
PITracker: Detecting Android PendingIntent Vulnerabilities
through Intent Flow Analysis

Chennan Zhang1,2, Shuang Li1,2, Wenrui Diao1,2 (B) , and Shanqing Guo1,2
1School of Cyber Science and Technology, Shandong University

{zcn,lishuang128}@mail.sdu.edu.cn, {diaowenrui,guoshanqing}@sdu.edu.cn,
2Key Laboratory of Cryptologic Technology and Information Security of Ministry of Education, Shandong University

ABSTRACT
Intent is an essential inter-component communication mechanism
of Android OS, which can be used to request an action from another
app component. The security of its design and implementation
attracts lots of attention. However, the security of PendingIntent, a
kind of delayed-triggered Intent, was neglected by most previous
research, and the related analysis techniques are still imperfect.
In this paper, we design a novel automated tool, PITracker, to
detect the PendingIntent vulnerabilities in Android apps. It achieves
the Intent flow tracking technique proposed by us, figuring out
how an Intent is created and where it goes. In the real-world
evaluations, PITracker discovered 2,939 potential threats in 10,000
third-party apps and 214 in 1,412 pre-installed apps. Among
them, 11 exploitable vulnerabilities have been confirmed and
acknowledged by the corresponding vendors.

CCS CONCEPTS
• Security and privacy → Software and application security.

KEYWORDS
Android; PendingIntent; Vulnerability Detection
ACM Reference Format:
Chennan Zhang, Shuang Li, Wenrui Diao, and Shanqing Guo. 2022.
PITracker: Detecting Android PendingIntent Vulnerabilities through Intent
Flow Analysis. In Proceedings of the 15th ACM Conference on Security and
Privacy in Wireless and Mobile Networks (WiSec ’22), May 16–19, 2022, San
Antonio, TX, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.114
5/3507657.3528555

1 INTRODUCTION
The Intent mechanism is a significant ICC (Inter-component
Communication) approach of Android OS, which can be used
to request an action from another app component, like starting
an Activity, starting a Service, or delivering a Broadcast. Given
the importance of Intent, several previous works [14, 15, 18] have
studied the security of its design and deployments. However, the
security of an atypical ICC mechanism was neglected by most of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WiSec ’22, May 16–19, 2022, San Antonio, TX, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9216-7/22/05. . . $15.00
https://doi.org/10.1145/3507657.3528555

the previous research – PendingIntent, which is a kind of delayed-
triggered Intent. An app app-A can construct a PendingIntent and
pass it to another app app-B. When a specific action is triggered,
the app-B can trigger this PendingIntent to launch the component
of the app-A. As mentioned in the official documents, "by giving a
PendingIntent to another app, you are granting it the right to perform
the operation you have specified as if the other app was yourself (with
the same permissions and identity)" [9]. Therefore, app-B has the
right to start app-A’s components.

Unfortunately, there is a possibility of permission leakage in the
use of PendingIntent. The malware can use PendingIntent to exe-
cute malicious actions with the permission of the PendingIntent’s
owner. In 2020 and 2021, 72 PendingIntent related vulnerabilities
are recorded in the CVE database [5]. These vulnerabilities exist
in Android 10, Android 11, and pre-installed apps of Samsung
productions. In fact, Google has noticed this security issue, and
they rejected the update requests of the apps with PendingIntent
vulnerabilities in Google Play [10]. In academia, Groß et al. [12]
conducted the first study on the PendingIntent vulnerability and
designed an analysis tool – PIAnalyzer. However, they did not
investigate the principles of the PendingIntent mechanism, leading
to ignoring some important factors of vulnerability identification.
(More details are discussed in Section 2.3.)
Our Work. To achieve more accurate PendingIntent vulnerability
detection, we propose a new automated analysis tool named
PITracker based on Intent flow analysis. Specifically, it can analyze
each PendingIntent object of an app to figure out how it is created
(origin) and where it finally goes (destination). With the above
information, PITracker can judge whether a PendingIntent object
is vulnerable. To demonstrate the effectiveness of PITracker, we
evaluated it on 10,000 randomly selected apps from five third-party
app markets and 1,412 pre-installed apps of 6 phones from different
vendors. We identified 2,939 potential threats in third-party apps
and 214 in pre-installed apps. To pre-installed apps, we reported
11 exploitable vulnerabilities to the corresponding vendors (2 for
vivo, 1 for OPPO, 3 for Xiaomi, 1 for Lenovo, and 4 for MEIZU), and
all of them had been confirmed. Besides, we manually verified the
findings of 50 apps output by the tool. The results show that the
tool has high precision.
Contributions. Here we list the main contributions of this paper:

• New Technique. We propose the Intent flow analysis
technique to detect the PendingIntent vulnerabilities. Based
on this technique, we designed a new tool – PITracker.

• Evaluations in the Wild. With PITracker, in experiments,
we identified 2,939 potential threats in third-party apps and
214 in pre-installed apps.

Session 1: Android Security WiSec ’22, May 16–19, 2022, San Antonio, TX, USA

20

https://doi.org/10.1145/3507657.3528555
https://doi.org/10.1145/3507657.3528555
https://doi.org/10.1145/3507657.3528555
https://www.acm.org/publications/policies/artifact-review-and-badging-current

The Initiating
Side

The Proccessing
Side

(1) Get PendingIntent

(2) Pass PendingIntent

(3) Trigger PendingIntent
(PendingIntent.send())

PendingIntent
Record Sheet

AMS

Figure 1: Life cycle of PendingIntent.

• Real-world Vulnerabilities. In total, 11 vulnerabilities
discovered by PITracker have been confirmed and acknowl-
edged by 5 mainstream phone vendors.

2 BACKGROUND AND RELATEDWORK
In this section, we provide the necessary background of the Android
PendingIntent mechanism. Also, related works are reviewed.

2.1 Android PendingIntent
As mentioned in Section 1, Intent is important for Android ICC.
PendingIntent is a wrapper for Intent. It provides an atypical
way to perform ICC. The most common application scenario of
PendingIntent is notification. For example, a weather app pops up
a notification reminding the user to check tomorrow’s weather
forecast. She clicks this notification, and then the phone’s UI can
immediately jump to the weather app and display the content of
tomorrow’s weather forecast. During the internal implementation,
when the user clicks this notification, a PendingIntent is triggered.
It performs the action of launching the weather app’s Activity.

The life cycle of a PendingIntent is illustrated in Figure 1. A com-
ponent of an app (i.e., the initiating side) first creates a base Intent.
It specifies what it wants to do with this Intent through the Intent
APIs. The next step is wrapping this base Intent into a PendingIntent.
To do this, the following methods are provided for getting a
PendingIntent object in Android and frequently used by developers
(We omitted the parameters of these methods and each of them
takes an Intent as an argument): PendingIntent.getActivity(),
PendingIntent.getBroadcast(), PendingIntent.getService()
and PendingIntent.getForegroundService() [9]. These differ-
ent APIs represent different components to be launched. AMS
(Activity Manager Service) will look this PendingIntent up in a
record sheet. If this PendingIntent already exists, AMS will give
the proxy object of it to the initiating side. If AMS cannot find this
PendingIntent, it will create a new PendingIntent. After recording
this new PendingIntent in the sheet, the proxy object of it will
be passed to the initiating side (Step 1). Then the PendingIntent
object will be handed over to another component (Step 2), i.e., the
processing side. When a specific action is triggered, the processing
side can use PendingIntent.send() to trigger this PendingIntent
(Step 3). AMS will find this PendingIntent in the sheet and trigger
it. It is noteworthy that when this PendingIntent is triggered,
the base Intent in it is executed in the context (with the same
privileges and name) of the initiating side, and this is the key point
of PendingIntent vulnerability.

2.2 PendingIntent Vulnerability
As Groß et al. [12] pointed out that when the processing side
triggers the PendingIntent, the semantics of the base Intent that is
to be executed with the original app’s identity and permissions
can be changed. The processing side can create a new Intent
and make it as the third argument of an overloaded method of
PendingIntent.send():

1 send(Context context , int code , Intent intent ,
PendingIntent.OnFinished onFinished ,
Handler handler , String requiredPermission ,
Bundle options)

Listing 1: PendingIntent.send().

After a series of function invocations, this Intent will be passed
to the fillIn()method of the Intent class [7]. As shown in Listing
2, the new incoming Intent (i.e., other at line 1) is analyzed in this
method, and when its original action field (i.e., mAction at line 4) is
empty, or the FILL_IN_ACTION flag is set, the original action will
be changed to the new one (i.e., other.mAction). In addition, the
following fields can also be modified in the same way (we call these
fields modifiable fields): package, category, data, flag, clipdata and
extra. However, the component field (i.e., mComponent at line 8 and
line 9) of the original Intent can only be changed when the flag
FILL_IN_COMPONENT is set regardless of whether the initial filed is
empty or not. The selector field can also be changed in this way. We
call them explicit modifiable fields.

1 public int fillIn(NonNull Intent other ,
FillInFlags int flags) {

2 ...
3 if (other.mAction != null && (mAction ==

null || (flags&FILL_IN_ACTION) != 0)) {
4 mAction = other.mAction;
5 changes |= FILL_IN_ACTION;
6 }
7 ...
8 if (other.mComponent != null && (flags&

FILL_IN_COMPONENT) != 0) {
9 mComponent = other.mComponent;

10 changes |= FILL_IN_COMPONENT;
11 }}

Listing 2: fillIn() of Intent.class.

However, we found few apps set the above flags when using
PendingIntent in practical analysis. Therefore, the modifiable fields
are considered changeable when they are initially empty, and the
explicit modifiable fields are basically cannot be changed. Therefore,
when the modifiable fields of the original base Intent are not set
and the wrapping PendingIntent is obtained by the malware, it can
modify these fields at will. Then it can trigger this PendingIntent
with the identity of the initiating side. In other words, the malware
can do something bad as the initiating side. By refining different
empty modifiable fields, the malware can perform different attacks.
For example, in CVE-2014-8609 [4], the Setting app, which requests
lots of dangerous permissions, leaks a PendingIntent with no
modifiable fields set in its base intent. The malware can utilize
it to create a phishing SMS by refining the action and extra fields
or force the phone to factory reset by refining the action field.

Session 1: Android Security WiSec ’22, May 16–19, 2022, San Antonio, TX, USA

21

It is worth mentioning that Android has added a new flag
FLAG_IMMUTABLE in API level 23 [9]. If this flag is used when
creating the PendingIntent, the semantics of the base Intent cannot
be changed. Therefore, this vulnerability can only exist when the
PendingIntent object is created without setting this flag.

As a consequence, we can conclude three significant condi-
tions for the PendingIntent vulnerability:

(1) The modifiable fields of base Intent have not been set.
(2) The PendingIntent object can be obtained by other apps.
(3) The FLAG_IMMUTABLE flag has not been set.

2.3 Related Work
Samhi et al. [16] pointed out that the Android framework provides
atypical ways of performing ICC, such as PendingIntent and
IntentSender. They found 111 AICC methods in total. We filtered
out the API calls of the system managers (such as AlarmMan-
ager, LocationManager, NotificationCompat$Builder, etc.) that took
the PendingIntent (Intentsender) object as a parameter in these
methods. The PendingIntents going to these methods, except for
the methods related to Notification, cannot be easily obtained by
malware.

As the first study on the PendingIntent vulnerability, Groß
et al. [12] used the smali-based program slicing for data flow
analysis to detect vulnerabilities. However, they only considered
the PendingIntent created with an implicit base Intent (i.e., no
target component was set) and ignored other fields. They assumed
that the PendingIntent passed to system managers could not cause
harm. In fact, we found that when the PendingIntent is passed
to the Notification components, the malware can also obtain it.
Besides, they did not evaluate the pre-installed apps with dangerous
permissions.

He et al. [13] developed a Soot-based tool [6] to detect the
PendingIntent vulnerabilities. They still did not conduct a further
inspection on the entire Intent flow, say ignoring the destination
of PendingIntent. Actually, many PendingIntent objects are not
exposed to other apps and cannot be exploited. The efficiency of
Soot also brings some performance issues. As discussed in [17], the
Soot-based analysis tools are less efficient. They will first perform
an overall analysis of the entire APK file and then perform a data
flow analysis. For the PendingIntent vulnerability, it is unnecessary
to analyze the entire APK file, and we only need to focus on
PendingIntent related variables and codes.

3 DESIGN
In this section, we introduce the detailed design of PITracker1.
The framework of PITracker is illustrated in Figure 2, and it can be
divided into three steps: i) Preparation, ii) Key Information Collection,
and iii) Assessment.

In the preparation step, PITracker transforms the APKs of apps to
smali files and locates the PendingIntent creation sites. Then it uses
program slicing to collect key information related to PendingIntent
vulnerability in part ii). Finally, the tool gives an assessment of each
PendingIntent object.

1The source code of PITracker can be found at https://github.com/Sp1keeeee/PItracker.

Transform
into Smali

Files

baksmali

PendingIntent
Locate

Preparation

Permission
Extraction

Base Intent Info
Extraction

Flag Search

Find
PendingIntent
Destinations

Key Information
Collection

Risk
Assessment

Assessment

Result Output

Figure 2: The framework of PITracker.

Table 1: Fields set methods.

Field Method
action setAction (String action)
package setPackage (String packageName)

data
setData (Uri data)
setDataAndType (Uri data, String type)

clipdata setClipData (ClipData clip)

3.1 Preparation
As the first step, we need to decompile the APK files and locate the
methods of creating PendingIntent objects in target apps. PITracker
extracts the DEX files from apps and then uses baksmali [3] to
convert the DEX files into smali files for static analysis. It will
search the PendingIntent creation methods mentioned in Section 2
in the smali files. After this, we can get a list of creation sites of all
PendingIntents.

3.2 Key Information Collection
We are concerned about the related conditions of PendingIntent
vulnerability as mentioned in Section 2. Therefore, we need to
collect the information about the base Intent, the creation flag of
PendingIntent, and the flow of PendingIntent (especially the origin
and destination). Besides this, we need to know what permissions
may be leaked by the origin app, so PITracker will extract its
requested permissions.
Base Intent Info Extraction. In this process, PITracker collects
the information about whether the base Intents have set the modi-
fied fields. It uses backward program slicing from the PendingIntent
creation methods to check whether the base Intent objects have
called modified fields setting methods. The methods for setting
related fields are listed in Table 1. The traditional backward slicing
iterate over the statements in a function. However, in practical
scenarios, the decompiled smali code has many jump and condition
instructions. The statements order in smali files may not be the real
order. For example, the code snippet of creating a PendingIntent
object in a smali file is listed below:

1 #PendingIntent creation statements
2 :cond_5
3 const -string v10 , "enter_homepage_way"

Session 1: Android Security WiSec ’22, May 16–19, 2022, San Antonio, TX, USA

22

https://github.com/Sp1keeeee/PItracker

True Flase

Basic block 1

Basic block 2 Basic block 3

:cond_5
PendingIntent creation statements

……

:cond_5
PendingIntent creation statements

……
…………

……
Base Intent creation statements
if -lez v1, :cond_5

……
Base Intent creation statements
if -lez v1, :cond_5

Figure 3: The CFG of Listing 3.

4 invoke -virtual {v4, v10 , v2}, Landroid/content/
Intent;->putExtra(Ljava/lang/String;Ljava/
lang/String ;) Landroid/content/Intent;

5 const/high16 v2, 0x40000000
6 invoke -static {v0, v3, v4, v2}, Landroid/app/

PendingIntent;->getActivity(Landroid/
content/Context;ILandroid/content/Intent;I)
Landroid/app/PendingIntent;

7 ...
8 #Base Intent creation statements
9 new -instance v4, Landroid/content/Intent;
10 invoke -direct {v4, v10}, Landroid/content/

Intent;-><init >(Ljava/lang/String ;)V
11 ...
12 if -lez v1, :cond_5
13 ...

Listing 3: Example of creating PendingIntent.

We can see that the base Intent creation statements are at Line
9 and Line 10. However, the PendingIntent creation statement is
at Line 6. Therefore, we cannot simply iterate over the related
statements backwardly in smali files for backward slicing. To solve
this problem, PITracker creates a CFG (control flow graph) for each
function needing analysis. For example, the CFG of the above code
is illustrated in Figure 3.

Based on the CFG, our backward slicing is to iterate over the
statements in a basic block backwardly and collect the related
information. When all statements in the basic block have been
checked, PITracker will go to the block’s parents’ blocks to
do the same thing until finding the end statement. Therefore,
PITracker starts backward slicing from the PendingIntent creation
statements until it finds the end statement like: new-instance vx,
Landroid/content/Intent (vx is the register of the Intent object).
Note that, a basic block may have many parents blocks, and the base
Intent may come from different parents blocks. Thus, PITracker
uses the DFS (Depth First Search) algorithm to iterate over each
parent’s blocks until finding all base intents.
Flag Search. The flag for creating the PendingIntent is also very
critical. The malware cannot modify the semantic of a Pending-
Intent object if the flag FLAG_IMMUTABLE is set. PITracker uses
backward slicing to track the fourth parameter of the PendingIntent
creation method until an integer value is set to its register. We are
concerned about whether the value of the flag is 0x04000000 (i.e.,
FLAG_IMMUTABLE) in this process.

Find PendingIntent Destinations. After obtaining the informa-
tion of the base Intent and the flag, we only know whether the
semantics of this PendingIntent is changeable. However, another
necessary condition of the PendingIntent vulnerability is whether
malicious apps can obtain it. Here we summarize two common cases
in that third-party (malicious) apps can obtain PendingIntents.

(1) Implicit Intent. As proposed by Groß et al. [12], when a
PendingIntent is wrapped into an implicit Intent, any app
can easily acquire it.

(2) Notification. The PendingIntent contained in the notification
can be obtained by the service components that inherit from
notificationlistenerService [8] and accessibilityService [2].
The malware can construct a service to inherit any of these
two services, and then this service can use related methods
to get the PendingIntent in Notification.

Therefore, we need to find the locations where the PendingIntent
finally goes, and we call these places the PendingIntent destinations.
In the practical analysis process, we identified seven types of
PendingIntent destinations in the same function.

• System API. Chen et al. [16] find 111 atypical methods
of performing ICC, which use PendingIntent object or
IntendSender object as a parameter. We filtered out the API
calls of the system managers (such as AlarmManager, Notifi-
cationCompat$Builder, etc.). If the PendingIntent objects
are passed to these APIs, we no longer continue slicing
forward, and we consider the PendingIntent destination as
system API. We focus on whether this system API is related
to Notification in this situation.

• Intent. The PendingIntent may also be wrapped into an
Intent’s extra field. In this situation, PITracker will con-
tinue slicing forward to check whether the Intent calls
setClass(), setClassName(), setComponent(), setPack-
age(), and setSelector(), which are the APIs that can
make it explicit. We are concerned about implicit Intent that
can be obtained by other apps.

• Not Used. After the PendingIntent object is created, there
are nomethods to take it as a parameter. Even if the backward
slicing determines that it may be dangerous, it is not actually
available to other apps.

• Send. During our analysis, we found that some PendingIn-
tent objects were triggered immediately in the same function
after they were created. Although this is very rare, we need
to consider it for accurate analysis.

• Other Methods. There are two ways of passing a Pending-
Intent object to other methods. The first is taking it as
a parameter: PITracker will continue going to the target
method to trace the relevant statements of the parameter
until it goes to the cases above. Another way is taking it
as the return value: in this situation, PITracker will search
the smali files of the entire app to find the caller of this
function, and then continue to trace in these functions until
the PendingIntent object goes to the destinations above.

• IntentSender. IntentSender is created from PendingIntent
by using getIntentSender(). It actually has the same
function as PendingIntent. Therefore, if a PendingIntent has

Session 1: Android Security WiSec ’22, May 16–19, 2022, San Antonio, TX, USA

23

changed to an IntendSender, PITracker will continue to find
its destination in the same way as PendingIntent.

PITracker uses forward slicing from the PendingIntent creation
statements, and the end statements is above destinations. It uses
the DFS algorithm to iterate over all the children blocks of the CFG
for finding the destinations. The only difference between backward
slicing and forward slicing is the direction, so we omit the details
of the forward slicing.
Permission Extraction. The greatest harm of PendingIntent
vulnerability is that the malware can use the initiating side’s
permission to do something bad without requesting these permis-
sions, so we need to figure out what permissions the owner of the
PendingIntent has requested. PITracker uses AAPT2 [1], the official
build tool of Android, to extract permissions from apps.

3.3 Assessment
Risk Assessment. After obtaining all necessary information,
PITracker will conduct a risk assessment for each PendingIntent
object. If any condition of PendingIntent vulnerability is not met,
the corresponding PendingIntent is considered secure. Otherwise,
PITracker will give a risk label to target PendingIntent depending
on the obtained information. There are two kinds of labels:

• Component Hijacking Risk. If the base Intent’s compo-
nent has been set, the operation triggered by its Pending-
Intent can only work in the scope of the target component.
The malware can only use this PendingIntent to launch the
corresponding components of the original app. Besides, the
security threat will be weak if the original app does not
request dangerous permissions. However, there is still a
possibility of component hijacking which has been stud-
ied in previous works [11, 15]. The main reason for this
vulnerability is that the developers carelessly expose some
of the apps’ components to others, so the malware can easily
use related invokable interfaces to execute malicious actions.
To PendingIntent vulnerability, the malware can arbitrarily
launch components of the original app to perform DDoS,
data theft, and so on, even if the component is not exposed.

• Permission Re-delegation Risk. This risk will happen
when the owner of a vulnerable PendingIntent has requested
dangerous permissions. The dangerous permissions con-
tain some general runtime permissions like CALL_PHONE,
SEND_SMS, READ_CONTACTS and system permissions that can-
not request by third-party apps like SHUTDOWN, REBOOT. Ex-
ploiting PendingIntents, the malware can perform malicious
actions without requesting the corresponding permissions.
We need to point out that the apps that have the permission
re-delegation risk must exist the component hijacking risk.

Result Output. PITracker finally outputs all information (i.e.,
where the base Intent and PendingIntent are created, what modifi-
able fields of the base Intent have not been set, and what dangerous
permissions the apps have requested) to help the security analysts
know more about the identified vulnerable PendingIntents.

4 EVALUATIONS
In this section, we summarize the experiment results.

Table 2: Results of apps of third-party app markets (CH –
Component Hijacking, PR – Permission Re-delegation).

App Market
Not
Used Secure

CH
Risk

PR
Risk Total

Xiaomi 898 512 212 378 2000
HUAWEI 924 700 96 280 2000

PC6 592 724 158 526 2000
Apkpure 70 1030 202 698 2000
Lenovo 1100 511 73 316 2000
Total 3584 3477 741 2198 10000

Table 3: Results of pre-installed apps.

Phone Model
Not
Used Secure

CH
Risk

PR
Risk Total

IQoo U3x 84 157 9 31 281
OPPO A32 92 170 11 11 284
Redmi K40 101 139 18 33 291

Lenovo Lemon K12 82 90 14 16 202
MEIZU 17 78 78 7 49 212

Coolpad CP30 56 71 7 8 142
Total 493 705 66 148 1412

4.1 Experiment Setup
We randomly selected 10,000 apps from 5 third-party app markets
– Xiaomi, HUAWEI, PC6, Apkpure, and Lenovo for evaluation
(2,000 for each). In addition, we selected 6 popular models of
vivo, OPPO, Xiaomi, Lenovo, MEIZU, and Coolpad to analyze their
pre-installed apps. The pre-installed apps usually have a lot of
dangerous permissions, especially system permissions.

4.2 Results and Findings
The results are summarized in Table 2 and Table 3. We can see
that the potential threat of PendingIntent vulnerability is common
in the apps from third-party app markets. More permission re-
delegation risks are identified than the component hijacking risk.
The reason is that most apps in third-party app markets request the
READ_EXTERNAL_STORAGE and WRITE_EXTERNAL_STORAGE permis-
sions. The malware can utilize them to get the users’ photos, videos,
and other files stored in external storage. For pre-installed apps, we
can find that the threat of PendingIntent vulnerability also exists,
and many of them request one or more dangerous permissions.

We manually inspected the smali code of 50 randomly selected
apps, and the information outputted by the tool is in good agree-
ment with the practical case, indicating a high precision. Besides,
wemanually verified the PendingIntent threats in pre-installed apps
and finally discovered 11 exploitable PendingIntent vulnerabilities
(2 for vivo, 1 for OPPO, 3 for Xiaomi, 1 for Lenovo, and 4 for MEIZU).
We reported them to the corresponding vendors, all of which have
been confirmed (also assigned CNVD-2021-102096 and CNVD-2021-
100644). Note that, due to code obfuscation and lack of knowledge
of PendingIntents usage scenarios, we cannot easily figure out how
the apps use these vulnerable PendingIntents and further construct
the corresponding PoCs (for vulnerability report). Therefore, we

Session 1: Android Security WiSec ’22, May 16–19, 2022, San Antonio, TX, USA

24

did not verify all discovered potential threats one by one. Even
though, these current acknowledgments of vendors have proved
the effectiveness of PITracker.

4.3 Case Study
We identified a PendingIntent vulnerability in a pre-installed app
com.android.contacts of a mainstream phone vendor2 which
can be used by malware to call arbitrary phone numbers and read
contacts information without requesting related permissions. The
vulnerable code snippet is listed below.

1 static Notification
constructImportFailureNotification(Context
context , String str , String str2) {

2 Notification.Builder contentIntent = new
Notification.Builder(context).
setContentIntent(PendingIntent.getActivity(
context , 0, new Intent (), 0));

3 ...
4 }

Listing 4: The vulnerable code.

The vulnerable PendingIntent is created at Line 2. It is cre-
ated through the PendingIntent.getActivity() method. A base
Intent, not set any fields, is used to create this PendingIntent.
It is finally wrapped into Notification.Builder through the
setContentIntent() method. This method will be called when
this app fails to import contacts from vCard. In addition to that,
this app has requested many permissions like: CALL_PRIVILEGED,
CALL_PHONE, READ_CONTACTS, and WRITE_CONTACTS.

As a result, a malicious app can construct a service extending
accessibilityService or notificationlistenerService for
monitoring the notification events. The PoC code can be like below.

1 public class NotificationLisner extends
AccessibilityService {

2 public void onAccessibilityEvent(
AccessibilityEvent event) {

3 if (event.getParcelableData () != null &&
event.getParcelableData () instanceof
Notification) {

4 Notification notification = (
Notification) event.getParcelableData ();

5 PendingIntent pendingIntent =
notification.contentIntent;

6 Uri uri = Uri.parse("tel:" + "911");
7 Intent mintent = new Intent(Intent.

ACTION_CALL , uri);// refine the base Intent
8 try {
9 pendingIntent.send(

NotificationLisner.this ,0,mintent ,null ,null
);// trigger a new PendingIntent

10 } catch ...}

Listing 5: The code of the POC.

In this PoC, We construct a NotificationListener class to ex-
tend AccessibilityService and overwrite the onAccessibility
-Event() method. A new Intent mintent which is to call the
2We cannot give its name due to this vendor’s responsibility disclosure rule.

number 911 is passed to the PendingIntent.send() method.
Therefore, when this vulnerable app pops up this notification, the
malicious app can use it to call arbitrary phone numbers without
requesting the CALL_PHONE permission. Besides, this malicious app
can arbitrarily read and write the contacts, and we omit it due to
space limitations. We have reported this vulnerability to the target
vendor. They have acknowledged and rewarded our findings.

5 CONCLUSION
This paper proposed the Intent flow analysis technique to detect the
PendingIntent vulnerabilities in Android apps. By analyzing over
10,000 third-party apps (from 5 app markets) and 1,412 pre-installed
apps (from 6 phones), PITracker uncovered 2,939 and 214 potential
threats, respectively. Also, 11 discovered vulnerabilities have been
confirmed and acknowledged by the corresponding vendors.

REFERENCES
[1] 2021. AAPT2. Retrieved February 2, 2022 from https://developer.android.com/st

udio/command-line/aapt2?hl=en
[2] 2021. AccessibilityService. Retrieved February 2, 2022 from https://developer.an

droid.com/reference/android/accessibilityservice/AccessibilityService
[3] 2021. baksmali. Retrieved February 2, 2022 from https://github.com/JesusFreke/

smali
[4] 2021. CVE-2014-8609. Retrieved February 2, 2022 from https://packetstormsecur

ity.com/files/129281/Android-Settings-Pendingintent-Leak.html
[5] 2021. CVEs of PendingIntent. Retrieved February 2, 2022 from https://developer.

android.com/guide/components/intents-filters
[6] 2021. http://soot-oss.github.io/soot/. Retrieved February 2, 2022 from http://soot-

oss.github.io/soot/
[7] 2021. Intent.java. Retrieved February 2, 2022 from https://cs.android.com/andro

id/platform/superproject/+/master:frameworks/base/core/java/android/conten
t/Intent.java

[8] 2021. NotificationListenerService. Retrieved February 2, 2022 from https://develo
per.android.com/reference/android/service/notification/NotificationListenerSer
vice

[9] 2021. PendingIntent. Retrieved February 2, 2022 from https://developer.android.
com/reference/android/app/PendingIntent

[10] 2021. PendingIntent Remediation. Retrieved February 2, 2022 from https://develo
per.android.com/guide/components/intents-filters

[11] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David A. Wagner. 2011.
Analyzing Inter-application Communication in Android. In Proceedings of the 9th
International Conference on Mobile Systems, Applications, and Services (MobiSys),
Bethesda, MD, USA, June 28 - July 01, 2011.

[12] Sascha Groß, Abhishek Tiwari, and Christian Hammer. 2018. PIAnalyzer: A
Precise Approach for PendingIntent Vulnerability Analysis. In Proceedings of the
23rd European Symposium on Research in Computer Security (ESORICS), Barcelona,
Spain, September 3-7, 2018.

[13] En He, Wenbo Chen, and Daoyuan Wu. 2021. Re-route Your Intent for Privilege
Escalation. BlackHat 2021 (2021).

[14] Li Li, Alexandre Bartel, Tegawendé F. Bissyandé, Jacques Klein, Yves Le Traon,
Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick D.
McDaniel. 2015. IccTA: Detecting Inter-Component Privacy Leaks in Android
Apps. In Proccedings of the 37th IEEE/ACM International Conference on Software
Engineering (ICSE), Florence, Italy, May 16-24, 2015.

[15] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. 2012. CHEX:
Statically Vetting Android Apps for Component Hijacking Vulnerabilities. In
Proceedings of the 19th ACMConference on Computer and Communications Security
(CCS), Raleigh, NC, USA, October 16-18, 2012.

[16] Jordan Samhi, Alexandre Bartel, Tegawendé F. Bissyandé, and Jacques Klein.
2021. RAICC: Revealing Atypical Inter-Component Communication in Android
Apps. In Proceedings of the 43rd IEEE/ACM International Conference on Software
Engineering (ICSE), Madrid, Spain, May 22-30, 2021.

[17] Daoyuan Wu, Debin Gao, Robert H. Deng, and Rocky K. C. Chang. 2021. When
ProgramAnalysis Meets Bytecode Search: Targeted and Efficient Inter-procedural
Analysis of Modern Android Apps in BackDroid. In Proceedings of the 51st Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN),
Taipei, Taiwan, June 21-24, 2021.

[18] Kun Yang, Jianwei Zhuge, Yongke Wang, Lujue Zhou, and Hai-Xin Duan. 2014.
IntentFuzzer: Detecting Capability Leaks of Android Applications. In Proceedings
of the 9th ACMSymposium on Information, Computer and Communications Security
(AsiaCCS), Kyoto, Japan, June 3-6, 2014.

Session 1: Android Security WiSec ’22, May 16–19, 2022, San Antonio, TX, USA

25

https://developer.android.com/studio/command-line/aapt2?hl=en
https://developer.android.com/studio/command-line/aapt2?hl=en
https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://github.com/JesusFreke/smali
https://github.com/JesusFreke/smali
https://packetstormsecurity.com/files/129281/Android-Settings-Pendingintent-Leak.html
https://packetstormsecurity.com/files/129281/Android-Settings-Pendingintent-Leak.html
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/guide/components/intents-filters
http://soot-oss.github.io/soot/
http://soot-oss.github.io/soot/
https://cs.android.com/android/platform/superproject/+/master:frameworks/base/core/java/android/content/Intent.java
https://cs.android.com/android/platform/superproject/+/master:frameworks/base/core/java/android/content/Intent.java
https://cs.android.com/android/platform/superproject/+/master:frameworks/base/core/java/android/content/Intent.java
https://developer.android.com/reference/android/service/notification/NotificationListenerService
https://developer.android.com/reference/android/service/notification/NotificationListenerService
https://developer.android.com/reference/android/service/notification/NotificationListenerService
https://developer.android.com/reference/android/app/PendingIntent
https://developer.android.com/reference/android/app/PendingIntent
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/guide/components/intents-filters

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Android PendingIntent
	2.2 PendingIntent Vulnerability
	2.3 Related Work

	3 Design
	3.1 Preparation
	3.2 Key Information Collection
	3.3 Assessment

	4 Evaluations
	4.1 Experiment Setup
	4.2 Results and Findings
	4.3 Case Study

	5 Conclusion
	References

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Horizontal, vertical offset 366.51, 738.92 Width 198.00 Height 20.22 points
 Origin: bottom left

 1
 0
 BL

 1
 SubDoc
 1

 CurrentAVDoc

 366.5136 738.9188 198.0016 20.2214

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 6
 0
 1

 1

 HistoryList_V1
 qi2base

