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ABSTRACT 
The blockchain-powered decentralized applications and systems 
have been widely deployed in recent years. The decentralization 
feature promises users anonymity, security, and non-censorship, 
which is especially welcomed in the areas of decentralized fnance 
and digital assets. From the perspective of most common users, a 
decentralized ecosystem means every service follows the principle 
of decentralization. However, we fnd that the services in a decen-
tralized ecosystem still may contain centralized components or 
scenarios, like third-party SDKs and privileged operations, which 
violate the promise of decentralization and may cause a series of 
centralized security risks. In this work, we systematically study 
the centralized security risks existing in decentralized ecosystems. 
Specifcally, we identify seven centralized security risks in the de-
ployment of two typical decentralized services – crypto wallets 
and DApps, such as anonymity loss and overpowered owner. Also, 
to measure these risks in the wild, we designed an automated de-
tection tool called Naga and carried out large-scale experiments. 
Based on the measurement of 28 Ethereum crypto wallets (Android 
version) and 110,506 on-chain smart contracts, the result shows that 
the centralized security risks are widespread. Up to 96.4% of wallets 
and 83.5% of contracts exist at least one security risk, including 260 
well-known tokens with a total market cap of over $98 billion. 
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1 INTRODUCTION 
The decentralized platform is the cornerstone of Web3, which 
promises to build an open, permissionless network [19]. The emer-
gence of decentralized platforms promotes the development of de-
centralized ecosystems. Decentralized ecosystems consist of a series 
of services that are widely used due to the features of anonymous 
login, censorship-free, data security, and zero downtime. These 
services are decentralized by design and often open-sourced for 
community review, attracting users and benefting developers. 

From the perspective of most common users, a decentralized 
ecosystem means every service follows the principle of 100% decen-
tralization. However, in practice, these services may still contain 
centralized components or scenarios. For example, many decen-
tralized services rely on third-party remote procedure call (RPC) 
services because they do not run their blockchain nodes. Further-
more, some decentralized applications (DApps) have backdoors to 
facilitate maintenance. These actions undermine the promise of 
decentralization and raise centralized security risks, like “one bad 
apple spoils the whole barrel”. Also, such risks are practical and vital. 
In November 2020, Infura [15], the leading RPC provider, was down, 
which caused the most severe Ethereum incident after The DAO 
attack [26, 29]. Recently, Slope, a well-known crypto wallet, leaked 
users’ private keys, resulting in the theft of at least $6 million worth 
of tokens [32]. 

To the best of our knowledge, we are the frst to systematically 
explore the centralized security risks in decentralized ecosystems. 
Most prior works focus on the security of blockchain system de-
sign [4, 6, 20, 22, 30, 35] and smart contract vulnerabilities detec-
tion [12, 16, 27, 31, 33]. However, from the view of ecosystems, the 
security risks caused by centralization were undervalued. 
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Our Work. This work systematically evaluates the decentralized 
ecosystem and reveals the centralized security risks of two cru-
cial decentralized services – crypto wallets and DApps. We delved 
into decentralized services and discovered seven centralized se-
curity risks, of which fve are related to crypto wallets and two 
(with four sub-issues) to DApps. To evaluate these risks in the 
wild, we proposed two methods to examine 28 Ethereum’s ofcially 
recommended crypto wallets from the perspective of usage and 
development. The result shows that 27 wallets have security risks, 
say 96.4%. Also, we designed an automated tool Naga1 to detect 
smart contracts of DApps by identifying state variables. Unlike 
previous work only analyzing data dependencies at the function 
level, Naga is a fne-grained tool that analyzes data dependencies 
in intermediate representations (IRs) of contract code. Further, we 
conducted a large-scale evaluation on 110,506 Ethereum on-chain 
contracts and discovered 92,254 contracts (83.5%) with security 
risks, including 11,419 high-value contracts and 260 famous tokens 
with a total market cap of over $98 billion. 
Contributions. Here we list the main contributions of this paper: 
• New security issues. We conducted the frst systematic study on 
the centralized security risks in decentralized ecosystems. We 
identifed seven previously unnoticed security risks. 

• New techniques. We proposed two methods to check crypto 
wallets and designed an automated tool that can analyze data 
dependencies at the IR level for smart contract risk detection. 

• Real-world evaluations. We carried out large-scale evaluations 
on 28 well-known crypto wallets and 110,506 DApps. The result 
shows that the centralized security risks are widespread. 

Roadmap. The rest of this paper is organized as follows. Section 
2 provides the necessary background of decentralized ecosystems. 
Section 3 discusses the discovered security risks. Section 4 intro-
duces our detection approaches and implementation. Section 5 
presents the measurement results. Section 6 proposes some sug-
gestions for risk mitigation. Section 7 reviews related work, and 
Section 8 concludes this paper. 

2 DECENTRALIZED ECOSYSTEMS 
Decentralized ecosystems with verifable, self-governing, permis-
sionless, native payments, etc., allow anyone to access services 
equally, and no personal data is required. Instead of services con-
trolled and owned by centralized entities, ownership in a decen-
tralized service is distributed amongst its builders and users. Also, 
each service runs on multiple nodes, so there is no single point of 
failure, such as denial-of-service (DoS). The booming decentralized 
ecosystem is driving the transition from Web2 to Web3. 

Figure 1 illustrates the main components of a decentralized 
ecosystem. As a decentralized platform, blockchain is the core in-
frastructure of decentralized ecosystems, and other services are 
built on it. Ethereum [7] is currently the largest decentralized plat-
form, powering the cryptocurrency Ether (ETH) and thousands of 
decentralized applications (DApps). Centralized exchanges (CEXs) 
facilitate the fow of fat and cryptocurrencies. As per the proto-
col, CEXs have an extensive built-in know-your-customer (KYC) 
policy and operate under regulatory supervision. Crypto or Web3 
wallets act as a gateway to the natural and crypto worlds, manage 
crypto assets, and interact with DApps. DApp is an autonomously 

1Naga is available at https://doi.org/10.5281/zenodo.7620441 
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Figure. 1. Basic components of a decentralized ecosystem. 

operating application with a backend smart contract and a frontend 
user interface. Ethereum’s smart contracts are written in high-level 
programming languages such as Solidity [9] and then compiled 
down to bytecode running on Ethereum Virtual Machine (EVM). 
Ethereum client ofers a set of remote procedure call (RPC) com-
mands, so decentralized services can interact with blockchain by 
RPC, such as reading data and sending transactions. Most decen-
tralized services rely on third-party RPC services because they do 
not run blockchain nodes. They send transactions to an RPC ser-
vice, and the RPC service forwards transactions to the blockchain 
network. Finally, miners record transactions on the blockchain. 

3 CENTRALIZED SECURITY RISKS 
This section reveals the neglected security risks caused by central-
ization in decentralized ecosystems. 
3.1 Overview 
In a decentralized architecture, there may still exist some centralized 
components which a single malicious person can control. Here, we 
describe the threat model and research objects. 

We assume decentralized platforms are benign, and miners will 
not collude with each other. Then, we regard the decentralized 
service providers as adversaries. We consider two scenarios: 

a) First-party centralization. The adversary integrates centralized 
services or backdoors into the decentralized service he devel-
oped. In this scenario, the adversary usually intentionally con-
fuses the concept of decentralization and misleads users by 
advertising that the service runs on a decentralized platform. 

b) Third-party centralization. The adversary, as a third party, sup-
plies centralized components for decentralized services to con-
taminate decentralized ecosystems. In this scenario, the adver-
sary provides SDKs or services to induce developers to include 
those components in the decentralized services. 

Based on the description in Section 2, we focus on two widely 
deployed decentralized services – crypto wallets and DApps. 
Crypto Wallets. Crypto wallets claim that they are decentralized 
and anonymous. But in fact, some crypto wallets require users to 
provide Email addresses or phone numbers. Meanwhile, crypto 
wallets may have third-party centralized components, such as RPC 
services, SDKs, etc. These centralization factors indisputably de-
stroy the decentralized ecosystem and bring security risks. 
DApps. DApps emphasize that they run on decentralized plat-
forms and that data is immutable and indisputable. However, the 
backend of DApps, i.e., smart contracts, may have backdoors that 
implement privileged operations. ERC20 is an Ethereum request-for-
comment (ERC) standard that allows fungible tokens (FTs). ERC721 
and ERC1155 are two popular standards for creating unique and 
indivisible tokens, i.e., non-fungible tokens (NFTs). This work in-
vestigated the three most infuential DApps. 
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3.2 Security Risks 
After systematic investigations, we identifed a series of centralized 
security risks. Here we discuss them, SR#1 to SR#5 appearing in 
crypto wallets and SR#6 to SR#7 appearing in DApps. 
SR#1: Anonymity Loss (AL). Some crypto wallets require account 
registration before use, and users have to provide personally iden-
tifable information (PII) in this process, such as Email addresses 
and phone numbers. Provided PII jeopardizes the user’s anonymity 
[38, 40]. Further, attackers can conduct phishing attacks by leaking 
PII, e.g., in March 2022, Trezor wallet exposed the Email addresses 
of 106,856 users, resulting in massive phishing Email attacks [2]. 
SR#2: Private Key Leakage (PL). Private keys hold users’ crypto 
assets and should be carefully stored locally. Some wallets recom-
mend that users use frst- or third-party servers to back up private 
keys, e.g., Bitcoin.com Wallet, an Android wallet with over 5 mil-
lion downloads, recommends users back up private keys on their 
servers, which incurs risks. First, service providers may steal or 
leak private keys. Second, private keys may be subject to man-in-
the-middle (MITM) attacks during network transmission. In August 
2022, Slope leaked users’ private keys during the network transmis-
sion, resulting in the theft of at least $6 million worth of tokens [32]. 
SR#3: Built-in Centralized Services (BS). Some wallets have 
built-in frst- or third-party centralized services such as exchanges 
and cryptocurrency purchases. Generally, centralized services are 
regulated by the government and may share users’ PII with third 
parties. Also, users may sufer fnancial losses due to the sudden 
shutdown of services. Most users cannot distinguish whether ser-
vices in crypto wallets are centralized or not. Therefore, wallets are 
obliged to inform users of centralized services’ risks. For instance, 
as of 2020, 75 exchanges were closed [41]. In June 2022, Celsius 
Network, an centralized fnance platform with 1.7 million users, 
suspended its services, citing "extreme market conditions" [39]. 
SR#4: RPC Services (RS). RPC services or providers sufer from is-
sues inherent in centralization, such as denial-of-service (DoS) [17]. 
Also, RPC providers can withhold transactions with transaction-
ordering dependence (TOD) [21] for huge benefts. Crypto wallets 
should disclose built-in RPC providers and allow users to change 
RPCs. The centralization of RPC services has caused many secu-
rity risks. In March 2022, Infura cut of Ukrainian users for policy 
reasons. Since the default RPC of Metamask (a well-known crypto 
wallet) is Infura, many Metamask users were also afected [5]. 
SR#5: Third-Party SDKs (TS). It is common for crypto wallets 
to use third-party SDKs such as notifcation and fraud protection. 
Wallets may share users’ PII, device IDs, and crash logs with these 
third parties. In the Slope incident [32], a white hat hacker found 
that Slope used plaintext to transmit logs to Sentry, a bug-tracking 
SDK. Meanwhile, Slope did not clear sensitive information, resulting 
in Sentry holding sensitive information of Slope’s users. 
SR#6: Overpowered Owner (OO). The smart contract supports 
access to the caller’s address, so a contract can check the caller’s 
address to see if he can call the function, i.e., access control. Access 
control allows creators to manipulate contracts, aka overpowered 
owner (OO). Listing 1 shows an example. First, the constructor() 
sets the creator (msg.sender) as the owner (_owner) in line 2. Then, 
the modifer onlyOwner() has a require statement in line 7 that 

ensures the caller is the owner. The function mint() is only avail-
able to the owner (creator) because it is protected by onlyOwner(). 
Openzeppelin [23], the most famous contract library, provides two 
kinds of access controls, Ownable and AccessControl. Wild contracts 
also use a simple mapping to maintain a set of privileged addresses, 
called AdminControl. The variable of Ownable is called owner, as 
shown in Listing 1. The variables of AccessControl and AdminCon-
trol are called roles and admins, respectively. For convenience, in 
the rest of this paper, we use the owner or owners to denote roles in 
the three access controls. 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

constructor(){ 
_owner = msg.sender; // address public _owner; 
_maxSupply = 100000; // uint public _maxSupply; 
_totalSupply = 0; // uint public _totalSupply; 

} 
modifier onlyOwner() { 
require(msg.sender == _owner); 
_; 

} 
function mint(address to, uint amount) public onlyOwner { 
//require(msg.sender == _owner); equals to onlyOwner(). 
require(_totalSupply + amount <= _maxSupply); 
/* ... */ 

14 } 

Listing 1. Example of the owner minting tokens. 

Generally, contracts adopt access control to protect accounts’ 
interests and maintain the contract environment. However, the risk 
of overpowered owner could cause the following security risks 
(SR#6.a to SR#6.d). Furthermore, losing the owner’s private key 
can cause severe damage, as attackers can directly exploit these 
privileges. An example of such failure is the KickICO incident 
[25]. Attackers compromised the owner’s private key and stole $7.7 
million worth of KickICO tokens. 
SR#6.a: Limited Liquidity (LL). Liquidity is the ability to buy and 
sell a cryptocurrency in the market. We defne liquidity as whether 
anyone can transfer or allowance tokens without limitations. If 
the owner can freeze a contract, the contract has limited liquidity. 
Listing 2 shows two kinds of limited liquidity, one is to set a bool 
variable to freeze the function (line 2), and the other to blacklist an 
address to prevent it from calling the function (line 3). 
1 
2 
3 
4 
5 

function transfer(address to, uint amount) public { 
require(!_paused); // bool 
require(!_blacklist[msg.sender]); // mapping(address=>bool) 
/* ... */ 

} 

Listing 2. Example of a transfer with limited liquidity. 

SR#6.b: Vulnerable Scarcity (VS). Vulnerable scarcity means that 
the owner can arbitrarily increase the supply of tokens. Tokens are 
scarce because usually the total supply of a contract is limited. In 
Listing 1, only the owner can mint tokens, and line 12 requires that 
the total supply (_totalSupply) is not greater than the maximum 
supply (_maxSupply). The additional issuance of a token harms 
the interests of holders. In January 2021, Yearn.finance team pro-
posed an extra $225 million worth of YFI to incentivize and retain 
developers, which caused ferce protests from its holders [3]. 
SR#6.c: Mutable Metadata (MM). If an owner can change meta-
data, we call it mutable metadata. Token standards ofer optional 
metadata, and Listing 3 lists the metadata of ERC20. In general, 
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metadata are immutable and only initialized during deployment. 
Wallets and browsers display contract metadata to users, so mutable 
metadata may mislead users into sending unexpected transactions. 
1 
2 
3 

function name() public view returns (string) {return _name;} 
function symbol() public view returns (string){return _symbol;} 
function decimals() public view returns (uint8) {return 18;} 

Listing 3. Example of the ERC20 metadata. 

SR#6.d: Mutable Parameters (MP). The function transfer() of 
ERC20 often has customized parameters, such as transferTax and 
maxTxAmount. Usually, these parameters are immutable and agreed 
upon by participants. If the owner can update parameters at will, 
we call it mutable parameters. 
SR#7: Missing Events (ME). Solidity Event encapsulates the log-
ging functionality of EVM. If a function updates state variables 
without emitting any events, we call it missing events. In Listing 4, 
the caller can know whether the function transfer() is executed 
successfully by listening to the event Transfer. Also, users can 
subscribe to events of functions to be aware of owners’ actions (e.g., 
pause transfer). If a function does not emit an event after updating 
a state variable, no one will be notifed unless he actively checks 
the contract in the blockchain. 
1 
2 
3 
4 
5 

event Transfer(address from, address to, uint amount); 
function transfer(address to, uint amount) public{ 
/* ... */ 
emit Transfer(msg.sender, to, amount); 

} 

Listing 4. Example of an Event. 

4 RISK DETECTION APPROACHES 
This section describes our approaches to detecting the above seven 
centralized security risks. 
4.1 Detection on Crypto Wallets 
Generally, there are four types of crypto wallets: mobile apps, 
browser extensions, desktop programs, and physical hardware. 
Ethereum website lists 44 wallets [1], of which 30 support the An-
droid platform, accounting for the most signifcant proportion, so 
we focus on Android wallets as the research object. We analyzed the 
security risks of wallets from two aspects. One is function checking 
from the users’ perspective (D#1), and the other is analyzing SDKs 
in APKs with a semi-automatic heuristic method (D#2). 
D#1: Function Check. We manually check the main functions of 
crypto wallets, including generating and importing private keys, 
trading, modifying RPCs, etc. We pay attention to the following 
four research questions: 
RQ1 Does the wallet require users to register or provide additional 

information before use? (SR#1) 
RQ2 Does the wallet recommend users back up their private keys 

to the cloud? (SR#2) 
RQ3 Whether the wallet has built-in centralized services and re-

minds users that these services are not decentralized. (SR#3) 
RQ4 Can users modify RPC providers in the wallet? (SR#4) 
D#2: Semi-Automated Detection. We propose a semi-automated 
heuristic method to identify risky SDKs (SR#5). First, we note that 
package names usually follow the Java naming convention, i.e., 
domain.company.project, and these commercial third-party SDKs 
usually have websites to promote business. Specifcally, we can 
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Figure. 2. Process of identifying risky third-party SDKs. 
Table 1: Identifed state variables. 

SR Variable Solidity Type Detection 
#6 owner address, bytes [D#3, D#4]→D#6 

roles mapping(bytes⇒RoleData) 
admins mapping(address⇒bool) 

mapping(bytes⇒bool) 
#6.a blacklist mapping(address⇒bool) D#6 

paused bool [D#3, D#4]→D#6 
#6.b totalSupply uint [D#3, D#4]→D#5 
#6.c Table 2 N/A [D#3, D#4]→D#5 
#6.d N/A uint D#6 
[D#3, D#4]→D#6 means that if D#3 and D#4 are executed frst, then D#6 is executed 
for remaining variables. 

Table 2: Optional metadata for tokens. 

Variable Solidity Type ERC20√ 
ERC721√ 

ERC1155 
name 
symbol 
decimals 

uri 

string 
string 
uint 
string 

√ 
√ 

√ 

√ √ 

infer the website from the package name, e.g., com.sensetime.senseid 
refers to the domain name http://sensetime.com. Figure 2 shows 
our heuristic method to identify SDKs. We use Apktool [37] to 
decompile the APK of a wallet and then perform a breadth-frst 
search (BFS) on the smali directory to obtain all package names. 
We take the frst two parts of the package name and reverse them 
as the domain name and try to send a request to it. If we receive 
a response, we crawl the website’s content and perform keyword 
matching. If three keywords are hit, we add this package to the 
candidate list. Finally, we manually check candidates and get risky 
SDKs. We pre-selected some risky third-party SDKs from SDKs 
with high frequency and selected keywords from their websites. 

4.2 Detection on Smart Contracts 
In this section we propose four detection methods based on state 
variable identifcation and implements an automated detection tool. 
4.2.1 State Variables Identification. We detect security risks on 
the Solidity source code of contracts. Solidity uses state variables 
to store a contract state on blockchain. A contract with overpow-
ered owner needs to set a particular state variable (called owner 
variable) that stores owners’ addresses and checks the caller’s ac-
cess permissions in critical functions. For example, in Listing 1, if 
the caller’s address is not equal to the owner variable (_owner), 
the function mint() will revert. These owner-controlled functions 
control a contract by modifying other state variables. Therefore, 
for detecting SR#6 and its four sub-issues, we need to fnd out the 
owner variable and the owner-controlled variables. Table 1 lists 
these state variables and detection methods. Below we introduce 
four methods (D#3~6) to identify state variables in Table 1. 
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Table 3: OpenZeppelin contracts. 

Directory Contracts 
access 
security 
token 

Ownable, AccessControl, AccessControlEnumerable 
Pausable 
ERC20, ERC721, ERC1155 
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Figure. 3. Overview of Naga architecture. 

D#3: Inheritance. Solidity supports multiple inheritance, and 
many contracts inherit Openzeppelin contracts to provide func-
tionality. Table 3 lists the common contracts in Openzeppelin. We 
frst annotated state variables in these contracts, and if a contract 
inherits these contracts, we can get variables in Table 1 directly by 
using variable names. 
D#4: Getters & Modifers. If a contract does not inherit any given 
contracts, D#3 will be invalid. However, most contracts have getters. 
A getter is a view function that returns the value of a state variable. 
Listing 3 shows the getters of ERC20, and we can identify variables 
through these getters. In practice, we match getters of contracts 
listed in Table 3 and further analyze the return statement to iden-
tify variables. Additionally, we use a similar approach to match 
popular modifers such as onlyOwner() and onlyRole(). 
D#5: Variable Name & Type. Solidity can automatically create 
getters for state variables declared public, so that a contract may 
omit getters. Therefore, we match names and types to identify state 
variables that survived the screening of D#3 and D#4. 
D#6: Behavior Patterns. The above three matching methods can-
not deal with custom variables, e.g., a contract may have an owner 
variable with an uncommon name. Therefore, we defne behavior 
patterns for most state variables to identify them, e.g., an owner 
variable can only be written by himself or other owners, and the 
owner must appear in a require to protect other state variables. 

Following the above methods, we detect state variables in Table 1 
and judge the security risks (SR#6, SR#6.a~d) of a contract according 
to whether owners can modify these variables. For SR#7, we directly 
analyze functions and classify them by identifed variables. If an 
owner-controlled function misses an event, we classify it as owner-
related ME (missing event), otherwise user-related ME. 

Since D#3 and D#4 are match items in the library, they are accu-
rate. D#5 may have false positives due to the same variable name and 
type. Thus, we only perform D#5 on totalSupply and metadata 
variables (SR#6.b, SR#6.c) because they are well-known. We rely on 
D#6 to deal with the diversity of SR#6, SR#6.a, and SR#6.d variables. 
SR#6.b and SR#6.c do not adopt D#6 because their variables are 
read-only by default that cannot defne behavior patterns. 

4.2.2 Design of Naga. Based on the detection methods, we de-
signed a static analysis tool called Naga to detect security risks 
in smart contracts. Figure 3 illustrates the architecture of Naga, 

which consists of two modules, i.e., Core and Detectors. Naga is 
built on top of SLITHER [11], a static analysis framework. First, 
SLITHER compiles the contract’s source code. Then, the Analyzer 
loads the SLITHER object and analyzes it from multiple levels. Fi-
nally, Detectors module fnds security risks by pre-defned detectors 
and outputs a JSON report. Only analyzing variables in a single 
function or statement is not enough because functions can call 
each other, and there are dependencies between statements. The 
Core module includes a Data-Dependency Analysis Engine (DAE) 
for fne-grained analysis, which can track the dependencies of key 
variables or statements, and supports the analysis of internal or 
external calls. D#4 and D#6 beneft from DAE. 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

Listing 5. Example of transferring ownership. 

address public _owner; //the owner variable 
function _msgSender() internal returns (address) { 
return msg.sender; 

} 
function transferOwnership(address newOwner) external { 
address currOwner = _owner; 
require(currOwner == _msgSender() && newOwner != address(0)); 
// require(currOwner == _msgSender()); 
// require(newOwner != address(0)); 
_owner = newOwner; 

} 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

_msgSender() IRs: 
RETURN msg.sender ▲ 

transferOwnership() IRs: 
currOwner_1(address) := _owner_1(address) ▲ 
TMP_0(address) = INTERNAL_CALL, intercall._msgSender()() ▲ 
TMP_1(bool) = currOwner_1 == TMP_0 ▲ 
TMP_2 = CONVERT 0 to address   
TMP_3(bool) = newOwner_1 != TMP_2   
TMP_4(bool) = TMP_1 && TMP_3 ◀ 
TMP_5(None) = SOLIDITY_CALL require(bool)(TMP_4) 
_owner_2(address) := newOwner_1(address) 

Listing 6. Static single assignment form of IRs of Listing.5. 

Data-dependency Analysis Engine (DAE). DAE gets the deep 
data-dependency of a given variable or statement by tracking the 
intermediate representation (IR) that SLITHER converted. DAE is 
accurate due to the advantages of the static single assignment (SSA) 
form of IRs. Appendix A.1 gives the technical details of DAE, and 
here we provide an example. 

In Listing 5, the function transferOwnership() has a com-
pound require in line 7, which is equivalent to line 8 and line 9. 
Without DAE, we only know line 7 depends on two local variables 
(currOwner, newOwner) and one constant address (0x0). Listing 6 
is the SSA form of IRs of Listing 5, and line 11 in Listing 6 is the 
IR of the tainted line 7 in Listing 5. The rvalue TMP_4 of line 11 
depends on TMP_1 and TMP_3 in line 10. DAE supports split && 
operators in conditional statements. Since DAE fnds the && op-
erator in line 10, it starts two sub-DAEs to analyze TMP_1 (golden 
▲) and TMP_3 (green  ). In line 6, sub-DAE enter the internal call 
_msgSender() and get the return value, i.e., msg.sender. Follow-
ing green marks, we can see TMP_3 depends on newOwner_1 (i.e., 
newOwner) and an address 0x0. Naga learned from DAE that the 
require depends on two conditions. The frst condition includes a 
state variable _owner and a global variable msg.sender, and the 
second condition includes a local variable newOwner and a constant 
address 0x0. According to behavior patterns defned in D#6, Naga 
reports that this function is controlled by the owner. 
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Table 4: Contract datasets under detection. Table 5: Security risks of crypto wallets. 

Crypto Wallet DLs SR#1 SR#2 SR#3 SR#4 SR#5
Brave Wallet 100M+ # G# # 0
Coinbase Wallet 10M+

#

MetaMask 10M+
# # #   3

allet 5M+
# 2

Bitcoin.com W
#
#G Cloud

# #G
    5

Exodus 1M+
Opera Wallet 1M+

# # G#   0
# # #   1

Status 1M+ 0
TokenPocket 1M+

# # #G #
# # # # 0

Coin98 Wallet 500K+ G# Cloud     4
imToken 500K+ 5
MEWWallet 500K+

# # # #

AlphaWallet 100K+
# #     3

1
Argent 100K+

#
 Go

#
ogle

#G #

Coin Wallet 100K+
 #G   6

# G#   1
Guarda 100K+

#
# #     0

Pillar 100K+
ZenGo 100K+

#
Go
#
ogle

    4

allet 100K+
      10

Zerion W
1inch Wallet 50K+

#
Go
#
ogle

#G   4
0

Loopring Wallet 50K+
# #   

Gap Wallet 10K+
  # #   1

Air
Bridge Wallet 10K+

# # #   0
G# #   # 2

FoxWallet 10K+ # # # 5
Gnosis Safe 10K+

# G
# # #   2

Numio 10K+ Google 3
Rainbow 10K+

      

Unstoppable 10K+
# Google     3
# # #   0

Aktionariat 1K+ 1
  Security risk exists; G# Security risk

  
maybe

#
exist;

   
# No security

 
risk.

Table 6: Crypto wallets requiring account registration (SR#1).

Dataset ERC20 ERC721 ERC1155 Non-token Total 
ET 351 8,575 2,827 N/A 11,753 
EM 42,801 20,947 1,334 33,671 98,753 
Overall 43,152 29,522 4,161 33,671 110,506 

Detectors. According to Section 4.2.1 and Table 1, we implemented
the detectors for SR#6 with four sub-issues (SR#6.a to SR#6.d) and 
SR#7. We can easily add more detectors to extend the detection 
capabilities of Naga. Appendix A.2 gives the details of all detectors. 

5 MEASUREMENT AND FINDINGS 

5.1 Experiment Setup 

Crypto Wallet Dataset. We downloaded 30 Android crypto wallet
apps recommended by Ethereum from Google Play. Since two wal-
lets (Ledger and Keystone) require additional hardware, the rest 28 
wallets were used for the experiment. These 28 wallets have over 
131 million downloads, including one wallet with over 100 million 
downloads and two wallets with over 10 million downloads. 
Smart Contract Dataset. Table 4 lists the detected contracts in two
datasets2, with a total of 110,506 contracts, including 43,152 ERC20s,
29,522 ERC721s, 4,161 ERC1155s, and 33,671 non-tokens. The frst 
dataset Etherscan token (ET) comes from Etherscan’s token tracker
[10]. Etherscan identifed some ERC20s, ERC721s, and ERC1155s. 
We crawled the source codes of those tokens and made up the 
dataset ET. It is a high-value dataset where ERC20s have 30 million
holders and a total market cap of over $310 billion. The second 
dataset Ethereum mainnet (EM) comes from SCS [24], a project that
collects the source code of contracts. Since half of the contracts 
failed to compile in SCS, we requested from scratch all 143,900
contracts from Etherscan, which covers a period until July 1, 2022. 
We removed duplicate contracts between two datasets and did not 
detect contracts with Solidity versions lower than 0.5.0 because 
they do not support the require keyword. We identify tokens in
the EM dataset by matching function signatures, a method widely
used by crypto wallets and websites, including Etherscan. 
Setup. We performed D#1 on a Lenovo Lemeng K12 phone with
Android 10. D#2 and Naga were run on a machine with two Intel(R) 
Xeon(R) Gold 6226R CPUs @ 2.90GHz and 256 GB of memory. 
The running environment is Ubuntu 20.04 and Python 3.8.10. The 
timeout of contract compilation and Naga analysis are both 60 
seconds. We detected all risks (SR#6, SR#6.a~d, and SR#7) for token 
contracts and detected SR#6 and SR#7 only for non-token contracts. 

5.2 Experiment Results 
This section presents our detection results. Table 5 lists the security 
risks (SR#1 to SR#5) of crypto wallets, and Table 7 lists SR#6 to SR#7 
of smart contracts. The results are almost overwhelming. That is, 
96.4% (27/28) of wallets and 83.5% (92,254/110,506) of contracts have 
at least one security risk, including 11,419 high-value contracts and 
260 famous tokens with a total market cap of over $98 billion. 

2Both datasets are available at https://doi.org/10.5281/zenodo.7620479

Required Personal Identifable Information 
Crypto Wallet Email Phone Number Face√ √
Argent 
ZenGo 
Loopring Wallet 
Numio 
Aktionariat 

√ √ 
√ 

√ 
√ √ 

Performance Analysis. Naga cost 2.11 seconds per contract on av-
erage. Except for 1,834 contract source fle errors, only one contract 
failed due to IR conversion failure, and no contract was timeout. 
To SR#1: Anonymity Loss. Table 6 lists the wallets requiring
registration. Among them, four wallets require an Email address, 
while Argent and Aktionariat also require a phone number. ZenGo 
and Numio even require face verifcation, and ZenGo requires users 
to link Google accounts and back up their private keys to Google 
Drive before use. Aktionariat requires users to provide personal 
information such as name and address. In addition, the registration 
steps of three wallets are optional (marked as G# in Table 5), and
the user only needs to provide an Email address. Almost all wallets
with SR#1 ofer extra services like online backup (SR#2), exchange 
(SR#3), so they tend to make users sign up. 
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Table 7: Security risks of smart contracts (num. of state variables / num. of contracts). 

Contracts SR#6 (OO) SR#6.a (LL) SR#6.b (VS) SR#6.c (MM) SR#6.d (MP) SR#7 (ME) 
ERC20 61,170 / 34,812 19,746 / 16,543 2,968 / 2,968 552 / 268 74,381 / 18,552 167,292 / 29,467 
ERC721 41,062 / 28,866 2,564 / 2,489 N/A 20,911 / 20,698 N/A 157,280 / 25,862 
ERC1155 6,286 / 3,967 561 / 549 76 / 76 2,074 / 2,025 N/A 10,769 / 3,269 
Non-token 32,545 / 20,814 N/A N/A N/A N/A 62,114 / 16,198 
Total 141,063 / 88,459 22,871 / 19,581 3,044 / 3,044 23,537 / 22,991 74,381 / 18,552 397,455 / 74,796 

Table 8: Categories of third-party SDKs (SR#5). 

Categories # of SDKs # / DLs of APKs 
C#1 
C#2 
C#3 
C#4 
C#5 

Notifcation, SMS, Email 
Data Analysis, Customer Analysis 
ID Verifcation, Fraud Protection 
Bug Reporting, Error tracking 
Business Messenger 

11 
12 
13 
5
4

10 / 6,740K+ 
10 / 11,430K+ 
9 / 11,321K+ 
11 / 26,330K+ 
7 / 6,310K+ 

One SDK may belong to multiple categories, and one app may use multiple SDKs. 

To SR#2: Private Key Leakage. Usually, wallets remind users to
write down mnemonic words of private keys. However, seven wal-
lets recommend users use online backups for convenience, which 
leads to SR#2. Bitcoin.com Wallet and Coin98 Wallet, with 5M and 
1M downloads, respectively, remind users to back up private keys 
to their servers, and fve wallets (including ZenGo) recommend 
users to back up private keys to Google Drive. 
To SR#3: Built-in Centralized Services. Two wallets have built-in
exchanges, and 19 wallets provide cryptocurrency purchase func-
tions. None of the wallets alert users that those services are central-
ized, and only nine wallets showed providers of services (marked 
as G# in Table 5). No wallets apply for Android permissions, except
for Numio. Numio requires users to provide location permission to
check whether users can purchase cryptocurrencies. In fact, blur-
ring the centralization of these services will help attract users. 
To SR#4: RPC Services. In our dataset, 20 crypto wallets do not
disclose their RPC providers and cannot modify RPCs. The remain-
ing eight wallets support users adding new RPCs, and six of them 
reveal RPC providers. Five of these six disclosed RPC providers 
are centralized, including infura.io, nodereal.io, and ankr.com. Only
imToken wallet uses its own RPC service token.im.
To SR#5: Third-Party SDKs. Our heuristic detection (D#2) recog-
nized 72 candidate SDKs. We conducted manual analysis and found 
29 risky third-party SDKs. We further investigated these SDKs and 
found that wallets use them mainly for the fve reasons, as listed in 
Table 8. In C#1, SDK providers hold the wallet user’s contact infor-
mation, which could incur phishing attacks. The SDK providers of 
C#2 to C#5 may obtain the user’s PII, which destroys anonymity. In 
C#3, we also found a face recognition SDK com.facetec, which was
confrmed to be used in Numio and ZenGo. Based on the number of 
APKs, the most infuential SDK is io.sentry (Sentry), a bug-reporting
SDK used by eight well-known crypto wallets with over 11 million 
total downloads. Sentry supports customization, and the aforemen-
tioned Slope incident is caused by misconfguration. Appendix A.3 
lists the detail of these 29 SDKs. 
To SR#6: Overpowered Owner. As demonstrated in Table 7, Naga
found 141,063 owners in 88,459 contracts, i.e., 80.1% (88,459/110,506) 
of contracts and 88.0% (67,645/76,835) of tokens have the risk of 

Table 9: Percentages of token contracts with security risks. 

Contracts SR#6 SR#6.a SR#6.b SR#6.c SR#6.d SR#7 
ERC20 (FT) 80.7% 38.3% 6.9% 0.6% 43.0% 68.3% 
ERC721 (NFT) 97.8% 8.4% N/A 70.1% N/A 87.6% 
ERC1155 (NFT) 95.3% 13.2% 1.8% 48.7% N/A 78.6% 
NFTs 97.5% 9.0% N/A 67.5% N/A 86.5% 
Overall (Token) 88.0% 25.5% N/A 29.9% N/A 76.3% 

overpowered owner. The main reason for such high percentages is 
that, since contracts are immutable once deployed, most creators 
(owners) want to retain the ability to change contracts. For example, 
70.4% (47,635/67,645) of tokens with overpowered owners have at 
least one risk of SR#6.a~d. Table 9 shows that the percentage of SR#6 
in NFTs (97.5%) is signifcantly more than that in FTs (80.7%) because 
NFTs usually require owner-controlled functions. For example, to 
attract potential users, NFT contracts could distribute some NFTs for 
free, called airdrop. Those contracts contain a function airdrop()
that the owner only controls. 
To SR#6.a: Limited Liquidity. Naga found 21,464 contracts with
limited liquidity. Table 9 shows that 25.5% of tokens and 38.3% of 
ERC20s have this risk. As mentioned before, owners use blacklist
and paused to limit liquidity for security. Since paused can ofer
the additional ability to switch transfers, NFTs prefer to use it to 
delay opening transactions. In our dataset, 79.6% of FTs with limited 
liquidity have blacklist, and 96.8% of NFTs have paused.
To SR#6.b: Vulnerable Scarcity. We only detected vulnerable
scarcity for ERC20s and ERC1155s because ERC721s do not have 
totalSupply. Since most investors (users) tend to select tokens
according to their scarcity, the total supplies of most contracts are 
limited. However, there are still 3,044 contracts have the risk of 
vulnerable scarcity, as shown in Table 7, including 2,968 ERC20s 
and 76 ERC1155s. In other words, these tokens are more likely to 
depreciate due to additional issuance. 
To SR#6.c: Mutable Metadata. Table 9 shows that 67.5% of NFTs
have mutable metadata, while only 0.6% of ERC20s. Since most NFTs 
store users’ digital assets on centralized servers, deployers (owners) 
need to retain the ability to change baseURI, and NFTs with blind
boxes need owners to reveal baseURI. Therefore, there are more
NFTs with this risk. However, excluding baseURI, there are still 392
contracts with 782 metadata that owners can modify. We further 
investigated these contracts and found that they intentionally retain 
the ability to modify metadata for upgrading contracts in the future. 
To SR#6.d: Mutable Parameters. About 43.0% of ERC20s support
owners in changing transfer parameters. Only 19 contracts (5.4%) 
have the risk of mutable parameters in the ET dataset. However,
18,533 contracts (43.3%) have this risk in the EM dataset. The large
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Table 10: Num. of functions with missing events (SR#7). 

Total User Owner 
Token 335,341 13,063 (3.9%) 322,278 (96.1%) 
Overall 397,455 31,826 (8.0%) 365,629 (92.0%) 

Table 11: FP & FN analysis – num. of state variables. 

SR#6 SR#6.a SR#6.b SR#6.c SR#6.d SR#7 
TP 136 24 54 274 227 444 
FP 5 0 0 0 1 0 
FN 2 7 3 14 0 0 

discrepancy between the two datasets refects the constraints of 
valuable (ET ) contracts in changing parameters. It indicates that 
owners of ordinary (EM) contracts abuse their power. 
To SR#7: Missing Events. The risk of missing events (ME) in 
contracts is widespread, with 74,796 contracts (67.7%) missing at 
least one event, indicating that most contracts are not compliant. 
Table 10 shows the number of functions with ME. The owner-
related ME accounts for 92.0% of all contracts and 96.1% of tokens. 
We further investigated the functions with ME called by owners: 
owners update parameters (SR#6.d) account for the most signifcant 
proportion (35.6%), and other infuential ones are SR#6 (18.4%), 
SR#6.a (18.3%), and SR#6.c (16.2%). The above results show that 
owners tend not to emit events when manipulating contracts. 
FP & FN Analysis. We randomly selected 100 token contracts to 
test the efectiveness of Naga. Table 11 shows the number of correct 
(TP), incorrect (FP), and missed (FN) state variables detected by 
Naga compared to the results obtained manually. Overall, Naga is 
a tool with high accuracy and low false positives. It found 96.5% 
(715/741) of variables about overpowered owner (SR#6, 6.a~d) and 
only had six errors. The errors of Naga are mainly generated by 
D#6, e.g., whitelisted users can call some special functions. Naga 
erroneously recognized them as variables of SR#6. D#4 and D#5 
miss some variables because their names are uncommon, and some 
contracts violate the specifcation, such as using if statement in-
stead of require statement, which lead to D#6 missing them. Naga 
directly identifes events by IRs of contract code. Hence, FP and FN 
are not present in SR#7. 

6 MITIGATION 
To fundamentally eliminate centralized security risks, we need 
to make revolutionary changes to the current ecosystems repre-
sented by Ethereum. However, these changes will inevitably lead 
to blockchain forks. This section proposes immediate and practical 
mitigation from the perspective of users and developers. 
For Users. Users can evaluate crypto wallets according to D#1 in 
section 4.1, and use Naga to evaluate contracts. We recommend 
that users choose wallets with large downloads because the mea-
surement shows that these wallets have fewer risks. Also, users 
should not provide any information to wallets (SR#1, 2). Users can 
use onion routing to hide the actual IP addresses and, if possible, 
run their own blockchain node instead of the RPC service provided 
by the wallet (SR#4). 

For Developers. Developers should use decentralized services to 
replace traditional centralized services, such as remote storage with 
zero-knowledge encryption, and fulfll their obligation to inform 
users (SR#3, 5, 7). We suggest that developers allow wallets to 
connect to multiple RPC services simultaneously, which is easy to 
implement and can avoid malicious or failure of a single RPC service 
(SR#4). If a contract adopts access control, developers can adopt a 
multi-signature contract as the owner, which can decentralize the 
owner’s privileges and prevent the risk of the leakage of a single 
private key (SR#6). 

7 RELATED WORK 
Previous works on decentralized ecosystems were limited in secu-
rity and anonymity, but our work focuses more on security risks 
caused by centralization. Horus [38] is a semi-automated security 
assessment framework designed to analyze crypto wallet apps. Ho-
rus reveals several severe vulnerabilities that can lead to the loss 
of ownership and anonymization of users. Winter et al. [40] mea-
sure the privacy and security properties of DeFi applications. They 
fnd that many trackers on DeFi sites can trivially link a user’s 
Ethereum address with PII (e.g., name) or phish users. Li et al. [17] 
frst noticed centralized issues of RPC services and presented the 
DoERS attack, a Denial of Ethereum RPC service that incurs zero 
Ether cost to the attacker. TokenScope [8] is an automatic tool that 
detects inconsistent behaviors resulting from tokens deployed in 
Ethereum. TokenScope can fnd inconsistencies in standard events, 
while our tool Naga is to detect if a function is missing an event. 

Static analysis tools mainly use formal verifcation and symbolic 
execution to detect contracts, such as ZEUS [14], VERISMART 
[28], OSIRIS [34], Securify [36]. Dynamic analysis tools rely on 
fuzzers and SMT solvers, such as ContractFuzzer [13], ReGuard 
[18], Sereum [26], Oyente [21], CONFUZZIUS [33]. However, these 
existing tools all focus on contract vulnerabilities, and none of them 
directly support detecting overpowered owner. 

8 CONCLUSION 
The original intention of users to use decentralized services is to 
avoid centralized security risks. This work takes the frst step in 
investigating the centralized security risks in decentralized ecosys-
tems and lists seven previously unnoticed security risks. We propose 
six detection methods and implement an automated tool. The mea-
surement results are not optimistic, with 96.4% of crypto wallets 
and 83.5% of on-chain contracts having security risks. We hope 
centralized risks can draw the community’s attention. 
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A APPENDIX 

A.1 Data-dependency Analysis Engine (DAE) 
Here we give the technical details and algorithms of DAE. DAE 
includes a dependency tracker (DepTracker, Algorithm 1) and a call 
tracker (CallTracker, Algorithm 2). DepTracker analyzes dominators 
(statements) of the tainted variable or statement from the bottom 
up. CallTracker traces Return statements in internal or external 
calls and feeds results to DepTracker. DAE records visited functions 
to prevent infnite loops caused by recursion. 

A.2 Smart Contract Detectors 
We elaborate on the implementation details of detectors below. 
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Algorithm 1: DepTracker 
Input: tainted_vars: array of tainted values; 

dom_irs: dominators of tainted values; 
walked_funs: array of functions already visited. 

Output: dep_vars: dependent variables. 
1 dep_vars = tainted_vars 
2 while dom_irs do 
3 ir = dom_irs.pop() 
4 // The lvalue of the expression is not in the dep_vars. 
5 if ir.lval not in dep_vars then 
6 continue 
7 dep_vars.remove(ir.lval) // Remove the old value. 
8 dep_vars += ir.rvals // Add rvalues to the dep_vars. 
9 if isinstance(ir, (InternalCall, HighLevelCall)) then 
10 if ir.function in walked_funs then 
11 continue 
12 walked_funs.append(ir.function) 
13 // Call the InternalCall Tracker 
14 dep_vars += CallTracker(ir, walked_funs) 
15 end 
16 return dep_vars 

Algorithm 2: CallTracker 
Input: call_ir: ir that calls the internal function; 

walked_funs: functions already visited. 
Output: Dependencies 

1 dep_vars = [] 
2 dom_irs = call_ir.dom_irs // Dominators of call_ir 
3 while dom_irs do 
4 ir = dom_irs.pop() 
5 if isinstance(ir, Return) then // Return statement. 
6 dep_vars += DepTracker(ir.rvals, dom_irs, 

walked_funs) 
7 end 
8 return dep_vars 

SR#6: Overpowered Owner. First, we match the three access in-
heritances of Table 3 in D#3 and the two modifers (onlyOwner() 
and onlyRole()) in D#4. Then, we recognize the remaining vari-
ables in D#6. The rules for D#6 are as follows: (1) The owner should 
compare with msg.sender in the require; (2) The owner must be 
protected by himself or other owners. Finally, if we fnd owner 
variables, we say this contract has overpowered owner. 
SR#6.a:Limited Liquidity. The paused variable has a Pausable 
inheritance and a popular modifer whenNotPaused(). We check 
the two properties in D#3 and D#4. In D#6, we check the state 
variables of require statements in user-writable functions. If the 
type of a state variable is bool or mapping(address⇒bool) and 
the variable is protected by owners, we believe that the variable is 
a LL variable, so this contract is limited liquidity. 
SR#6.b: Vulnerable Scarcity. Since there is no totalSupply in 
ERC721, we only detect two inheritances (ERC20 and ERC1155)
in D#3. totalSupply also has a getter totalSupply() for D#4. 

We check the name keyword totalSupply and type (uint) in 
D#5. For totalSupply, if (1) the variable is protected by owners, 
(2) owners can increase the variable, and (3) totalSupply is not 
bound by an immutable uint variable or a constant, we believe that 
totalSupply is mutable, so this contract is vulnerable scarcity. 
SR#6.c: Mutable Metadata. We frst detect token inheritances and 
getters in D#3 and D#4, and then we check the name keywords and 
types of the remaining variables in D#5. Finally, we check if there 
are functions owners can modify these metadata. 
SR#6.d: Mutable Parameters. Since contracts have various pa-
rameters, it is difcult to match them directly. In D#6, for every 
mutable parameter: (1) uint type; (2) presenting in user-writable 
functions; (3) have a write function that only owners call. 
SR#7: Missing Events. After identifying state variables, we per-
form missing event detection. If a function writes to a state variable 
without emitting any events, we look up the state variable’s identity 
and report that the function is Missing Events. 

A.3 Valuable Third-party SDKs 
Table 12 lists 29 third-party SDKs in crypto wallets. C#1 is Notifca-
tion, SMS, Email , C#2 is Data Analysis, Customer Analysis, C#3 is 
Identity Verifcation, Fraud Protection, C#4 is Bug Reporting, Error 
tracking, and C#5 is Business Messenger. 

Table 12: Valuable Third-party SDKs 

SDK (SR#5) C#1 C#2 C#3 C#4√ 
C#5 APKs 

io.sentry √ √ √ √ 
8 

io.invertase √ √ 
6 

com.appsfyer √ √ 
5 

io.intercom √ √ 
5 

com.intercom √ 
5 

com.onesignal √ 
3 

com.bugsnag √ 
3 

com.segment √ 
3 

com.amplitude √ 
3 

com.zendesk √ 
2 

com.mixpanel √ √ 
2 

com.geetest √ 
2 

com.facetec √ 
2 

com.pusher √ √ √ 
2 

cn.jiguang √ √ √ 
1 

cn.asus.push √ √ √ 
1 

cn.jpush √ 
1 

com.instabug √ 
1 

com.crashlytics √ 
1 

com.onfdo √ √ 
1 

com.adjust √ 
1 

com.microblink √ 
1 

com.sensorsdata √ 
1 

com.helpscout √ 
1 

com.passbase √ √ 
1 

com.braze √ √ 
1 

com.appboy √ 
1 

com.tozny √ 
1 

org.iban4j 1 
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