of Android apps) corre-
lates to multiple core system mechanisms, such as permission
and component management. It is widely recognized that im-
properly configured manifest files can put apps at risk. Even
worse, we find that vulnerable configuration data processing
can be exploited by crafted manifest files to break the Android
system mechanisms, even achieving privilege escalation.

In this work, we systematically studied the Android mani-
fest processing procedures and discovered a new category of
vulnerabilities called the Evil Twins flaw. In brief, during the
processing of twin manifest elements (with the same name
but different attributes), the ill-considered data structure con-
version (e.g., from List to Map without considering the dupli-
cation issue) merges them into one item with attribute loss,
further resulting in system configuration inconsistency, i.e.,
potential security risks. To detect the Evil Twins flaw lying
in the Android OS, we designed an automated analysis tool,
TWINDROID, to identify the data structure conversions with
attribute loss and then manually confirm the vulnerabilities.
With TWINDROID, we assessed the code of AOSP Android
11 & 12. Finally, 47 suspicious methods were reported, and
four vulnerabilities were identified, which can be exploited
to achieve permission escalation and revoking prevention.
All discovered vulnerabilities have been acknowledged by
Google, and three CVE IDs have been assigned.

1 Introduction

The configuration files are critical for computer applications,
which describe how the system should enforce the manage-
ment policies. On the other hand, inside the operating system,
the processing of configuration files tends to be complicated
and involves various data operation procedures. Thus, for se-
curity, we need to ensure the correctness of both configuration
files and their subsequent processing.

On Android – the most popular smartphone platform, as
the principal app configuration file, the manifest file (i.e.,
AndroidManifest.xml) describes the essential information
about an app, such as contained components and requested
permissions [2]. The previous research has demonstrated
that app developers may misconfigure the manifest files of
their apps, for example, through declaring duplicate compo-
nents [25, 31] or misplacing attributes [31, 38]. Such miscon-
figuration may make their apps insecure, facing the risks of
component protection bypassing, app defrauding, and secret
data leakage. These studies give us a clue to consider the man-
ifest’s security impact on the Android OS level. On the other
hand, manifest files are constructed by app developers. Also,
it is closely related to multiple core Android mechanisms, like
permission registration and component management. Man-
ifest file bridges apps and the system, and the vulnerable
configuration data processing procedures against it could be
exploited to break the Android systems. However, the cor-
rectness of manifest parsing and processing was neglected by
most previous research.
Evil Twins Flaw. In this work, we systematically studied the
Android manifest processing procedures and discovered a new
category of vulnerabilities – the Evil Twins flaw. That is, when
the system processes the twin manifest elements (with the
same name but different attributes), the defective data struc-
ture conversion procedure converts (merges) them into one
item without considering the duplication issue. Meanwhile,
indispensable element attributes are lost, resulting in system
configuration inconsistency, i.e., potential vulnerabilities.

For instance, while processing the app’s permission declara-
tions in Android 11, the system parses the twin <permission>
elements and stores them in a List<ParsedPermission>
structure for recording the app’s own permission con-
figurations. Then, the system further converts its twin
ParsedPermission members and puts them into an
ArrayMap<permission-name, BasePermission> structure
for permission registration. Note that the List structure sup-
ports duplicate items. However, the Key part of ArrayMap
must be unique. Therefore, during List to ArrayMap, the

USENIX Association 32nd USENIX Security Symposium 5503

twin <permission> declarations are inconsiderately merged
into one item, and some essential attributes are lost, such as
permission protection level. As a result, the integrity of reg-
istered permission configurations is broken, and the app can
stealthily obtain dangerous system permissions.

The fundamental cause of the Evil Twins flaw is that the ill-
considered data structure conversion procedure with attribute
loss leads to system configuration inconsistency. To exploit
it, the attacker just needs to construct an app with a crafted
manifest file, which is a pretty low bar. However, its security
implications are severe, even leading to privilege escalation.
Flaw Detection. The Evil Twins flaw is a new category of logic
vulnerabilities, not a single or random bug. Our preliminary
investigation shows that the design of Android OS does not
consider the correctness of manifest processing procedures
comprehensively, especially the data structure conversions.
Also, the Android internal implementations of manifest pro-
cessing are quite complicated. Therefore, to detect the vulner-
abilities related to the Evil Twins flaw, we designed an auto-
mated static data-flow analysis tool – TWINDROID, against
the Android system code. Its high-level idea is to analyze the
processing procedures of manifest files and identify the data
structure conversion procedures with attribute loss.

After solving a series of technical challenges (e.g., state
space explosion and abstract method implementation), we
implemented a prototype of TWINDROID1 and deployed
it on the Android 11 &12 images of Pixel 3a (AOSP). Fi-
nally, it identified 47 suspicious processing methods asso-
ciated with ill-considered data structure conversions. Our
further manual checking and testing confirmed four vulnera-
bilities. Also, following the responsible disclosure policy, we
reported our discoveries to the Android security team, and all
of them have been confirmed and acknowledged. The conse-
quences of these vulnerabilities are severe, which can lead
to permission escalation (Vul#1: CVE-2021-39695, Vul#2:
CVE-2022-20392, and Vul#4: CVE-2023-20971) and permis-
sion revoking prevention (Vul#3: Android-ID-227340775).

Since our discovered vulnerabilities exist in AOSP, they
affect all downstream phone vendors. Especially, Vul#1 and
Vul#2 have been acknowledged by Samsung [19], Huawei [9,
10], Honor [7,8], realme [20], and LG [21]. According to their
security bulletins, around 271 models2 are affected (150 for
Samsung, 41 for Huawei, 20 for Honor, and 60 for realme).

The PoC attack demos of the above vulnerabilities can be
found at https://sites.google.com/view/eviltwins.
Contributions. The main contributions of this paper are:

• New security flaw. We discovered a new category of vul-
nerabilities lying in the Android manifest processing pro-
cedures – the Evil Twins flaw. That is, the ill-considered
data structure conversion procedure with attribute loss
leads to system configuration inconsistency.

1Source code: https://github.com/little-leiry/TwinDroid.
2LG did not provide the affected device list on the security bulletin.

• New analysis tool. We designed a static data-flow analy-
sis tool, TWINDROID, to discover the Evil Twins flaw. It
can automatically analyze the manifest processing pro-
cedures of the Android OS to identify suspicious data
structure conversions with attribute loss.

• Real-world vulnerabilities. With TWINDROID, we iden-
tified four vulnerabilities that can result in permission
escalation and revoking prevention. All of them have
been confirmed by Google, and CVE IDs were assigned.

Roadmap. The rest of this paper is organized as follows. Sec-
tion 2 provides the necessary background of Android manifest
processing. In Section 3, we give a motivation case and sum-
marize the Evil Twins flaw. Section 4 introduces the design of
our analysis tool – TWINDROID, and Section 5 summarizes
the detection results. Section 6 analyzes the discovered vul-
nerabilities in depth. Section 7 discusses other relevant bugs
and possible mitigation measures. Section 8 reviews related
work, and Section 9 concludes this paper.

2 Background

Here we provide the necessary background of manifest file
composition and processing procedures. Besides, we intro-
duce the threat model used in this paper.

2.1 Manifest File and Elements
Every app must have a manifest file (AndroidManifest.xml).
This file describes the essential configurations of the app to
the Android build tools, Android OS, and Google Play, such
as requested permissions, contained components, and required
hardware & software features [2]. Such configurations are
highly relevant to multiple Android critical mechanisms, such
as permission and inter-component communication.

A manifest file is composed of a set of XML elements, and
an element contains multiple attributes. For example, in List-
ing 1, it declares an activity that implements part of the app’s
visual user interface [12]. For this <activity> element, the
android:name attribute can be treated as the identifier of
it. In general, Android Studio does not allow app develop-
ers to use two same element types with the same name to
avoid ambiguity. According to the Android development doc-
umentation [16], other identifiers include android:tag and
android:process attributes.

1 <manifest ... >
2 <activity
3 android:name="com.example.TestActivity"
4 android:exported="false">
5 </activity >
6 ...
7 </manifest >

Listing 1: Example of an element in a manifest file.

5504 32nd USENIX Security Symposium USENIX Association

https://sites.google.com/view/eviltwins
https://github.com/little-leiry/TwinDroid

PPU

Extract Parse Process

PPU System Module

PPU ParsingPackageUtilsPPU ParsingPackageUtils

Package Setting
Construction

System Configuration
Update

Manifest Package Settings

 System
 Configurations

 System
 Configurations

Figure 1: Manifest processing procedure.

Among all manifest elements, permission-related ones are
closely related to security. On Android, sensitive resources
are protected by permissions, which can be defined by the
system (system permission) or third-party apps (custom per-
mission) through the <permission> elements [5,23]. Permis-
sions are divided into three primary protection levels: normal,
signature, and dangerous. The system grants a normal per-
mission to an app automatically. For the signature permis-
sion, the system grants it to the app that is signed by the same
certificates as the app defining it. Both of these two permis-
sion types are granted when installing an app. Thus, they
are also called install-time permissions. On the other hand,
dangerous permissions are granted by users at runtime, so
they are called runtime permissions. If an app requests a run-
time permission, the system will present a dialog asking the
user to decide, say allow or deny this request. Permissions can
belong to a permission group. Runtime permissions are man-
aged on a group basis. If an app has been granted a runtime
permission, it can get other runtime permissions belonging to
the same group (if requested) without user consent [15].

2.2 Manifest Processing Procedures

Here we overview the manifest file processing procedures of
the Android OS. As illustrated in Figure 1, while installing
a new app, the ParsingPackageUtils module (PPU for short)
extracts the manifest file from the app package and parses
each defined element to construct this package’s settings. Fur-
ther, based on these settings, other system modules update
corresponding system configurations.
Package Setting Construction. The configurations defined
in an app’s manifest file are first extracted to construct
the package settings. Specifically, for each manifest ele-
ment, PPU invokes the corresponding method to parse it
and stores the parsed data in the corresponding field of
the ParsingPackageImpl class. Take Listing 1 as an ex-
ample. During processing the <activity> element, PPU
invokes the parseActivityOrReceiver method to obtain
the corresponding ParsedActivity instance and add it to
the activities field of ParsingPackageImpl. Such a field
keeps the activity declarations of this app.
System Configuration Update. Next, other system modules
further process the data stored in package settings and update
corresponding system configurations. For example, based on

the above package setting activities, ComponentResolver
updates the system configuration mActivities, which main-
tains the activity registration information of the system.

2.3 Threat Model
In this study, we adopt a common threat model like previous
Android system vulnerability research [24, 33, 37, 38]. An
attacker builds a malicious app with the crafted manifest file
and releases it on various app markets. Note that defining
elements with the same type and name is not allowed by An-
droid Studio – the official IDE for Android app development,
and the compilation will report errors. However, it still can be
achieved through APK repackaging easily [32].

The victim user may install this "apparently harmless" app
on her phone. After running, this app exploits the system vul-
nerabilities (discovered by us) to conduct malicious actions,
such as privilege escalation and data theft.

3 The Evil Twins Flaw

As mentioned in Section 1, the previous research [25, 31, 38]
noticed the issue of developers’ misconfigurations on mani-
fest files, which will put apps at risk. Differently, our study
does not focus on the developers’ unsafe practices but on
the correctness of manifest processing procedures of Android
OS. Our investigation shows that the security implications
of manifest files can affect the OS level. Exploiting a crafted
manifest file, a malicious app can conduct various harmful
actions, even stealthily obtaining dangerous system permis-
sions. In this section, we present a concrete case discovered
by us on Android 11. Further, we discuss the cause behind –
the Evil Twins flaw.

3.1 Motivation Case
Here we demonstrate a concrete case in which a malicious
app with the crafted manifest file can achieve permission
escalation. This exploiting case has been confirmed and ac-
knowledged by the Android security team. They rated it
as High severity (Android-ID-209607944) and assigned
CVE-2021-39695.

Specifically, a malicious app, ATK-app, has a carefully
constructed manifest file, as listed in Block ① of Figure 2.
In this manifest, two custom permissions are defined with
the same name (com.example.cp), say Lines 1 & 5, respec-
tively. Their other attributes are different, including protec-
tion levels (dangerous v.s. signature|development3) and
groups (PHONE v.s. no group). Besides, ATK-app requests the
com.example.cp and CALL_PHONE4 permissions, say Lines 8
& 9, respectively. At this moment, we create the status of twin

3Appendix A.1 explains the reason for using signature|development.
4A dangerous system permission belonging to the PHONE group.

USENIX Association 32nd USENIX Security Symposium 5505

ParsingPackageImpl.java

List<ParsedPermission> permissions

ParsedPermission
-- com.example.cp

ParsedPermission
-- com.example.cp

permission name = com.example.cp
protection level = dangerous
group = PHONE
source package name = ATK-app

permission name = com.example.cp
protection level = signature|development
source package name = ATK-app

/* All of the permissions known to the system. The mapping is from permission name
 to permission object. */
ArrayMap<String, BasePermission> mPermissions

PermissionSettings.java

bp.perm: permission name = com.example.cp
 protection level = dangerous
 group = PHONE
 source package name = ATK-app

bp.protectionLevel: dangerous

bp.perm: permission name = com.example.cp
 protection level = dangerous
 group = PHONE
 source package name = ATK-app

bp.protectionLevel: signature|development

“com.example.cp”

⑦

⑤

⑥

1
2
3
4
5
6
7
8
9

<permission android:name="com.example.cp"
 android:protectionLevel= "dangerous"
 android:permissionGroup="android.permission-group.PHONE"/>

<permission android:name="com.example.cp"
 android:protectionLevel="signature|development"/>

<uses-permission android:name="com.example.cp"/>
<uses-permission android:name="android.permission.CALL_PHONE"/>

AndroidManifest.xml (of ATK-app)

①

③②

④

Figure 2: Motivation case – data structure conversion.

custom permission declarations (i.e., with the same name
but different attributes).

Once the victim user installs ATK-app on the phone running
Android 11, it can stealthily obtain the CALL_PHONE permis-
sion (dangerous system permission) without user consent,
say permission escalation.

3.2 Vulnerability Analysis

Based on the source code of Android 11, we further explored
the cause behind the above vulnerability and identified a new
class of design flaws lying in manifest processing procedures.
Permission Element Parsing. As illustrated in Figure 2,
during app installation, ParsingPackageUtils (PPU for short)
parses each declared permission in the manifest file and
constructs its corresponding ParsedPermission instance to
store this permission’s configuration data, including name,
protection level, grouping, and source package name. Then,
PPU adds these newly generated ParsedPermission items to
[List<ParsedPermission> permissions] (i.e., Block ④),
which stores all declared permission configurations of an app.

Since List can hold duplicate objects, in our exploit,
the twin custom permission declarations (with the same
name) correspond to two ParsedPermission instances in
permissions, as shown in Block ② & ③.
Permission Registering. After that, based on permissions,
PermissionManagerService (PMS for short) further updates
[ArrayMap<permission-name, BasePermission> mPer-
missions] (i.e., Block ⑤), which stores the information of all
declared permissions known to the system. This structure is
relevant to permission-related operations, such as permission
granting and revoking. Due to the uniqueness of the Key
part of ArrayMap, during updating mPermissions, PMS will
create or update the corresponding BasePermission instance
bp based on the permission name (Key of mPermissions).

Therefore, in our case, the twin custom permission declara-
tions correspond to one BasePermission instance, and some
of their attributes have to be eliminated. Specifically, for the
first declared com.example.cp permission in permissions,
since such a permission name (i.e., Key) cannot be found
in mPermissions, PMS will create a new BasePermission
instance bp (as shown in Block ⑥) and then add a new
item – {com.example.cp → bp} – to mPermissions. Next,
for the second declared com.example.cp permission, since
this permission name already exists in mPermissions, PMS
will update the corresponding bp. According to the up-
dating logic, PMS only updates bp.protectionLevel to
signature|development. As a result, the protection levels
stored in bp.perm and bp.protectionLevel are inconsis-
tent, as shown in Block ⑦.
Permission Status Update. After that, PMS iterates over
the existing packages to update the granting status of their
requested permissions. During this process, for each requested
permission (name), PMS determines its type based on the
value of its corresponding bp.protectionLevel.

In our case, for the request of the custom permission
com.example.cp in ATK-app (Line 8 of Block ①), since its
type is signature|developement (i.e., install-time permis-
sion), PMS will grant it to ATK-app automatically. For the re-
quest of the system permission CALL_PHONE (Line 9 of Block
①), since it is a dangerous permission, the system will per-
form runtime permission granting.

As mentioned in Section 2.1, granting runtime permis-
sions is group-based. The system will first confirm whether
ATK-app has obtained a granted dangerous permission be-
longing to the same group as the CALL_PHONE permission. To
achieve this, it needs to construct the permission-group map-
ping for ATK-app’s each requested permission. However, the
mapping data is obtained from the bp.perm corresponding
to each requested permission name. Therefore, the granted
com.example.cp will be treated as a dangerous permission
belonging to the PHONE group (see bp.perm in Block ⑦).
Further, since both com.example.cp and CALL_PHONE per-
missions are in the PHONE group, the CALL_PHONE permission
will be granted to ATK-app automatically.

5506 32nd USENIX Security Symposium USENIX Association

3.3 Flaw Summary and Detection

Evil Twins Flaw. In the above motivation case, Android 11
uses a List data structure – permissions – for storing the
raw permission configurations extracted from a newly in-
stalled app and an ArrayMap data structure – mPermissions
– for storing the registered permission information main-
tained by the system. However, for the twin <permission>
declarations, the data structure conversion from List to
ArrayMap causes the loss of protection level attributes due
to the uniqueness of the Key part in ArrayMap. It further
leads to the inconsistency of permission protection levels
and triggers permission escalation. Our further investiga-
tion shows that Android 12 does not have this vulnerabil-
ity. In Android 12, permission registration information is
stored in ArrayMap<permission-name, Permission>. The
Permission data structure eliminates inconsistent permission
protection levels. Comparing Android 11 with 12, we find that
the Android OS design does not comprehensively consider the
correctness of manifest processing procedures, especially the
correlation between data structures used to store the manifest
configurations. For the security-related twin elements, if their
essential attributes are lost during data structure conversions,
it may break the integrity of system configurations, resulting
in an exploitable vulnerability.

To generalize, when the system processes the twin mani-
fest elements, the defective data structure conversion proce-
dure converts (merges) them into a single item without con-
sidering the duplication issue. As a result, the indispensable
element attributes are lost, leading to system configuration
inconsistency. The twin elements mean they have the same
identifier (e.g., name) but different attributes. Therefore, we
call such a security issue the Evil Twins flaw. Also, it can be
exploited by a malicious app with the crafted manifest file
and affects various system configurations to compromise the
security mechanisms of the Android OS.
Automated Flaw Detection. Through the above analysis, we
can find that the Evil Twins flaw is a new category of logic vul-
nerabilities, not a single or random bug. The app manifest file
is a practical attack surface, which (malicious) app developers
can control. Besides, it bridges apps and the system, correlat-
ing multiple core management mechanisms of the Android
OS, as demonstrated in Section 2. Given the significance and
complexity of the manifest processing procedures, we believe
the discovered motivation case is just the tip of the iceberg.
Therefore, we need to design an automated detection tool to
detect Evil Twins flaw-related vulnerabilities.

The detection tool should be able to identify the data struc-
ture conversions with attribute loss by analyzing Android
OS’s manifest processing procedure implementations. Partic-
ularly, it should cover all processing procedures of all manifest
elements with all attributes. Considering the diversity of man-
ifest element types and processing procedures, we decided to
adopt the strategy of static analysis for code coverage.

Paths

New Base-units

Entry Base-units Paths

 Base-Set
 Initialization

 Base-Set
 Initialization

 Source Variable
 Tracing

 Source Variable
 Tracing

 Execution Path
 Generation

 Execution Path
 Generation

 Target Setting
 Filtering

 Target Setting
 Filtering

 Suspicious Method
 Identification

 Suspicious Method
 Identification

 Suspicious Processing
Methods

ParsingPackageUtils System-level ModulesAndroid OS Code

 Stage 1: Find Target Package Settings

Base-SetBase-Set

Base-unit Data Structure Info

Target Package
Settings

New Base-units

Entry Base-units

 Base-Set
 Initialization

 Base-Set
 Initialization

 Source Variable
 Tracing

 Source Variable
 Tracing

 Execution Path
 Generation

 Execution Path
 Generation

Base-SetBase-Set

Base-unitData Structure Info

Extract

 Stage 2: Identify Suspicious Processing Methods

Figure 3: Overview of TWINDROID.

4 Design of TwinDroid

This section introduces the detailed design of our static analy-
sis solution – TWINDROID. Its high-level idea is to analyze
the data processing procedures of manifest files and identify
the data structure conversion procedures with attribute loss.
In practice, since static analysis does not execute the code, it
is difficult to determine whether such a conversion can finally
lead to exploitable data inconsistency. Therefore, the output
of TWINDROID is a candidate set of suspicious methods pro-
cessing the manifest configuration data. We further need to
confirm the Evil Twins flaw manually based on the obtained
method information and the Android source code (see Sec-
tion 5.2). As illustrated in Figure 3, TWINDROID contains the
following two main stages.

Stage 1 Find target package settings. Firstly, TWINDROID
needs to find the package settings supporting du-
plicate elements, like [List<ParsedPermission>
permissions] shown in Block ④ of Figure 2. Pack-
age settings are constructed based on app manifest
files, which malicious developers can control.

Stage 2 Identify suspicious processing methods. Next, TWIN-
DROID identifies the suspicious processing methods
which access the target settings and cause attribute
loss due to data structure conversion.

USENIX Association 32nd USENIX Security Symposium 5507

4.1 Find Target Package Settings
As mentioned in Section 2.2, ParsingPackageUtils (PPU)
parses each element declared in an app’s manifest file to con-
struct the package settings. As discussed in Section 3.3, the
Evil Twins flaw exploits the ill-considered data structure con-
versions during processing twin elements. Therefore, we need
to find the package settings that can hold duplicate elements.
To achieve it, TWINDROID performs a path-sensitive data
flow analysis against the procedure of parsing app manifest
files. The approach is to trace the propagation of configuration
data (elements of manifest files) and obtain the corresponding
data structure types over the flow. The high-level analysis
logic of this stage is illustrated in Figure 3 - Stage 1. Here we
explain its core modules.
Base-Set Initialization. TWINDROID launches the analysis
with the initialization of Base-Set, a set of base-units that
need to be analyzed to trace the inter- & intra-procedural
variable propagation. Each base-unit is composed of 1) a
base-method to be analyzed, 2) a set of source variables to be
traced, and 3) element types associated with this base-method.
Different element types correspond to different parsing meth-
ods. For example, the <permission> element corresponds
to the parsePermission method. Thus, the element type as-
sociated with parsePermission is "permission". Base-Set
is initialized by the entry base-units, which specify the first
base-method to be analyzed and the first source variables to
be traced. TWINDROID locates entry base-units to activate
the whole analysis.

In this stage, the located entry base-units should represent
the initial step of parsing a manifest file. Therefore, TWIN-
DROID looks for entry base-units in the PPU module. An
entry base-unit contains the following values. Note that, there
may be multiple entry base-units meet these requirements.

• Base-method: the method invoking the openXmlResou-
rceParser method [13] with AndroidManifest.xml as
an input parameter.

• Source variables: the XmlResourceParser instances re-
turned from the openXmlResourceParser invocations.

• Associated element types: null. Since the entry base-
unit is the beginning of parsing a manifest file, it does
not have associated element types.

Execution Path Generation. For the base-method in each
base-unit, TWINDROID generates its execution paths for the
subsequent analysis. Particularly, TWINDROID first constructs
its control flow graph (CFG), and then, performs the depth-first
search against this CFG to generate execution paths.
Source Variable Tracing. After that, for each execution path,
TWINDROID traces the propagation of source variables. It
records the data structures that the manifest data (stored in
source variables) finally reaches. As summarized in Figure 4,
the tracing procedure contains four main steps, as follows.

 Data structures:

{ParseResult,
activity + intent-filter}

 Data structures:

{ParseResult,
activity + intent-filter}

(4)(4)

 Source variable set:

parser

 private static ParseResult<ParsedActivity>

 parseActivityOrAlias(..., XmlResourceParser

 parser, ...){

 ...

 final ParseResult result;

 if (parser.getName().equals("intent-filter")) {

 ParseResult<ParsedIntentInfoImpl>

 intentResult = parseIntentFilter(..., parser, ...);

 ...

 result = intentResult;

 }

 ...

 return input.success(activity);

 }

(2)

(2)

(1)

(3)

(2)

(2)

 Element types:

activity + intent-filter

 Element types:

activity + intent-filter

 Base-unit (currently analyzed):

 Base-method: [ParsedActivityUtils: ParseResult
 parseActivityOrAlias(ParsedActivity,
 ParsingPackage, String, XmlResourceParser,
 Resources, TypedArray, boolean, boolean, boolean,
 ParseInput, int, int, int)]

 Source variables: [XmlResourceParser parser]

 Associated element types: activity

 Base-unit (newly constructed):

 Base-method: [ParsedActivityUtils: ParseResult
 parseIntentFilter(ParsingPackage, ParsedActivity,
 boolean, boolean, Resources, XmlResourceParser,
 ParseInput)]

 Source variables: [XmlResourceParser parser]

 Associated element types: activity + intent-filter

(3)

 Passing variable set:

intentResult

 Passing variable set:

intentResult

 Passing variable set:

intentResult, result

 Passing variable set:

intentResult, result

 Passing variable set:

null

 Passing variable set:

null

Figure 4: Diagram of source variable tracing.

(1) Element type recording. To construct the correspon-
dence between the element’s configuration data and its final
reached data structures, TWINDROID keeps a record of the
associated element type during tracing source variables. The
manifest file is multi-layered, and an element may have sub-
elements. Thus, the recorded element type is the combination
of the associated element type (of the currently analyzed base-
unit) and the involved element type on the execution path.
For example, as shown in Figure 4, the recorded element type
is "activity + intent-filter".

(2) Source variable propagation. TWINDROID maintains
a source variable set and a passing variable set to trace the
source variable propagation along with the execution path.

• Source variable set: retain source variables and their
equivalent objects. This set keeps the original data all the
time to avoid missing them (due to variable redefinition)
during the tracing.

• Passing variable set: retain the variables that the mani-
fest data (stored in source variables) passes into.

When the variable in the above two sets passes through a
statement that can trigger variable propagation, TWINDROID
will adjust the corresponding variable set’s state. There are
two kinds of qualified statements: invocation and assignment.
They associate with two types of variables:

5508 32nd USENIX Security Symposium USENIX Association

Table 1: Variable propagation types of invocation and assignment statements.

Statement Variable Propagation Type Code Example Flow

Invocation

From the callee’s instance to its parameter. a.toArray(b); a→ b

From the callee’s one parameter to another. System.arraycopy(a, 0, b, 1, a.length); a→ b

From the callee’s parameter to its instance. a.put(b,c); b, c→ a

Assignment
From the variable at the right of the equal sign to the
variable at the left.

a = b + c; b, c→ a

a = Math.max(b, c); b, c→ a

The same as the invocation statement. z = a.addAll(b); b→ a

• Inflow variable: the variable flowing into an invocation
or assignment statement. Its number can be one or more.

• Outflow variable: the variable flowing out an invocation
or assignment statement. Its number only can be one.

Along with the execution path, the data propagates from
an inflow variable to another outflow variable. Table 1 lists
the basic variable propagation types. Combining the inflow
position of the inflow variable with the particular propagation
type, TWINDROID can determine its outflow variable and
further adjust the corresponding variable set5.

(3) New base-unit construction. When the traced variable
is passed into a method as a parameter, TWINDROID will
determine whether to construct a new base-unit based on
the existence of the method return value. This new base-
unit will be used for further inter-procedural variable tracing.
The return value of a method reflects the propagation result
of its parameters to some extent. Therefore, for the invoked
method without a return value, TWINDROID will construct a
new base-unit. For the one with a return value, TWINDROID
will construct a new base-unit only for some special methods
we are interested in. These special methods are determined
according to the Android source code logic. The composition
of a newly constructed base-unit is as follows.

• Base-method: the invoked method.

• Source variables: the variables passed into the invoked
method as parameters.

• Associated element types: the element types recorded
in step (1).

In addition, to avoid repetitious analysis, the base-units
with the same base-method, source variables, and associated
element types will only be constructed once.

(4) Data structure saving. As defined before, the pass-
ing variable set retains the variables that the manifest data
(stored in source variables) passes into. Therefore, when the
propagation of the variable in this set finishes, TWINDROID

5Appendix A.2 illustrates the specific adjustment rules.

saves its data structure and the corresponding element type.
If this variable is a class’s field, TWINDROID will save this
field’s complete information, including its name, type (data
structure), and source class name. For example, as shown
in Block ④ of Figure 2, for the permissions field in the
ParsingPackageImpl class, the saved information is "per-
missions + List<ParsedPermission> + ParsingPackageImpl".
Target Setting Filtering. When all base-units in Base-Set are
analyzed, according to the saved data structures, TWINDROID
filters the package settings supporting duplicate elements,
like [List<ParsedPermission> permissions]. The data
structure should satisfy the following three requirements.

• This structure represents the type of field belonging to
the ParsingPackageImpl class. As mentioned in Sec-
tion 2.2, this class stores the package settings.

• This structure can hold duplicate items, such as List,
Array, Stack, Queue, and the Value part of Map.

• The stored object (manifest element) in this structure
has multiple attributes, and one of them is related to an
element identifier, e.g., ParsedPermission.

4.2 Identify Suspicious Processing Methods
After obtaining the target package settings, in the second stage,
we try to identify the processing methods accessing these set-
tings and causing attribute loss due to the ill-considered data
structure conversion. To achieve this, similarly to Section 4.1,
TWINDROID performs a data flow analysis against the pro-
cessing procedures of the configuration data stored in target
package settings. As illustrated in Figure 3 - Stage 2, the over-
all analysis procedure is similar to Stage 1, and the following
steps are adjusted.
Base-Set Initialization. In this stage, the entry base-unit
should represent the initial step of accessing the configura-
tion data stored in the target package settings. These settings
are the fields of the ParsingPackageImpl class. Field can
be accessed by other classes directly or through invoking its
getter, which is the method for reading a variable value [1].
Therefore, at first, TWINDROID obtains the getters corre-
sponding to the target package settings. Then, TWINDROID

USENIX Association 32nd USENIX Security Symposium 5509

iterates through all system-level modules of the Android OS
to locate the entry base-units. The composition of each base-
unit is as follows.

• Base-method: the method that accesses the target pack-
age settings directly or by invoking their getters.

• Source variables: the variables that store the configura-
tion data from the target package settings.

• Associated element types: the element types correspond-
ing to the accessed target package settings.

Source Variable Tracing. There are two adjustments for step
(4) – data structure saving, as follows.

• Apart from saving information when variable propaga-
tion termination, since data removal also causes attribute
loss, TWINDROID saves the related data structures. Sup-
pose the variable in the passing variable set involves data
removal, such as being passed in the remove method as
a parameter (i.e., b.remove(c)). In that case, TWIN-
DROID will save the data structure of the variable with
information loss (i.e., b’s data structure).

• When saving data structures, apart from the element
types corresponding to them, TWINDROID also holds
their corresponding processing method, which is the cur-
rently analyzed base-method or its farthest ancestor on
the invocation chain.

Suspicious Method Identification. For the obtained data
structures, TWINDROID eliminates the ones that can hold du-
plicate objects and do not involve data removal. To the remain-
ing data structures, TWINDROID treats their associated pro-
cessing methods as suspicious. Finally, TWINDROID out-
puts these methods’ information, including methods’ names,
associated element types, and saved data structures.

For the suspicious processing methods identified by TWIN-
DROID, we will take an in-depth analysis to check whether
their affiliated data processing procedures can further lead to
exploitable configuration inconsistency vulnerabilities.

5 Evaluation and Results

To evaluate the security implications of the Evil Twins flaw,
we conducted a real-world evaluation. Here we summarize
our evaluation setup and results.

5.1 Implementation and Experiment Setup
Implementation. We implemented a prototype of TWIN-
DROID with around 6,100 lines of Java code. To facilitate the
analysis of TWINDROID, we integrated Soot [22], a frame-
work for analyzing and transforming Java code (including
Android). Our implementation is based on the Jimple IR –

Soot’s primary IR (intermediate representation). To improve
the analysis efficiency and accuracy of TWINDROID, we de-
ployed a series of optimization strategies on it, such as path
explosion avoiding and incorrect path pruning. More details
are provided in Appendix A.3.
Execution Environment. TWINDROID was deployed on
a powerful server with Intel Xeon Gold 6226R CPU @
2.90GHz and 256G RAM. The OS of the execution envi-
ronment is Ubuntu 20.04.3 LTS.

5.2 Results and Findings
Result Overview. In evaluation, we extracted the DEX files
under the /system/framework directory from the Android
11 (RQ3A.211001.001) & 12 (SP2A.220505.002) images of
Pixel 3a [18] for analysis. The execution time was around
1.5h per image. TWINDROID discovered 12 target package
settings supporting duplicate elements (Stage 1). These set-
tings correspond to 17 element types. Further, it identified 47
suspicious processing methods from 329,846 system methods
(Stage 2). Table 2 lists the evaluation results6 that can cause
security issues.

We manually checked the obtained suspicious process-
ing methods and found that six of them were false positives.
When constructing the package settings usesPermissions
and attributions, ParsingPackageUtils checks them in real-
time to avoid storing duplicate configuration data (with the
same element identifier). Thus, these package settings can-
not support duplicate elements in practice, but TWINDROID
marked them as target package settings. Further, TWINDROID
marked the methods processing these settings as suspicious
incorrectly. After excluding the false positives, we finally ob-
tained 41 suspicious processing methods corresponding to 8
target package settings and 10 element types.
Inconsistency Confirmation. As discussed in Section 4, due
to the limitation of static analysis, we need to manually con-
firm whether the suspicious processing methods can cause
risky system configuration inconsistency based on the ob-
tained method information and the Android source code. Dur-
ing this process, for the suspicious processing methods associ-
ated with the same element types, we follow the four analysis
steps: 1) figure out each method’s functionality based on its
name and context information (invocation chains); 2) based on
the Android source code, locate the code block of data struc-
ture conversion procedures to confirm the lost attributes in
each method; 3) find out correlative items (methods’ functions
or lost attributes) to determine whether they cause system con-
figuration inconsistency; and 4) build PoC app to verify the
discovered potential vulnerability.
Findings. Following the above procedure, we further an-
alyzed the identified 41 suspicious processing methods in
depth to confirm whether there exists the Evil Twins flaw. Note

6Due to the page limitation, the complete results are provided at https:
//github.com/little-leiry/TwinDroid/blob/main/Results.pdf.

5510 32nd USENIX Security Symposium USENIX Association

https://github.com/little-leiry/TwinDroid/blob/main/Results.pdf
https://github.com/little-leiry/TwinDroid/blob/main/Results.pdf

Table 2: Discovered suspicious processing methods† with security issues.

No. Suspicious Processing Method Target Package Setting Element Type Vul# Ver.‡

1 addAllPermissions List<ParsedPermission> permissions permission,
permission-tree

1, 2 11

2 addAllPermissionsInternal List<ParsedPermission> permissions permission,
permission-tree

2 12

3 revokeRuntimePermissionsIfGroup-
Changed

List<ParsedPermission> permissions permission,
permission-tree

2 11

4 revokeRuntimePermissionsIfGroup-
ChangedInternal

List<ParsedPermission> permissions permission,
permission-tree

2 12

5 hasPermission List<ParsedPermission> permissions permission,
permission-tree

3, 4 11, 12

6 addActivitiesLocked List<ParsedActivity> activities activity,
activity-alias

bug 11, 12

7 queryIntentActivitiesInternalBody List<ParsedActivity> activities activity,
activity-alias

bug 12

8 addReceiversLocked List<ParsedActivity> receivers receiver bug 11, 12

9 addServicesLocked List<ParsedService> services service bug 11, 12

†: The complete evaluation results are detailed at https://github.com/little-leiry/TwinDroid/blob/main/Results.pdf.
‡: The version of Android OS.

that, as shown in Table 2, multiple elements may correspond
to the same package settings. For example, in Item 1, both
the <permission-tree> and <permission> elements cor-
respond to the [List<ParsedPermission> permissions]
setting. That is to say, if the names of these two elements are
the same, they also will become the twin ParsedPermission
instances (with the same name) in permissions. Therefore,
in this case, the risk of the Evil Twins flaw also exists.

Eventually, we identified four exploitable inconsistency
cases, say security vulnerabilities. Though their concrete ex-
ploiting approaches are different, their causes can be classified
into the same problem – the data structure conversion with
attribute loss. Also, we reported our findings to the Android
security team, and all of them have been confirmed. The fol-
lowing section will discuss these vulnerabilities and their
practical exploits.

6 Vulnerabilities and Exploits

This section discusses the discovered vulnerabilities related to
the Evil Twins flaw and demonstrates their exploits. Note that,
if not otherwise specified, this section’s code logic analysis is
based on Android 12. The PoC attack demos can be found at
https://sites.google.com/view/eviltwins.

6.1 Break Permission Protection Levels
We re-discovered the motivation case described in Section 3.1
based on Item 1 of Table 2. Since its exploit and cause have

been demonstrated in Section 3, here we only summarize this
vulnerability under the framework of Evil Twins flaw.

Vul#1: During processing the twin <permission> ele-
ments, due to the data structure conversion with protection
level loss, the protection levels held by the system become
inconsistent, further resulting in permission escalation.

6.2 Break Permission-Group Mapping

In Table 2, Items 2 & 4 show the addAllPermissions-
Internal and revokeRuntimePermissionsIfGroupChang-
edInternal methods assess the [List<ParsedPermission>
permissions] setting. The former method is for registering
the app-declared permissions to the system during app instal-
lation or updating. The system performs most permission-
related management operations based on the registration in-
formation. The latter is for revoking runtime permissions if
their groups are changed during the app updating, which is
not allowed by Android [17]. Since runtime permission grant-
ing is group-based, if a granted runtime permission’s group
changes, the system will revoke its grant from apps to avoid
automatically getting other permissions in the new group.
However, we find that:

Vul#2: During processing the twin <permission> ele-
ments, due to the data structure conversion with grouping
loss, the permission-group mapping relationship becomes
inconsistent, further resulting in permission escalation.

USENIX Association 32nd USENIX Security Symposium 5511

https://github.com/little-leiry/TwinDroid/blob/main/Results.pdf
https://sites.google.com/view/eviltwins

Exploit. The adversary creates a malicious app app-etf2
which declares twin dangerous custom permissions with
the same name – com.example.cp – in its manifest file, as
shown in Listing 2. They are assigned to the STORAGE and
PHONE groups, respectively. Also, app-etf2 requests this cus-
tom permission and the CALL_PHONE permission (dangerous
system permission belonging to the PHONE group).

1 <permission
2 android:name="com.example.cp"
3 android:protectionLevel="dangerous"
4 android:permissionGroup="android.

permission -group.STORAGE" />
5 <permission
6 android:name="com.example.cp"
7 android:protectionLevel="dangerous"
8 android:permissionGroup="android.

permission -group.PHONE" />
9
10 <uses -permission
11 android:name="com.example.cp" />
12 <uses -permission
13 android:name="android.permission.

CALL_PHONE" />

Listing 2: Manifest file (part) of app-etf2.

Besides, the adversary prepares an updated version –
app-etf2-up. The only difference is the first declaration of
com.example.cp (Lines 1-4) is removed from the manifest.
� The victim user installs app-etf2 on her phone. While the
app is running, it presents a dialog to ask the user to grant it the
permission belonging to the STORAGE group, and she allows
it. Then, the user updates this app. During this procedure, the
com.example.cp is put into the PHONE group. However, its
granting state is not revoked. Further, app-etf2 obtains the
CALL_PHONE permission automatically without user consent.
Cause Analysis. As illustrated in Figure 5, when installing
app-etf2, ParsingPackageUtils (PPU) parses its declared
permissions (Lines 1-4 & 5-8 of Listing 2), and further,
PermissionManagerService (PMS) registers them in the
system. Specifically, PMS obtains the permission data
from [List<ParsedPermission> permissions] and puts
the processed data into [ArrayMap<String, Permission>
mPermissions] (the {permission name → permission
configurations} mapping). For the twin com.example.cp
permissions, mPermissions retains the former’s data (Lines
1-4). The latter is neglected because PMS treats it as a dupli-
cate declaration. When granting com.example.cp, the system
gets its configuration data from mPermissions. Therefore,
com.example.cp will be treated as a dangerous permission
belonging to the STORAGE group.

Similarly, when installing the updated version – app-etf2
-up, PPU parses this new package. Then, PMS registers
its declared permission in the system. At this moment,
the group com.example.cp belonging to is updated to

<permission-tree android:name="com.example.cp" />

<permission android:name="com.example.cp"/>

AndroidManifest.xml

<permission-tree android:name="com.example.cp" />

<permission android:name="com.example.cp"/>

AndroidManifest.xml

List<ParsedPermission>
 permissions

ParsedPermission
- name: com.example.cp
- tree: false

ParsedPermission
- name: com.example.cp
- tree: true

List<ParsedPermission>
 permissions

ParsedPermission
- name: com.example.cp
- tree: false

ParsedPermission
- name: com.example.cp
- tree: true

Yes

tree == true?
ArrayMap<String, String>

oldPermissionNameToGroupName
No

ArrayMap<String, Permission>
mPermissions

ArrayMap<String, Permission>
mPermissionTrees

Yes

tree == true?
ArrayMap<String, String>

oldPermissionNameToGroupName
No

ArrayMap<String, Permission>
mPermissions

ArrayMap<String, Permission>
mPermissionTrees

Figure 5: Data structure conversion of <permission-tree>
and <permission> elements.

PHONE. Next, PMS judges whether this app update in-
volves group changing of runtime permissions. To achieve
this, PMS obtains the permission configurations from
permissions of previously installed app-etf2 and puts
the processed data into [ArrayMap<String, String>
oldPermissionNameToGroupName], which reflects the
{permission name → group name} mapping. For the
declared twin com.example.cp permissions in app-etf2,
oldPermissionNameToGroupName retains the latter’s data
without duplication detection (Lines 5-8). Therefore, PMS
believes that the group com.example.cp belonging to does
not change (always be PHONE) and will not revoke the existing
permission granting.
Impact. This vulnerability has been acknowledged by Google
with rating High severity (Android-ID-213323615), and a
CVE ID has been assigned: CVE-2022-20392.

6.3 Break Permission Registration Status
In Item 5 of Table 2, the hasPermission method accesses
[List<ParsedPermission> permissions]. This method is
for judging whether an app declares a permission (or per-
mission tree7) with the given name. This judgment result is
related to updating permission (or permission tree) registra-
tion data in the system and revoking granted permissions.

The Android OS maintains two Map-type data structures
– [ArrayMap<String, Permission> mPermissions] and
[ArrayMap<String, Permission> mPermissionTrees] –
to store the permission and permission tree registration infor-
mation, respectively. As illustrated in Figure 5, when parsing
the manifest file of an installed app, for both <permission>
and <permission-tree> elements, PPU creates their
corresponding ParsedPermission instances and puts them

7An app can declare the base name for a tree of permissions through the
<permission-tree> element. This app takes ownership of all names within
the tree. Note that this element does not declare a permission itself, only a
namespace where further permissions can be placed [14].

5512 32nd USENIX Security Symposium USENIX Association

into this app’s [List<ParsedPermission> permissions].
The difference is that, for <permission-tree>, the tree
field of its ParsedPermission instance is true. Next, PMS
further processes the data in [List<ParsedPermission>
permissions] and puts them into [ArrayMap<String,
Permission> mPermissions] (if tree == false) or
[ArrayMap<String, Permission> mPermissionTrees]
(if tree == true).

During app update, if the updated version no longer de-
clares some permission (i.e., this permission’s definition is
removed from the system), PMS will revoke the grants of
this permission from the corresponding apps and remove its
Permission instance from mPermissions. To achieve this,
PMS invokes hasPermission to judge whether the updated
app still declares certain permission. However, we find that:

Vul#3: Due to the tree attribute loss during the data struc-
ture conversion (method invocation), the <permission-
tree> element is confused with the <permission> element,
further resulting in the incorrectness of permission regis-
tration status in the system.

Exploit. The adversary prepares a malicious app app-etf3
declaring a permission tree and a normal custom permission
with the same name (com.example.cp), as shown in Listing 3.
This app also requests the com.example.cp permission. Note
that, declaring different element types with the same name is
allowed by Android Studio.

1 <permission -tree
2 android:name="com.example.cp" />
3 <permission
4 android:name="com.example.cp"
5 android:protectionLevel="normal" />
6
7 <uses -permission
8 android:name="com.example.cp" />

Listing 3: Manifest file (part) of app-etf3.

The adversary also prepares an updated version of this app
– app-etf3-up. It removes the permission declaration (Lines
3-5) from its manifest file.
� The victim user installs app-etf3, and the system grants it
the normal-level com.example.cp permission automatically.
Then, she updates app-etf3 with app-etf3-up. After up-
dating, the original declaration of com.example.cp has been
removed from the system. However, this permission is not
revoked from app-etf3-up, and the system still holds its
registration information.

The residue of permission registration data will also lead
to potential app installation failure. The Android OS does
not allow an app to declare a permission with the same name
as an existing permission registered in the system, unless
this app and the app defining this permission are signed with
the same certificate [6]. Thus, if another app re-declares the

com.example.cp permission, but with a different certificate,
its installation will not be allowed.
Cause Analysis. As mentioned before, the ParsedPermi-
ssion members of [List<ParsedPermission> permissi-
ons] can be constructed through two types of elements –
<permission> and <permission-tree>. Their correspond-
ing ParsedPermission instances can be distinguished
through the value of ParsedPermission.tree. However,
the hasPermission method only judges whether there ex-
ists a ParsedPermission instance with the given name in
permissions, then returns true / false. That is, during the
judgment, the tree label is not touched, and its carried neces-
sary data is lost. Also, the boolean-type return value cannot
indicate if the true / false corresponds to a permission or a
permission tree.

During app updating, since the permissions of
app-etf3-up still holds a ParsedPermission instance
with the name com.example.cp (from the permission tree),
PMS misjudges that it still declares the com.example.cp
permission. Further, PMS will not revoke the granted
com.example.cp from app-etf3-up and not remove the
corresponding Permission instance from mPermissions.
Impact. This vulnerability has been acknowledged by Google
with rating Low severity (Android-ID-227340775).

6.4 Break Permission Granting Status

During the cause analysis of Vul#3, we discovered another
vulnerability by chance. It also exists in the processing pro-
cedures against the <permission> and <permission-tree>
elements. Though its cause cannot be boiled down to the de-
fective data structure conversions directly, its exploits also
could be achieved through the twin elements.

Recall the case of permission declaration removal de-
scribed in Section 6.3. Similarly, if the original definition of
a permission tree is removed during the app update, PMS
will remove its corresponding Permission instance from
[ArrayMap<String, Permission> mPermissionTrees].

Besides, the app uninstallation may also involve the re-
moval of permission (or permission tree) declarations. It will
further trigger the adjustment of permission (or permission
tree) registration data and granting status. Specifically, dur-
ing the app uninstallation, if this uninstalled app declares
some permissions or permission trees, PMS will remove their
corresponding Permission instances from mPermissions or
mPerimissionTrees and revoke the corresponding permis-
sion grants. However, we find that:

Vul#4: Due to the inconsistency of data structure mem-
ber adding and removing during processing twin ele-
ments, the <permission-tree> element is confused with
the <permission> element, further resulting in the incor-
rectness of permission granting status in the system.

USENIX Association 32nd USENIX Security Symposium 5513

Exploit. The adversary constructs two malicious apps –
app-etf4-d and app-etf4-r (their signing certificates can
be the same or not). The former app defines a permis-
sion tree and a normal permission with the same name –
com.example.cp, as shown in Listing 4. The latter app re-
quests the com.example.cp and CALL_PHONE permissions.

1 <permission -tree
2 android:name="com.example.cp" />
3 <permission
4 android:name="com.example.cp"
5 android:protectionLevel="normal" />

Listing 4: Manifest file (part) of app-etf4-d.

The adversary also prepares an updated version of
app-etf4-d, named app-etf4-d-up. This updated version
re-declares a dangerous com.example.cp permission and
puts it into the PHONE group, as shown in Listing 5.

1 <permission
2 android:name="com.example.cp"
3 android:protectionLevel="dangerous"
4 android:permissionGroup="android.

permission -group.PHONE"/>

Listing 5: Manifest file (part) of app-etf4-d-up.

� The victim user installs both app-etf4-d and app-etf4-r
on her phone. At this moment, app-etf4-r is granted the
normal com.example.cp permission automatically. Then,
app-etf4-d crashes on purpose frequently and induces the
user to uninstall the current version and re-install an updated
one. After app-etf4-d-up is installed, app-etf4-r obtains
the CALL_PHONE permission silently without user consent.
Cause Analysis. When installing app-etf4-d, PMS creates
two Permission instances for the declared permission and
permission tree. Then, these two instances are added to
[ArrayMap<String, Permission> mPermissions] and
[ArrayMap<String, Permission> mPermissionTrees],
respectively. Since the declared permission and permission
tree have the same name, both mPermissions and mPermi-
ssionTrees have a Permission instance corresponding to
the name com.example.cp.

During uninstalling app-etf4-d, PMS updates the permis-
sion and permission tree registration data. It first should adjust
mPermissionTrees. However, during this procedure, PMS
incorrectly removes the Permission instance (correspond-
ing to com.example.cp) from mPermissions. Next, PMS
adjusts mPermissions. At this time, there no longer exists
a Permission instance corresponding to com.example.cp
in mPermissions. Therefore, PMS will mistakenly assume
that the com.example.cp permission is not registered in the
system. Then PMS will not revoke it from app-etf4-r even
if its original definition and permission registration have been
removed from the system.

After re-installing the updated version of app-etf4-d,
say app-etf4-d-up, the com.example.cp permission is re-
added to the system as a dangerous permission belong-
ing to the PHONE group. Therefore, app-etf4-r gets the
CALL_PHONE permission in the same group automatically.
Discussion. After analyzing the Android source code,
we found that only the app uninstallation can trigger
PMS incorrectly removing the Permission instance from
mPermissions. Therefore, the exploit of this vulnerability
cannot be completed through the app update.
Impact. This vulnerability has been acknowledged by Google
with rating Moderate severity (Android-ID-225880325).
They commented that: "We applied a -1 modifier due to this
vulnerability requiring non-trivial and unlikely user actions."
A CVE ID has been assigned: CVE-2023-20971.

7 Discussion

Here, we discuss other Evil Twins flaw-related issues that do
not directly affect the Android OS security. Besides, we pro-
pose some possible improvements to the Android OS and
discuss the limitations of our work.

7.1 Other Relevant Bugs
As summarized in Section 5.2, TWINDROID finally iden-
tified defective data structure conversions related to 10 el-
ement types. However, all our reported vulnerabilities are
permission-related. The reason is that the permission mech-
anism is closely tied to system security. Permission-related
vulnerabilities often have direct exploit targets, such as achiev-
ing privilege escalation. For other element types, part of them
cannot result in exploitable system configuration inconsis-
tencies because the operation sites of their suspicious meth-
ods are different. For example, both preparePackageLI and
addAllPermissionGroupsInternal methods correspond to
the <permission-group> element and are marked as suspi-
cious. The former method is for blocking the installation of
the app declaring an existing permission group, and the latter
is for permission group registration after app installation.

The rest element types have limited effects. TWINDROID
discovered a case that only affects app security via Items 6 &
7 in Table 2. In brief, while processing the twin <activity>
elements defined in apps, due to the data structure conversion
with protection-related attribute loss, the {app component
→ protection status} mapping becomes inconsistent, fur-
ther resulting in bypassing app’s component protection.

In previous work, Aafer et al. [25] first reported a Sam-
sung app’s bug, which declares duplicate receivers with dif-
ferent protections. Since the second declaration of the com-
ponent name replaces the first one, the first receiver’s per-
mission protection is bypassed, making the app vulnerable.
They attributed this problem to the misconfiguration intro-
duced by vendor customization. In fact, the corresponding

5514 32nd USENIX Security Symposium USENIX Association

manifest processing procedures are also vulnerable. Back
to our case, the activity declarations are converted from
List<ParsedActivity> into ArrayMap<ComponentName,
ParsedActivity> and ArrayMap<String, F[]> with pro-
tection loss, resulting in inconsistent component protection
status. Exploiting the Evil Twins flaw, the component protec-
tion can be bypassed whether it is put on the first or second
component. Appendix A.4 provides a detailed analysis. We
reported this issue to the Android security team. After assess-
ing, they did not recognize it as a vulnerability and labeled it
Won’t Fix (Intended Behavior) – Android-ID-237404762.
They commented that: "If a component is intended to be pro-
tected, it is the developer’s responsibility to ensure that there
are no declarations to the contrary."

Although our discovered vulnerabilities are permission-
related, the Evil Twins flaw demonstrates the security risk in
manifest processing procedures. Its potential impacts will be
widespread if other security-related processing methods or
element types are introduced with Android evolution.

7.2 Mitigation

Google’s Fixes. Google has released the patches of Vul#1 &
#2. For Vul#1, Google adjusted the update logic mentioned
in Section 3.2 to eliminate the inconsistent permission protec-
tion levels stored in bp.perm and bp.protectionLevel [3].
For Vul#2, Google blocked the installation of apps declar-
ing duplicate permissions with different protection levels or
groups [4]. Google’s fixes only introduced small code changes
to block specific steps of our reported attack flows, not cover-
ing Vul#3 & #4 (exploiting permission and permission tree).
Android 12 and later versions still face the security threats of
the Evil Twins flaw.
Lessons to Learn. The Evil Twins flaw-related issue can cause
severe implications. For Google and OEMs, to eliminate this
flaw thoroughly and prevent its recurrence, they need to follow
a general principle: avoid potential information loss during
processing configuration data. It can be achieved as follows:

(1) Android OS Design. In the design or customization of
the Android OS, the system should perform a duplication
check when installing an app to ensure the uniqueness of
configuration data. Besides, the same type of data should
not be stored in different locations to avoid inconsistency,
and different types of data should not be stored in the same
location to avoid information loss.

(2) App Development and Distribution. Android Studio
should deploy a more comprehensive duplication check cov-
ering different element types. Google Play and third-party
app markets also should check app manifest files to forbid the
distribution of apps declaring twin elements.

For app developers, they should avoid defining multiple
elements with the same name, even for different element types.
Such elements may be an attack vector for exploiting the Evil
Twins flaw.

7.3 Limitations
Suspicious Methods. To detect the Evil Twins flaw, we de-
signed TWINDROID to analyze the Android system code
statically. Our analysis results are coarse-grained. Due to the
complexity of the Android OS and the limitation of static
analysis [26], we filtered out a set of suspicious methods as
vulnerability clues rather than directly locating the procedures
that can cause risky data inconsistency. The identified vul-
nerabilities still need manual efforts. On another aspect, only
41 suspicious methods were left from around 330,000 sys-
tem methods. Combing with the method-related information
output by TWINDROID, the manual efforts are acceptable.
Results Accuracy. Since the static analysis does not execute
code, our evaluation results cannot guarantee complete accu-
racy. As mentioned in Section 5.2, due to the diversity of code
implementations, TWINDROID cannot determine whether the
system performs the duplication checking in the data struc-
tures supporting duplicate objects. It may cause false positives,
but they can be easily excluded from the final results.

8 Related Work

Here we review the related work on Android configuration
and custom permission security.
App Misconfiguration. Aafer et al. [25] detected security
configuration changes introduced by Android customization
via comparing various ROMs and presented an insecure du-
plicate components declaration case in a Samsung app (as
discussed in Section 7.1). They attributed this case to devel-
opers’ non-safe practices, but it gives us a clue to consider
the manifest’s security impact on the Android OS level. Jha
et al. [31] reported various types of mistakes committed by
developers in writing Android manifest files. They also dis-
cussed the duplicate components declaration issue. Han et
al. [28] proposed a logic-based approach to discover mis-
configuration vulnerabilities in Android manifest files and
demonstrate that misconfiguration in app development is com-
mon. Scoccia et al. [36] conducted an empirical study of 574
GitHub repositories of open-source Android apps and found
that permission-related issues are common in Android mani-
fest files. Most recently, Yang et al. [38] proposed ManiScope
to detect manifest misconfiguration by constructing manifest
XML Schema. ManiScope identified 33.20% misconfigured
Android apps on Google Play and 35.64% misconfigured
preinstalled apps from 4,580 Samsung firmware images.

Unlike the above studies, our work focuses on the manifest
processing procedures of the Android OS, not developers’
misconfigurations. Also, we discovered a design flaw – the
Evil Twins flaw, lying in the Android OS and built the corre-
sponding detection tool – TWINDROID, targeting the code of
the Android OS.
System Misconfiguration. On the Android OS level, Zhou
et al. [40] designed ADDICTED, a tool that automatically de-

USENIX Association 32nd USENIX Security Symposium 5515

tects certain types of flaws in custom driver protection. Aafer
et al. [24] investigated hanging attribute references (Hares)
caused by Android customization. They implemented Hare-
hunter and found 21,557 possible Hare flaws. Other related
analysis works also include bootloader vulnerabilities [29],
Android service security [30, 39], residual API security [27],
and large-scale firmware measurement [35]. Again, our work
does not focus on the misconfiguration issues of vendor cus-
tomization but on the design flaw of the Android manifest
processing procedures.
Custom Permission Security. Our discovered vulnerabilities
demonstrated that the manifest file can affect the Android OS
security beyond the app, especially the custom permission
mechanism security. Tuncay et al. [37] manually discovered
two custom permission-related vulnerabilities caused by the
inadequate isolation between the system and custom permis-
sions. Their main contribution is proposing a new modular
design for the permission model. Li et al. [33] systematically
studied the security implications of the custom permission
mechanism and developed CuPerFuzzer to detect its design
flaws. Unlike these works, our study does not focus on the de-
sign of the custom permission mechanism but on the security
implications of manifest processing procedures, especially
the data structure conversion. Also, considering the huge
state space of manifest element combinations, we selected
static analysis for code coverage instead of dynamic analy-
sis, like fuzzing. Though our discovered vulnerabilities are
permission-related, the Evil Twins flaw can also affect other
element configurations (see Section 7.1).

9 Conclusion

In this work, we systematically studied the Android manifest
processing procedures and discovered a new category of vul-
nerabilities called the Evil Twins flaw. Exploiting this flaw, a
malicious app can perform harmful actions, even permission
escalation. To detect the Evil Twins flaw, we designed an auto-
mated static analysis tool – TWINDROID, and discovered four
vulnerabilities in the real-world evaluation. Our findings have
been confirmed by Google and assigned CVE-2021-39695,
CVE-2022-20392, and CVE-2023-20971. We also proposed
mitigation measures against our discovered issues.

Acknowledgements

We thank the anonymous reviewers for their insightful com-
ments. We also thank Haojin Zhu for the helpful discus-
sions. This work was partially supported by Taishan Young
Scholar Program of Shandong Province, China (Grant No.
tsqn202211001). Kehuan Zhang was partially supported by
Hong Kong S.A.R. Research Grants Council (RGC) General
Research Fund No.14209720.

References

[1] Adding Setter and Getter Methods. https://docs.o
racle.com/javaee/6/tutorial/doc/gjbbp.html.

[2] App Manifest Overview. https://developer.androi
d.com/guide/topics/manifest/manifest-intro.

[3] Bug: 209607944. https://android.googlesource
.com/platform/frameworks/base/+/b5efdf7293
85cc54f225496d3ba20f1cb5b68250.

[4] Bug: 213323615. https://android.googlesource
.com/platform/frameworks/base/+/548edbb850
227e076735615f83f8e23352b0b82d.

[5] Define a custom app permission. https://developer.
android.com/guide/topics/permissions/defin
ing.

[6] Define and enforce permissions: Naming convention.
https://developer.android.com/guide/topics
/permissions/defining#naming.

[7] Honor Magic UI Security Update, March 2022. https:
//www.hihonor.com/global/support/bulletin/
2022/3/.

[8] Honor Magic UI Security Update, September 2022. ht
tps://www.hihonor.com/global/support/bulle
tin/2022/9/.

[9] HUAWEI EMUI/Magic UI security updates April 2022.
https://consumer.huawei.com/sa-en/support/
bulletin/2022/4/.

[10] HUAWEI EMUI/Magic UI security updates January
2023. https://consumer.huawei.com/en/support
/bulletin/2023/1/.

[11] Intents and Intent Filters. https://developer.andr
oid.com/guide/components/intents-filters.

[12] Introduction to activities. https://developer.andr
oid.com/guide/components/activities/intro-a
ctivities.

[13] openXmlResourceParser. https://developer.andr
oid.com/reference/android/content/res/Asse
tManager#openXmlResourceParser(int,%20java.
lang.String).

[14] <permission-tree>. https://developer.android.co
m/guide/topics/manifest/permission-tree-ele
ment.

[15] Permissions on Android. https://developer.andr
oid.com/guide/topics/permissions/overview.

5516 32nd USENIX Security Symposium USENIX Association

https://docs.oracle.com/javaee/6/tutorial/doc/gjbbp.html
https://docs.oracle.com/javaee/6/tutorial/doc/gjbbp.html
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/guide/topics/manifest/manifest-intro
https://android.googlesource.com/platform/frameworks/base/+/b5efdf729385cc54f225496d3ba20f1cb5b68250
https://android.googlesource.com/platform/frameworks/base/+/b5efdf729385cc54f225496d3ba20f1cb5b68250
https://android.googlesource.com/platform/frameworks/base/+/b5efdf729385cc54f225496d3ba20f1cb5b68250
https://android.googlesource.com/platform/frameworks/base/+/548edbb850227e076735615f83f8e23352b0b82d
https://android.googlesource.com/platform/frameworks/base/+/548edbb850227e076735615f83f8e23352b0b82d
https://android.googlesource.com/platform/frameworks/base/+/548edbb850227e076735615f83f8e23352b0b82d
https://developer.android.com/guide/topics/permissions/defining
https://developer.android.com/guide/topics/permissions/defining
https://developer.android.com/guide/topics/permissions/defining
https://developer.android.com/guide/topics/permissions/defining#naming
https://developer.android.com/guide/topics/permissions/defining#naming
https://www.hihonor.com/global/support/bulletin/2022/3/
https://www.hihonor.com/global/support/bulletin/2022/3/
https://www.hihonor.com/global/support/bulletin/2022/3/
https://www.hihonor.com/global/support/bulletin/2022/9/
https://www.hihonor.com/global/support/bulletin/2022/9/
https://www.hihonor.com/global/support/bulletin/2022/9/
https://consumer.huawei.com/sa-en/support/bulletin/2022/4/
https://consumer.huawei.com/sa-en/support/bulletin/2022/4/
https://consumer.huawei.com/en/support/bulletin/2023/1/
https://consumer.huawei.com/en/support/bulletin/2023/1/
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/guide/components/activities/intro-activities
https://developer.android.com/guide/components/activities/intro-activities
https://developer.android.com/guide/components/activities/intro-activities
https://developer.android.com/reference/android/content/res/AssetManager#openXmlResourceParser(int,%20java.lang.String)
https://developer.android.com/reference/android/content/res/AssetManager#openXmlResourceParser(int,%20java.lang.String)
https://developer.android.com/reference/android/content/res/AssetManager#openXmlResourceParser(int,%20java.lang.String)
https://developer.android.com/reference/android/content/res/AssetManager#openXmlResourceParser(int,%20java.lang.String)
https://developer.android.com/guide/topics/manifest/permission-tree-element
https://developer.android.com/guide/topics/manifest/permission-tree-element
https://developer.android.com/guide/topics/manifest/permission-tree-element
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview

[16] R.styleable. https://developer.android.com/re
ference/android/R.styleable.

[17] Runtime Permissions: Defining custom permission. ht
tps://source.android.com/docs/core/permiss
ions/runtime_perms#defining-custom-perms.

[18] "sargo" for Pixel 3a. https://developers.google.
com/android/images#sargo.

[19] Security Updates. https://security.samsungmobi
le.com/securityUpdate.smsb.

[20] Security Updates (in Chinese). https://r1.realme.
net/general/20221214/1671005743438.pdf.

[21] Security Updates (in Korean). https://www.lge.co
.kr/support/mobile-sw-update-SW20220928222
002?keyword=&page=1&orderType=%EC%B5%9C%EC
%8B%A0%EC%88%9C&cate=&category=.

[22] Soot. https://soot-oss.github.io/soot/.

[23] The Android Permission Model: Accessing Protected
APIs. https://source.android.com/docs/securi
ty/overview/app-security#the-android-permi
ssion-model-accessing-protected-apis.

[24] Yousra Aafer, Nan Zhang, Zhongwen Zhang, Xiao
Zhang, Kai Chen, XiaoFeng Wang, Xiao-yong Zhou,
Wenliang Du, and Michael Grace. Hare Hunting in the
Wild Android: A Study on the Threat of Hanging At-
tribute References. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications
Security (CCS), Denver, CO, USA, October 12-16, 2015,
2015.

[25] Yousra Aafer, Xiao Zhang, and Wenliang Du. Harvest-
ing Inconsistent Security Configurations in Custom An-
droid ROMs via Differential Analysis. In Proceedings
of the 25th USENIX Security Symposium (USENIX-Sec),
Austin, TX, USA, August 10-12, 2016, 2016.

[26] Brian Chess and Gary McGraw. Static Analysis for
Security. IEEE Security & Privacy, 2(6):76–79, 2004.

[27] Zeinab El-Rewini and Yousra Aafer. Dissecting Resid-
ual APIs in Custom Android ROMs. In Proceedings of
the 2021 ACM SIGSAC Conference on Computer and
Communications Security (CCS), Virtual Event, Repub-
lic of Korea, November 15 - 19, 2021, 2021.

[28] Zhihui Han, Liang Cheng, Yang Zhang, Shuke Zeng,
Yi Deng, and Xiaoshan Sun. Systematic Analysis and
Detection of Misconfiguration Vulnerabilities in An-
droid Smartphones. In Proceedings of the 13th IEEE
International Conference on Trust, Security and Privacy
in Computing and Communications (TrustCom), Beijing,
China, September 24-26, 2014, 2014.

[29] Roee Hay. fastboot oem vuln: Android Bootloader Vul-
nerabilities in Vendor Customizations. In William Enck
and Collin Mulliner, editors, Proceedings of the 11th
USENIX Workshop on Offensive Technologies (WOOT),
Vancouver, BC, Canada, August 14-15, 2017, 2017.

[30] Antonio Ken Iannillo, Roberto Natella, Domenico Cotro-
neo, and Cristina Nita-Rotaru. Chizpurfle: A Gray-Box
Android Fuzzer for Vendor Service Customizations. In
Proceedings of the 28th IEEE International Symposium
on Software Reliability Engineering (ISSRE), Toulouse,
France, October 23-26, 2017, 2017.

[31] Ajay Kumar Jha, Sunghee Lee, and Woo Jin Lee. De-
veloper Mistakes in Writing Android Manifests: An
Empirical Study of Configuration Errors. In Proceed-
ings of the 14th International Conference on Mining
Software Repositories (MSR), Buenos Aires, Argentina,
May 20-28, 2017, 2017.

[32] Li Li, Tegawendé F. Bissyandé, and Jacques Klein. Re-
booting Research on Detecting Repackaged Android
Apps: Literature Review and Benchmark. IEEE Trans-
actions on Software Engineering, 47(4):676–693, 2021.

[33] Rui Li, Wenrui Diao, Zhou Li, Jianqi Du, and Shanqing
Guo. Android Custom Permissions Demystified: From
Privilege Escalation to Design Shortcomings. In Pro-
ceedings of the 42nd IEEE Symposium on Security and
Privacy (Oakland), San Francisco, CA, USA, 24-27 May
2021, 2021.

[34] Radek Pelánek. Fighting state space explosion: Review
and evaluation. In Proceedings of the 13th International
Workshop on Formal Methods for Industrial Critical
Systems (FMICS), Italy, September 15-16, 2008, 2008.

[35] Andrea Possemato, Simone Aonzo, Davide Balzarotti,
and Yanick Fratantonio. Trust, But Verify: A Longitu-
dinal Analysis Of Android OEM Compliance and Cus-
tomization. In Proceedings of the 42nd IEEE Sympo-
sium on Security and Privacy (Oakland), San Francisco,
CA, USA, 24-27 May 2021, 2021.

[36] Gian Luca Scoccia, Anthony Peruma, Virginia Pujols,
Ivano Malavolta, and Daniel E. Krutz. Permission Is-
sues in Open-Source Android Apps: An Exploratory
Study. In Proceedings of the 19th International Working
Conference on Source Code Analysis and Manipulation
(SCAM), Cleveland, OH, USA, September 30 - October
1, 2019, 2019.

[37] Güliz Seray Tuncay, Soteris Demetriou, Karan Ganju,
and Carl A. Gunter. Resolving the Predicament of An-
droid Custom Permissions. In Proceedings of the 25th
Network and Distributed System Security Symposium
(NDSS), San Diego, California, USA, February 18-21,
2018, 2018.

USENIX Association 32nd USENIX Security Symposium 5517

https://developer.android.com/reference/android/R.styleable
https://developer.android.com/reference/android/R.styleable
https://source.android.com/docs/core/permissions/runtime_perms#defining-custom-perms
https://source.android.com/docs/core/permissions/runtime_perms#defining-custom-perms
https://source.android.com/docs/core/permissions/runtime_perms#defining-custom-perms
https://developers.google.com/android/images#sargo
https://developers.google.com/android/images#sargo
https://security.samsungmobile.com/securityUpdate.smsb
https://security.samsungmobile.com/securityUpdate.smsb
https://r1.realme.net/general/20221214/1671005743438.pdf
https://r1.realme.net/general/20221214/1671005743438.pdf
https://www.lge.co.kr/support/mobile-sw-update-SW20220928222002?keyword=&page=1&orderType=%EC%B5%9C%EC%8B%A0%EC%88%9C&cate=&category=
https://www.lge.co.kr/support/mobile-sw-update-SW20220928222002?keyword=&page=1&orderType=%EC%B5%9C%EC%8B%A0%EC%88%9C&cate=&category=
https://www.lge.co.kr/support/mobile-sw-update-SW20220928222002?keyword=&page=1&orderType=%EC%B5%9C%EC%8B%A0%EC%88%9C&cate=&category=
https://www.lge.co.kr/support/mobile-sw-update-SW20220928222002?keyword=&page=1&orderType=%EC%B5%9C%EC%8B%A0%EC%88%9C&cate=&category=
https://soot-oss.github.io/soot/
https://source.android.com/docs/security/overview/app-security#the-android-permission-model-accessing-protected-apis
https://source.android.com/docs/security/overview/app-security#the-android-permission-model-accessing-protected-apis
https://source.android.com/docs/security/overview/app-security#the-android-permission-model-accessing-protected-apis

[38] Yuqing Yang, Mohamed Elsabagh, Chaoshun Zuo, Ryan
Johnson, Angelos Stavrou, and Zhiqiang Lin. Detect-
ing and Measuring Misconfigured Manifest in Android
Apps. In Proceedings of the 2022 ACM SIGSAC Confer-
ence on Computer and Communications Security (CCS),
Los Angeles, CA, USA, November 7-11, 2022, 2022.

[39] Lei Zhang, Zhemin Yang, Yuyu He, Zhenyu Zhang,
Zhiyun Qian, Geng Hong, Yuan Zhang, and Min Yang.
Invetter: Locating Insecure Input Validations in Android
Services. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Secu-
rity (CCS), Toronto, ON, Canada, October 15-19, 2018,
2018.

[40] Xiao-yong Zhou, Yeonjoon Lee, Nan Zhang, Muham-
mad Naveed, and XiaoFeng Wang. The Peril of Frag-
mentation: Security Hazards in Android Device Driver
Customizations. In Proceedings of the 35th IEEE Sym-
posium on Security and Privacy (Oakland), Berkeley,
CA, USA, May 18-21, 2014, 2014.

A Appendix

A.1 Changeable Permission
During runtime permission granting, the system will check
whether each permission in a granted group is change-
able. Changeable permission requires its correspond-
ing bp.protectionLevel is signature|development or
dangerous. The system will throw an exception if the granted
group contains unchangeable permissions. Hence, we set the
protection level of the second declared com.example.cp to
signature|development to avoid app crashing.

A.2 Adjustment Rules against Variable Sets
The adjustment against variable sets contains three opera-
tions: add, remove, and update. Table 3 illustrates the specific
adjustment rules.

• Add variable: add an outflow variable to the correspond-
ing variable set.

• Remove variable: remove a variable from the correspond-
ing variable set.

• Update variable: remove an inflow variable from the
corresponding variable set and add the outflow variable.

A.3 Optimization Strategies
Path Explosion Avoiding. During generating execution paths
from the base-method’s control flow graph (CFG) (see Sec-
tion 4), the CFG containing lots of branchs may generate

massive execution paths. To avoid path explosion [34], TWIN-
DROID uses the following optimized steps to generate paths
for such CFG. Note that an execution path is composed of
various logically connected code blocks, and every block is
assigned an ID in the depth order.

(1) Collect noteworthy blocks. TWINDROID first collects
all noteworthy blocks of the input base-method. Such a block
contains an noteworthy statement that is relevant to source
variables or an element type. There are three kinds of note-
worthy statements: assignment, invocation, and conditional,
as illustrated in Table 4.

(2) Find the least common ancestor (LCA). Next, TWIN-
DROID finds out the LCA of collected noteworthy blocks from
the CFG. Specifically, it obtains each noteworthy block’s an-
cestor set (including the noteworthy block itself) and calcu-
lates the intersection of all ancestor sets. The block in the
intersection with the largest ID is the LCA.

(3) Generate execution paths. TWINDROID performs the
depth-first search against CFG from LCA to generate execution
paths. Note that, generating execution paths from LCA can
guarantee that the obtained execution paths cover all propaga-
tion paths of source variables in the base-unit. At the same
time, it excludes unnecessary paths.
Incorrect Path Pruning. The execution paths obtained by
TWINDROID (based on Soot) may be incorrect, which can-
not be executed in practice. For example, for a switch state-
ment with n branches, Soot may convert it into two relevant
switch statements described by Jimple with n branches each.
Therefore, after transforming the Android source code from
compiled bytecode to Jimple, the scale of generated execution
paths will be increased from n to n2. However, in these n2

paths, n2 − n paths are incorrect. Therefore, during tracing
source variables along with an execution path, when facing
a conditional statement (i.e., if or switch), TWINDROID
judges whether the next statement is the matched target state-
ment based on the result of the condition checking and termi-
nate tracing if it does not match.
Abstract Method Implementation. During the new base-
unit construction, the invoked method may be abstract without
a method body. For this situation, TWINDROID seeks its corre-
sponding method implementation. Specifically, TWINDROID
first obtains the declaring class of this abstract method. (1) If
the declaring class is an abstract class, TWINDROID iterates
its subclasses to locate the concrete method of which declara-
tion is the same as this abstract method. (2) If the declaring
class is an interface, TWINDROID locates the corresponding
method implementation in its class implementation. If there
are multiple implemented classes, TWINDROID determines
the specific one based on the definition of the instance invok-
ing this abstract method.
Unnecessary Tracing Elimination. To avoid redundant trac-
ing of the same base-unit (having the same base-method,
source variables, and associated element types), TWINDROID
keeps the information of each analyzed base-unit, including

5518 32nd USENIX Security Symposium USENIX Association

Table 3: Adjustment rules against the variable set (the initial variable set is [a]).

Operation Situation Code Example Set Adjustment Adjustment Object

Add the outflow
variable.

Get a copy of the inflow variable. b = a; [a] → [a,b] source variable set
passing variable set

Get part of the inflow variable. b = a.getName(); [a] → [a,b] passing variable set

Get a judgment result about the inflow variable. z = a.isEmpty(); [a] → [a,z] passing variable set

Remove a varia-
ble.

Redefine a variable. This variable is no longer
relevant to the data we want to trace.

a = null; [a] → [] source variable set
passing variable set

Update the recorded element type. The currently
traced variable is no longer associated with the
new element type.

– [a] → [] passing variable set

Update the inflow
variable to the
outflow variable.

Others. The propagation from the inflow variable
to the outflow variable represents a complete
flow of the traced data.

s = a.toString(); [a] → [s] passing variable set

Table 4: Noteworthy statements.

Statement Required Conditions

Assignment
The definition of an entry source variable.

Source variables are at the right of the equal sign.

Invocation
The callee uses source variables as parameters.

The instance of the callee is the source variable.

Conditional Comparison with an element type.

the newly generated base-units from it and the tracing results
of its source variables. If an unanalyzed base-unit is the same
as an analyzed base-unit, TWINDROID can get the data flow
analysis results of this unanalyzed base-unit directly based on
the kept information corresponding to this analyzed base-unit.
Besides, TWINDROID skips unimportant statements during
tracing, such as those related to information logging.

A.4 Component Protection Bypassing
Background. Activity is a crucial component of an app,
and it is the entry point for interacting with the user [12].
To use activities, an app must declare them in its manifest
file through <activity> elements (as shown in Listing 6).
The app can restrict the activity’s exposure to other apps
through android:exported and android:permission at-
tributes (Lines 3, 12, and 13). An activity can be activated by
an asynchronous message called Intent [11]. There are two
types of Intent: explicit and implicit. The explicit Intent speci-
fies a specific activity to respond to this Intent. In comparison,
the implicit Intent declares a general action to perform. The
Android OS will then check which registered activities can
handle that action. Defining an Intent filter with an action
for an activity (Lines 4-7 and 14-17) specifies the type of
implicit Intent to which this activity can respond.

Evil Twins Flaw-related Bug. In Table 2, Items 6 & 7 show
the addActivitiesLocked and queryIntentActivities-
InternalBody methods access the package setting –
[List<ParsedActivity> activities]. The former method
registers an app’s declared activities in the system. The lat-
ter is for querying matched target activities while launching
the activity through an implicit Intent. When launching an
activity, the system will enforce corresponding restrictions
based on its configurations. For example, if the activity is
protected by the CALL_PHONE permission (i.e., Line 13 in List-
ing 6), access to it will fail without obtaining the CALL_PHONE
permission. However, we find that:

Bug: During processing the twin <activity> elements,
due to the data structure conversion with component
protection-related attribute loss, the {app component →
protection status} mapping relationship becomes in-
consistent, further resulting in the app component protec-
tion failure.

Exploit. Suppose that there is an app app-victim (pack-
age name: com.example.victim) on the user’s phone.
This app declares two activities with the same name
(VictimActivity) and the same Intent filter (action:
com.example.actVictim), as shown in Listing 6. The first
activity is completely exposed, and the second is protected by
the CALL_PHONE permission.

1 <activity
2 android:name=".VictimActivity"
3 android:exported="true">
4 <intent -filter >
5 <action android:name="com.example.

actVictim" />
6 <category android:name="android.intent

.category.DEFAULT" />
7 </intent -filter >

USENIX Association 32nd USENIX Security Symposium 5519

ArrayMap<ComponentName, ParsedActivity>
 mActivities

ArrayMap<String, F[]>
mActionToFilter

ArrayMap<ComponentName, ParsedActivity>
 mActivities

ArrayMap<String, F[]>
mActionToFilter

List<ParsedActivity> activities

ParsedActivity
- name: .VictimActivity
- exported: true
- intents

List<ParsedActivity> activities

ParsedActivity
- name: .VictimActivity
- exported: true
- intents

List<ParsedIntentInfo> intents

ParsedIntentInfo
- mActions: [com.example.actVictim]
- mCategories: [android.intent.category.DEFAULT]

List<ParsedIntentInfo> intents

ParsedIntentInfo
- mActions: [com.example.actVictim]
- mCategories: [android.intent.category.DEFAULT]

List<ParsedActivity> activities

ParsedActivity
- name: .VictimActivity
- exported: true
- intents

List<ParsedIntentInfo> intents

ParsedIntentInfo
- mActions: [com.example.actVictim]
- mCategories: [android.intent.category.DEFAULT]

{action-name, Pair<ParsedActivity, ParsedIntentInfo>}

 <activity android:name=".VictimActivity"
 android:exported="true">
 <intent-filter>
 <action android:name="com.example.actVictim" />
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>
 </activity>

AndroidManifest.xml

Figure 6: Data structure conversion of <activity> elements.

8 </activity >
9
10 <activity
11 android:name=".VictimActivity"
12 android:exported="true"
13 android:permission="android.permission.

CALL_PHONE">
14 <intent -filter >
15 <action android:name="com.example.

actVictim" />
16 <category android:name="android.intent

.category.DEFAULT" />
17 </intent -filter >
18 </activity >

Listing 6: Manifest file (part) of app-victim.

The adversary prepares a malicious app – app-bug, which
tries to access VictimActivity using Intents, as shown in
Listing 7.

1 // through explicit Intent
2 Intent intent = new Intent ();
3 ComponentName cp = new ComponentName("com.

example.victim", "com.example.victim.
VictimActivity");

4 intent.setComponent(cp);
5 startActivity(intent);
6
7 // through implicit Intent
8 Intent intent = new Intent ();
9 intent.setAction("com.example.actVictim");
10 startActivity(intent);

Listing 7: Launch VictimActivity through Intents.

� The victim user installs app-bug. When this app tries to
launch VictimActivity of app-victim using the explicit

Intent, the access is forbidden. The system throws a security
exception indicating permission denial. However, through
the implicit Intent, app-bug launches the VictimActivity
successfully.
Cause Analysis. As illustrated in Figure 6, during the in-
stallation of an app, for each declared activity in its man-
ifest, ParsingPackageUtils (PPU) creates its correspond-
ing ParsedActivity instance to store this activity’s con-
figuration data. During this procedure, for each declared
Intent filter in this activity, PPU creates its correspond-
ing ParsedIntentInfo instance and adds this instance
to the [List<ParsedIntentInfo> intents] field of this
ParsedActivity instance.

After that, ComponentResolver (CR) registers each
declared activity into the system. For each ParsedActivity
member of activities, CR adds it to [ArrayMap<Com-
ponentName, ParsedActivity> mActivities], which
stores all registered activities’ information. The Component-
Name object keeps this activity’s fully qualified class name
(composed of the source package name and the activity
name). Besides, for each ParsedIntentInfo instance in
this ParsedActivity instance’s intents, CR creates its
corresponding {action name → Pair <ParsedActivity,
ParsedIntentInfo>} mapping and adds this item to
mActionToFilter, an ArrayMap<String, F[]> storing the
information of all registered activities’ declaring Intent filters.

For the twin activities declared in app-victim, since their
fully qualified class names are the same, mActivities retains
the configuration data of the latter one. While since both
activities define the Intent filters, mActionToFilter retains
both the configuration data.

When launching the activity using explicit Intent, the sys-
tem queries the target activity in mActivities. Therefore,
when app-bug tries to launch VictimActivity explicitly,
the matched activity is the latter VictimActivity. Since this
VictimActivity is protected by the CALL_PHONE permission,
app-bug cannot access it without CALL_PHONE.

When launching the activity using implicit Intent, the sys-
tem queries the target activity in mActionToFilter accord-
ing to the action name specified in this Intent. If there ex-
ist multiple matched activities with the same fully qualified
class name, the system will select the first one. Therefore,
when app-bug tries to launch VictimActivity implicitly,
the matched activity is the former VictimActivity, and the
launching is successful.

Besides, according to the above analysis, if the permission
protection is put on the first VictimActivity, it also can be
bypassed through explicit Intent.
Discussion. The other two component types – receivers and
services – also support being activated by explicit and implicit
Intents [11]. After analyzing, we find that this bug also exists
in accessing them (based on Items 8 & 9 in Table 2).

5520 32nd USENIX Security Symposium USENIX Association

	Introduction
	Background
	Manifest File and Elements
	Manifest Processing Procedures
	Threat Model

	The Evil Twins Flaw
	Motivation Case
	Vulnerability Analysis
	Flaw Summary and Detection

	Design of TwinDroid
	Find Target Package Settings
	Identify Suspicious Processing Methods

	Evaluation and Results
	Implementation and Experiment Setup
	Results and Findings

	Vulnerabilities and Exploits
	Break Permission Protection Levels
	Break Permission-Group Mapping
	Break Permission Registration Status
	Break Permission Granting Status

	Discussion
	Other Relevant Bugs
	Mitigation
	Limitations

	Related Work
	Conclusion
	Appendix
	Changeable Permission
	Adjustment Rules against Variable Sets
	Optimization Strategies
	Component Protection Bypassing

