
Bad Apples: Understanding the Centralized Security Risks in
Decentralized Ecosystems

Kailun Yan Jilian Zhang Xiangyu Liu
School of Cyber Science and College of Cyber Security Alibaba Group

Technology, Shandong University Jinan University Hangzhou, China
Qingdao, China Guangzhou, China eason.lxy@alibaba-inc.com

kailun@mail.sdu.edu.cn zhangjilian@jnu.edu.cn

Wenrui Diao∗ Shanqing Guo
School of Cyber Science and School of Cyber Science and

Technology, Shandong University Technology, Shandong University
Key Laboratory of Cryptologic Key Laboratory of Cryptologic

Technology and Information Security, Technology and Information Security,
Ministry of Education, SDU Ministry of Education, SDU

Qingdao, China Quan Cheng Laboratory
diaowenrui@link.cuhk.edu.hk Qingdao, China

ABSTRACT
The blockchain-powered decentralized applications and systems
have been widely deployed in recent years. The decentralization
feature promises users anonymity, security, and non-censorship,
which is especially welcomed in the areas of decentralized fnance
and digital assets. From the perspective of most common users, a
decentralized ecosystem means every service follows the principle
of decentralization. However, we fnd that the services in a decen-
tralized ecosystem still may contain centralized components or
scenarios, like third-party SDKs and privileged operations, which
violate the promise of decentralization and may cause a series of
centralized security risks. In this work, we systematically study
the centralized security risks existing in decentralized ecosystems.
Specifcally, we identify seven centralized security risks in the de-
ployment of two typical decentralized services – crypto wallets
and DApps, such as anonymity loss and overpowered owner. Also,
to measure these risks in the wild, we designed an automated de-
tection tool called Naga and carried out large-scale experiments.
Based on the measurement of 28 Ethereum crypto wallets (Android
version) and 110,506 on-chain smart contracts, the result shows that
the centralized security risks are widespread. Up to 96.4% of wallets
and 83.5% of contracts exist at least one security risk, including 260
well-known tokens with a total market cap of over $98 billion.

CCS CONCEPTS
• Security and privacy → Distributed systems security;
∗The corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’23, April 30–May 04, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9416-1/23/04. . . $15.00
https://doi.org/10.1145/3543507.3583393

KEYWORDS
Decentralized ecosystems; Crypto wallets; Smart contracts

ACM Reference Format:
Yan, et al. 2023. Bad Apples: Understanding the Centralized Security Risks
in Decentralized Ecosystems. In Proceedings of the ACM Web Conference
2023 (WWW ’23), April 30–May 04, 2023, Austin, TX, USA. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3543507.3583393

1 INTRODUCTION
The decentralized platform is the cornerstone of Web3, which
promises to build an open, permissionless network [19]. The emer-
gence of decentralized platforms promotes the development of de-
centralized ecosystems. Decentralized ecosystems consist of a series
of services that are widely used due to the features of anonymous
login, censorship-free, data security, and zero downtime. These
services are decentralized by design and often open-sourced for
community review, attracting users and benefting developers.

From the perspective of most common users, a decentralized
ecosystem means every service follows the principle of 100% decen-
tralization. However, in practice, these services may still contain
centralized components or scenarios. For example, many decen-
tralized services rely on third-party remote procedure call (RPC)
services because they do not run their blockchain nodes. Further-
more, some decentralized applications (DApps) have backdoors to
facilitate maintenance. These actions undermine the promise of
decentralization and raise centralized security risks, like “one bad
apple spoils the whole barrel”. Also, such risks are practical and vital.
In November 2020, Infura [15], the leading RPC provider, was down,
which caused the most severe Ethereum incident after The DAO
attack [26, 29]. Recently, Slope, a well-known crypto wallet, leaked
users’ private keys, resulting in the theft of at least $6 million worth
of tokens [32].

To the best of our knowledge, we are the frst to systematically
explore the centralized security risks in decentralized ecosystems.
Most prior works focus on the security of blockchain system de-
sign [4, 6, 20, 22, 30, 35] and smart contract vulnerabilities detec-
tion [12, 16, 27, 31, 33]. However, from the view of ecosystems, the
security risks caused by centralization were undervalued.

2274

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3543507.3583393
https://doi.org/10.1145/3543507.3583393
mailto:permissions@acm.org
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543507.3583393&domain=pdf&date_stamp=2023-04-30

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Kailun Yan, Jilian Zhang, Xiangyu Liu, Wenrui Diao, and Shanqing Guo

Our Work. This work systematically evaluates the decentralized
ecosystem and reveals the centralized security risks of two cru-
cial decentralized services – crypto wallets and DApps. We delved
into decentralized services and discovered seven centralized se-
curity risks, of which fve are related to crypto wallets and two
(with four sub-issues) to DApps. To evaluate these risks in the
wild, we proposed two methods to examine 28 Ethereum’s ofcially
recommended crypto wallets from the perspective of usage and
development. The result shows that 27 wallets have security risks,
say 96.4%. Also, we designed an automated tool Naga1 to detect
smart contracts of DApps by identifying state variables. Unlike
previous work only analyzing data dependencies at the function
level, Naga is a fne-grained tool that analyzes data dependencies
in intermediate representations (IRs) of contract code. Further, we
conducted a large-scale evaluation on 110,506 Ethereum on-chain
contracts and discovered 92,254 contracts (83.5%) with security
risks, including 11,419 high-value contracts and 260 famous tokens
with a total market cap of over $98 billion.
Contributions. Here we list the main contributions of this paper:
• New security issues. We conducted the frst systematic study on
the centralized security risks in decentralized ecosystems. We
identifed seven previously unnoticed security risks.

• New techniques. We proposed two methods to check crypto
wallets and designed an automated tool that can analyze data
dependencies at the IR level for smart contract risk detection.

• Real-world evaluations. We carried out large-scale evaluations
on 28 well-known crypto wallets and 110,506 DApps. The result
shows that the centralized security risks are widespread.

Roadmap. The rest of this paper is organized as follows. Section
2 provides the necessary background of decentralized ecosystems.
Section 3 discusses the discovered security risks. Section 4 intro-
duces our detection approaches and implementation. Section 5
presents the measurement results. Section 6 proposes some sug-
gestions for risk mitigation. Section 7 reviews related work, and
Section 8 concludes this paper.

2 DECENTRALIZED ECOSYSTEMS
Decentralized ecosystems with verifable, self-governing, permis-
sionless, native payments, etc., allow anyone to access services
equally, and no personal data is required. Instead of services con-
trolled and owned by centralized entities, ownership in a decen-
tralized service is distributed amongst its builders and users. Also,
each service runs on multiple nodes, so there is no single point of
failure, such as denial-of-service (DoS). The booming decentralized
ecosystem is driving the transition from Web2 to Web3.

Figure 1 illustrates the main components of a decentralized
ecosystem. As a decentralized platform, blockchain is the core in-
frastructure of decentralized ecosystems, and other services are
built on it. Ethereum [7] is currently the largest decentralized plat-
form, powering the cryptocurrency Ether (ETH) and thousands of
decentralized applications (DApps). Centralized exchanges (CEXs)
facilitate the fow of fat and cryptocurrencies. As per the proto-
col, CEXs have an extensive built-in know-your-customer (KYC)
policy and operate under regulatory supervision. Crypto or Web3
wallets act as a gateway to the natural and crypto worlds, manage
crypto assets, and interact with DApps. DApp is an autonomously

1Naga is available at https://doi.org/10.5281/zenodo.7620441

Match APKAPK

APKTool

Smali
Folders
Smali

Folders
Package
Names

Package
Names

Package
Names

Web
Contents

Web
Contents

BFS

KeywordsKeywords

Third-party
SDKs

Third-party
SDKs

CandidatesCandidates

Request
Manual
Check

UsersUsers

Centralized
Exchanges
Centralized
Exchanges

RPC
Providers

RPC
Providers

Miners
(Blockchain Nodes)

Miners
(Blockchain Nodes)

BlockchainBlockchain

General Blockchain
DApps

(Smart Contracts)
DApps

(Smart Contracts)

Crypto
Wallets
Crypto
Wallets

Core

DepTracker

CallTracker

DAE
DepTracker

CallTracker

DAE

Contracts

Functions

Analyzer

Variables

……

Contracts

Functions

Analyzer

Variables

……

ME

AC

MM MP

LL VS

MM MP

LL VS

Detectors

JSON
Report
JSON

Report
Smart

Contract
Smart

Contract

Core

DepTracker

CallTracker

DAE
DepTracker

CallTracker

DAE

Contracts (D#3)

Functions (D#4)

Analyzer

Variables (D#5)

Behaviors (D#6)

Contracts (D#3)

Functions (D#4)

Analyzer

Variables (D#5)

Behaviors (D#6)

ME

AC

MM MP

LL VS

MM MP

LL VS

Detectors

JSON
Report
JSON

Report
Smart

Contract
Smart

Contract

UsersUsers

Centralized
Exchanges
Centralized
Exchanges

RPC
Providers

RPC
Providers

Miners
(Blockchain Nodes)

Miners
(Blockchain Nodes)

BlockchainBlockchain

General Blockchain
DApps

(Smart Contracts)
DApps

(Smart Contracts)

Crypto
Wallets
Crypto
Wallets

Figure. 1. Basic components of a decentralized ecosystem.

operating application with a backend smart contract and a frontend
user interface. Ethereum’s smart contracts are written in high-level
programming languages such as Solidity [9] and then compiled
down to bytecode running on Ethereum Virtual Machine (EVM).
Ethereum client ofers a set of remote procedure call (RPC) com-
mands, so decentralized services can interact with blockchain by
RPC, such as reading data and sending transactions. Most decen-
tralized services rely on third-party RPC services because they do
not run blockchain nodes. They send transactions to an RPC ser-
vice, and the RPC service forwards transactions to the blockchain
network. Finally, miners record transactions on the blockchain.

3 CENTRALIZED SECURITY RISKS
This section reveals the neglected security risks caused by central-
ization in decentralized ecosystems.
3.1 Overview
In a decentralized architecture, there may still exist some centralized
components which a single malicious person can control. Here, we
describe the threat model and research objects.

We assume decentralized platforms are benign, and miners will
not collude with each other. Then, we regard the decentralized
service providers as adversaries. We consider two scenarios:

a) First-party centralization. The adversary integrates centralized
services or backdoors into the decentralized service he devel-
oped. In this scenario, the adversary usually intentionally con-
fuses the concept of decentralization and misleads users by
advertising that the service runs on a decentralized platform.

b) Third-party centralization. The adversary, as a third party, sup-
plies centralized components for decentralized services to con-
taminate decentralized ecosystems. In this scenario, the adver-
sary provides SDKs or services to induce developers to include
those components in the decentralized services.

Based on the description in Section 2, we focus on two widely
deployed decentralized services – crypto wallets and DApps.
Crypto Wallets. Crypto wallets claim that they are decentralized
and anonymous. But in fact, some crypto wallets require users to
provide Email addresses or phone numbers. Meanwhile, crypto
wallets may have third-party centralized components, such as RPC
services, SDKs, etc. These centralization factors indisputably de-
stroy the decentralized ecosystem and bring security risks.
DApps. DApps emphasize that they run on decentralized plat-
forms and that data is immutable and indisputable. However, the
backend of DApps, i.e., smart contracts, may have backdoors that
implement privileged operations. ERC20 is an Ethereum request-for-
comment (ERC) standard that allows fungible tokens (FTs). ERC721
and ERC1155 are two popular standards for creating unique and
indivisible tokens, i.e., non-fungible tokens (NFTs). This work in-
vestigated the three most infuential DApps.

2275

https://doi.org/10.5281/zenodo.7620441

Bad Apples: Understanding the Centralized Security Risks in Decentralized Ecosystems WWW ’23, April 30–May 04, 2023, Austin, TX, USA

3.2 Security Risks
After systematic investigations, we identifed a series of centralized
security risks. Here we discuss them, SR#1 to SR#5 appearing in
crypto wallets and SR#6 to SR#7 appearing in DApps.
SR#1: Anonymity Loss (AL). Some crypto wallets require account
registration before use, and users have to provide personally iden-
tifable information (PII) in this process, such as Email addresses
and phone numbers. Provided PII jeopardizes the user’s anonymity
[38, 40]. Further, attackers can conduct phishing attacks by leaking
PII, e.g., in March 2022, Trezor wallet exposed the Email addresses
of 106,856 users, resulting in massive phishing Email attacks [2].
SR#2: Private Key Leakage (PL). Private keys hold users’ crypto
assets and should be carefully stored locally. Some wallets recom-
mend that users use frst- or third-party servers to back up private
keys, e.g., Bitcoin.com Wallet, an Android wallet with over 5 mil-
lion downloads, recommends users back up private keys on their
servers, which incurs risks. First, service providers may steal or
leak private keys. Second, private keys may be subject to man-in-
the-middle (MITM) attacks during network transmission. In August
2022, Slope leaked users’ private keys during the network transmis-
sion, resulting in the theft of at least $6 million worth of tokens [32].
SR#3: Built-in Centralized Services (BS). Some wallets have
built-in frst- or third-party centralized services such as exchanges
and cryptocurrency purchases. Generally, centralized services are
regulated by the government and may share users’ PII with third
parties. Also, users may sufer fnancial losses due to the sudden
shutdown of services. Most users cannot distinguish whether ser-
vices in crypto wallets are centralized or not. Therefore, wallets are
obliged to inform users of centralized services’ risks. For instance,
as of 2020, 75 exchanges were closed [41]. In June 2022, Celsius
Network, an centralized fnance platform with 1.7 million users,
suspended its services, citing "extreme market conditions" [39].
SR#4: RPC Services (RS). RPC services or providers sufer from is-
sues inherent in centralization, such as denial-of-service (DoS) [17].
Also, RPC providers can withhold transactions with transaction-
ordering dependence (TOD) [21] for huge benefts. Crypto wallets
should disclose built-in RPC providers and allow users to change
RPCs. The centralization of RPC services has caused many secu-
rity risks. In March 2022, Infura cut of Ukrainian users for policy
reasons. Since the default RPC of Metamask (a well-known crypto
wallet) is Infura, many Metamask users were also afected [5].
SR#5: Third-Party SDKs (TS). It is common for crypto wallets
to use third-party SDKs such as notifcation and fraud protection.
Wallets may share users’ PII, device IDs, and crash logs with these
third parties. In the Slope incident [32], a white hat hacker found
that Slope used plaintext to transmit logs to Sentry, a bug-tracking
SDK. Meanwhile, Slope did not clear sensitive information, resulting
in Sentry holding sensitive information of Slope’s users.
SR#6: Overpowered Owner (OO). The smart contract supports
access to the caller’s address, so a contract can check the caller’s
address to see if he can call the function, i.e., access control. Access
control allows creators to manipulate contracts, aka overpowered
owner (OO). Listing 1 shows an example. First, the constructor()
sets the creator (msg.sender) as the owner (_owner) in line 2. Then,
the modifer onlyOwner() has a require statement in line 7 that

ensures the caller is the owner. The function mint() is only avail-
able to the owner (creator) because it is protected by onlyOwner().
Openzeppelin [23], the most famous contract library, provides two
kinds of access controls, Ownable and AccessControl. Wild contracts
also use a simple mapping to maintain a set of privileged addresses,
called AdminControl. The variable of Ownable is called owner, as
shown in Listing 1. The variables of AccessControl and AdminCon-
trol are called roles and admins, respectively. For convenience, in
the rest of this paper, we use the owner or owners to denote roles in
the three access controls.
1
2
3
4
5
6
7
8
9

10
11
12
13

constructor(){
_owner = msg.sender; // address public _owner;
_maxSupply = 100000; // uint public _maxSupply;
_totalSupply = 0; // uint public _totalSupply;

}
modifier onlyOwner() {
require(msg.sender == _owner);
_;

}
function mint(address to, uint amount) public onlyOwner {
//require(msg.sender == _owner); equals to onlyOwner().
require(_totalSupply + amount <= _maxSupply);
/* ... */

14 }

Listing 1. Example of the owner minting tokens.

Generally, contracts adopt access control to protect accounts’
interests and maintain the contract environment. However, the risk
of overpowered owner could cause the following security risks
(SR#6.a to SR#6.d). Furthermore, losing the owner’s private key
can cause severe damage, as attackers can directly exploit these
privileges. An example of such failure is the KickICO incident
[25]. Attackers compromised the owner’s private key and stole $7.7
million worth of KickICO tokens.
SR#6.a: Limited Liquidity (LL). Liquidity is the ability to buy and
sell a cryptocurrency in the market. We defne liquidity as whether
anyone can transfer or allowance tokens without limitations. If
the owner can freeze a contract, the contract has limited liquidity.
Listing 2 shows two kinds of limited liquidity, one is to set a bool
variable to freeze the function (line 2), and the other to blacklist an
address to prevent it from calling the function (line 3).
1
2
3
4
5

function transfer(address to, uint amount) public {
require(!_paused); // bool
require(!_blacklist[msg.sender]); // mapping(address=>bool)
/* ... */

}

Listing 2. Example of a transfer with limited liquidity.

SR#6.b: Vulnerable Scarcity (VS). Vulnerable scarcity means that
the owner can arbitrarily increase the supply of tokens. Tokens are
scarce because usually the total supply of a contract is limited. In
Listing 1, only the owner can mint tokens, and line 12 requires that
the total supply (_totalSupply) is not greater than the maximum
supply (_maxSupply). The additional issuance of a token harms
the interests of holders. In January 2021, Yearn.finance team pro-
posed an extra $225 million worth of YFI to incentivize and retain
developers, which caused ferce protests from its holders [3].
SR#6.c: Mutable Metadata (MM). If an owner can change meta-
data, we call it mutable metadata. Token standards ofer optional
metadata, and Listing 3 lists the metadata of ERC20. In general,

2276

https://Bitcoin.com

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Kailun Yan, Jilian Zhang, Xiangyu Liu, Wenrui Diao, and Shanqing Guo

metadata are immutable and only initialized during deployment.
Wallets and browsers display contract metadata to users, so mutable
metadata may mislead users into sending unexpected transactions.
1
2
3

function name() public view returns (string) {return _name;}
function symbol() public view returns (string){return _symbol;}
function decimals() public view returns (uint8) {return 18;}

Listing 3. Example of the ERC20 metadata.

SR#6.d: Mutable Parameters (MP). The function transfer() of
ERC20 often has customized parameters, such as transferTax and
maxTxAmount. Usually, these parameters are immutable and agreed
upon by participants. If the owner can update parameters at will,
we call it mutable parameters.
SR#7: Missing Events (ME). Solidity Event encapsulates the log-
ging functionality of EVM. If a function updates state variables
without emitting any events, we call it missing events. In Listing 4,
the caller can know whether the function transfer() is executed
successfully by listening to the event Transfer. Also, users can
subscribe to events of functions to be aware of owners’ actions (e.g.,
pause transfer). If a function does not emit an event after updating
a state variable, no one will be notifed unless he actively checks
the contract in the blockchain.
1
2
3
4
5

event Transfer(address from, address to, uint amount);
function transfer(address to, uint amount) public{
/* ... */
emit Transfer(msg.sender, to, amount);

}

Listing 4. Example of an Event.

4 RISK DETECTION APPROACHES
This section describes our approaches to detecting the above seven
centralized security risks.
4.1 Detection on Crypto Wallets
Generally, there are four types of crypto wallets: mobile apps,
browser extensions, desktop programs, and physical hardware.
Ethereum website lists 44 wallets [1], of which 30 support the An-
droid platform, accounting for the most signifcant proportion, so
we focus on Android wallets as the research object. We analyzed the
security risks of wallets from two aspects. One is function checking
from the users’ perspective (D#1), and the other is analyzing SDKs
in APKs with a semi-automatic heuristic method (D#2).
D#1: Function Check. We manually check the main functions of
crypto wallets, including generating and importing private keys,
trading, modifying RPCs, etc. We pay attention to the following
four research questions:
RQ1 Does the wallet require users to register or provide additional

information before use? (SR#1)
RQ2 Does the wallet recommend users back up their private keys

to the cloud? (SR#2)
RQ3 Whether the wallet has built-in centralized services and re-

minds users that these services are not decentralized. (SR#3)
RQ4 Can users modify RPC providers in the wallet? (SR#4)
D#2: Semi-Automated Detection. We propose a semi-automated
heuristic method to identify risky SDKs (SR#5). First, we note that
package names usually follow the Java naming convention, i.e.,
domain.company.project, and these commercial third-party SDKs
usually have websites to promote business. Specifcally, we can

Match APKAPK

APKTool

Smali
Folders
Smali

Folders
Package
Names

Package
Names

Package
Names

Web
Contents

Web
Contents

BFS

KeywordsKeywords

Third-party
SDKs

Third-party
SDKs

CandidatesCandidates

Request
Manual
Check

UsersUsers

Centralized
Exchanges
Centralized
Exchanges

RPC
Providers

RPC
Providers

Miners
(Blockchain Nodes)

Miners
(Blockchain Nodes)

BlockchainBlockchain

General Blockchain
Dapps

(Smart Contracts)
Dapps

(Smart Contracts)

Crypto
Wallets
Crypto
Wallets

Core

DepTracker

CallTracker

DAE
DepTracker

CallTracker

DAE

Contracts

Functions

Analyzer

Variables

……

Contracts

Functions

Analyzer

Variables

……

ME

AC

MM MP

LL VS

MM MP

LL VS

Detectors

JSON
Report
JSON

Report
Smart

Contract
Smart

Contract

Figure. 2. Process of identifying risky third-party SDKs.
Table 1: Identifed state variables.

SR Variable Solidity Type Detection
#6 owner address, bytes [D#3, D#4]→D#6

roles mapping(bytes⇒RoleData)
admins mapping(address⇒bool)

mapping(bytes⇒bool)
#6.a blacklist mapping(address⇒bool) D#6

paused bool [D#3, D#4]→D#6
#6.b totalSupply uint [D#3, D#4]→D#5
#6.c Table 2 N/A [D#3, D#4]→D#5
#6.d N/A uint D#6
[D#3, D#4]→D#6 means that if D#3 and D#4 are executed frst, then D#6 is executed
for remaining variables.

Table 2: Optional metadata for tokens.

Variable Solidity Type ERC20√
ERC721√

ERC1155
name
symbol
decimals

uri

string
string
uint
string

√
√

√

√ √

infer the website from the package name, e.g., com.sensetime.senseid
refers to the domain name http://sensetime.com. Figure 2 shows
our heuristic method to identify SDKs. We use Apktool [37] to
decompile the APK of a wallet and then perform a breadth-frst
search (BFS) on the smali directory to obtain all package names.
We take the frst two parts of the package name and reverse them
as the domain name and try to send a request to it. If we receive
a response, we crawl the website’s content and perform keyword
matching. If three keywords are hit, we add this package to the
candidate list. Finally, we manually check candidates and get risky
SDKs. We pre-selected some risky third-party SDKs from SDKs
with high frequency and selected keywords from their websites.

4.2 Detection on Smart Contracts
In this section we propose four detection methods based on state
variable identifcation and implements an automated detection tool.
4.2.1 State Variables Identification. We detect security risks on
the Solidity source code of contracts. Solidity uses state variables
to store a contract state on blockchain. A contract with overpow-
ered owner needs to set a particular state variable (called owner
variable) that stores owners’ addresses and checks the caller’s ac-
cess permissions in critical functions. For example, in Listing 1, if
the caller’s address is not equal to the owner variable (_owner),
the function mint() will revert. These owner-controlled functions
control a contract by modifying other state variables. Therefore,
for detecting SR#6 and its four sub-issues, we need to fnd out the
owner variable and the owner-controlled variables. Table 1 lists
these state variables and detection methods. Below we introduce
four methods (D#3~6) to identify state variables in Table 1.

2277

http://sensetime.com

Bad Apples: Understanding the Centralized Security Risks in Decentralized Ecosystems WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Table 3: OpenZeppelin contracts.

Directory Contracts
access
security
token

Ownable, AccessControl, AccessControlEnumerable
Pausable
ERC20, ERC721, ERC1155

Match APKAPK

APKTool

Smali
Folders
Smali

Folders
Package
Names

Package
Names

Package
Names

Web
Contents

Web
Contents

BFS

KeywordsKeywords

Third-party
SDKs

Third-party
SDKs

CandidatesCandidates

Request
Manual
Check

UsersUsers

Centralized
Exchanges
Centralized
Exchanges

RPC
Providers

RPC
Providers

Miners
(Blockchain Nodes)

Miners
(Blockchain Nodes)

BlockchainBlockchain

General Blockchain
DApps

(Smart Contracts)
DApps

(Smart Contracts)

Crypto
Wallets
Crypto
Wallets

Core

DepTracker

CallTracker

DAE
DepTracker

CallTracker

DAE

Contracts

Functions

Analyzer

Variables

……

Contracts

Functions

Analyzer

Variables

……

ME

OO

MM MP

LL VS

MM MP

LL VS

Detectors

JSON
Report
JSON

Report
Smart

Contract
Smart

Contract

Core

DepTracker

CallTracker

DAE
DepTracker

CallTracker

DAE

Contracts (D#3)

Functions (D#4)

Analyzer

Variables (D#5)

Behaviors (D#6)

Contracts (D#3)

Functions (D#4)

Analyzer

Variables (D#5)

Behaviors (D#6)

ME

OO

MM MP

LL VS

MM MP

LL VS

Detectors

JSON
Report
JSON

Report
Smart

Contract
Smart

Contract

UsersUsers

Centralized
Exchanges
Centralized
Exchanges

RPC
Providers

RPC
Providers

Miners
(Blockchain Nodes)

Miners
(Blockchain Nodes)

BlockchainBlockchain

General Blockchain
DApps

(Smart Contracts)
DApps

(Smart Contracts)

Crypto
Wallets
Crypto
Wallets

Figure. 3. Overview of Naga architecture.

D#3: Inheritance. Solidity supports multiple inheritance, and
many contracts inherit Openzeppelin contracts to provide func-
tionality. Table 3 lists the common contracts in Openzeppelin. We
frst annotated state variables in these contracts, and if a contract
inherits these contracts, we can get variables in Table 1 directly by
using variable names.
D#4: Getters & Modifers. If a contract does not inherit any given
contracts, D#3 will be invalid. However, most contracts have getters.
A getter is a view function that returns the value of a state variable.
Listing 3 shows the getters of ERC20, and we can identify variables
through these getters. In practice, we match getters of contracts
listed in Table 3 and further analyze the return statement to iden-
tify variables. Additionally, we use a similar approach to match
popular modifers such as onlyOwner() and onlyRole().
D#5: Variable Name & Type. Solidity can automatically create
getters for state variables declared public, so that a contract may
omit getters. Therefore, we match names and types to identify state
variables that survived the screening of D#3 and D#4.
D#6: Behavior Patterns. The above three matching methods can-
not deal with custom variables, e.g., a contract may have an owner
variable with an uncommon name. Therefore, we defne behavior
patterns for most state variables to identify them, e.g., an owner
variable can only be written by himself or other owners, and the
owner must appear in a require to protect other state variables.

Following the above methods, we detect state variables in Table 1
and judge the security risks (SR#6, SR#6.a~d) of a contract according
to whether owners can modify these variables. For SR#7, we directly
analyze functions and classify them by identifed variables. If an
owner-controlled function misses an event, we classify it as owner-
related ME (missing event), otherwise user-related ME.

Since D#3 and D#4 are match items in the library, they are accu-
rate. D#5 may have false positives due to the same variable name and
type. Thus, we only perform D#5 on totalSupply and metadata
variables (SR#6.b, SR#6.c) because they are well-known. We rely on
D#6 to deal with the diversity of SR#6, SR#6.a, and SR#6.d variables.
SR#6.b and SR#6.c do not adopt D#6 because their variables are
read-only by default that cannot defne behavior patterns.

4.2.2 Design of Naga. Based on the detection methods, we de-
signed a static analysis tool called Naga to detect security risks
in smart contracts. Figure 3 illustrates the architecture of Naga,

which consists of two modules, i.e., Core and Detectors. Naga is
built on top of SLITHER [11], a static analysis framework. First,
SLITHER compiles the contract’s source code. Then, the Analyzer
loads the SLITHER object and analyzes it from multiple levels. Fi-
nally, Detectors module fnds security risks by pre-defned detectors
and outputs a JSON report. Only analyzing variables in a single
function or statement is not enough because functions can call
each other, and there are dependencies between statements. The
Core module includes a Data-Dependency Analysis Engine (DAE)
for fne-grained analysis, which can track the dependencies of key
variables or statements, and supports the analysis of internal or
external calls. D#4 and D#6 beneft from DAE.
1
2
3
4
5
6
7
8
9

10
11

Listing 5. Example of transferring ownership.

address public _owner; //the owner variable
function _msgSender() internal returns (address) {
return msg.sender;

}
function transferOwnership(address newOwner) external {
address currOwner = _owner;
require(currOwner == _msgSender() && newOwner != address(0));
// require(currOwner == _msgSender());
// require(newOwner != address(0));
_owner = newOwner;

}

1
2
3
4
5
6
7
8
9

10
11
12

_msgSender() IRs:
RETURN msg.sender ▲

transferOwnership() IRs:
currOwner_1(address) := _owner_1(address) ▲
TMP_0(address) = INTERNAL_CALL, intercall._msgSender()() ▲
TMP_1(bool) = currOwner_1 == TMP_0 ▲
TMP_2 = CONVERT 0 to address
TMP_3(bool) = newOwner_1 != TMP_2
TMP_4(bool) = TMP_1 && TMP_3 ◀
TMP_5(None) = SOLIDITY_CALL require(bool)(TMP_4)
_owner_2(address) := newOwner_1(address)

Listing 6. Static single assignment form of IRs of Listing.5.

Data-dependency Analysis Engine (DAE). DAE gets the deep
data-dependency of a given variable or statement by tracking the
intermediate representation (IR) that SLITHER converted. DAE is
accurate due to the advantages of the static single assignment (SSA)
form of IRs. Appendix A.1 gives the technical details of DAE, and
here we provide an example.

In Listing 5, the function transferOwnership() has a com-
pound require in line 7, which is equivalent to line 8 and line 9.
Without DAE, we only know line 7 depends on two local variables
(currOwner, newOwner) and one constant address (0x0). Listing 6
is the SSA form of IRs of Listing 5, and line 11 in Listing 6 is the
IR of the tainted line 7 in Listing 5. The rvalue TMP_4 of line 11
depends on TMP_1 and TMP_3 in line 10. DAE supports split &&
operators in conditional statements. Since DAE fnds the && op-
erator in line 10, it starts two sub-DAEs to analyze TMP_1 (golden
▲) and TMP_3 (green). In line 6, sub-DAE enter the internal call
_msgSender() and get the return value, i.e., msg.sender. Follow-
ing green marks, we can see TMP_3 depends on newOwner_1 (i.e.,
newOwner) and an address 0x0. Naga learned from DAE that the
require depends on two conditions. The frst condition includes a
state variable _owner and a global variable msg.sender, and the
second condition includes a local variable newOwner and a constant
address 0x0. According to behavior patterns defned in D#6, Naga
reports that this function is controlled by the owner.

2278

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Kailun Yan, Jilian Zhang, Xiangyu Liu, Wenrui Diao, and Shanqing Guo

Table 4: Contract datasets under detection. Table 5: Security risks of crypto wallets.

Crypto Wallet DLs SR#1 SR#2 SR#3 SR#4 SR#5
Brave Wallet 100M+ # G# # 0
Coinbase Wallet 10M+

#

MetaMask 10M+
3

allet 5M+
2

Bitcoin.com W
#
#G Cloud

#G
 5

Exodus 1M+
Opera Wallet 1M+

G# 0
1

Status 1M+ 0
TokenPocket 1M+

#G
0

Coin98 Wallet 500K+ G# Cloud 4
imToken 500K+ 5
MEWWallet 500K+

#

AlphaWallet 100K+
3

1
Argent 100K+

#
 Go

#
ogle

#G #

Coin Wallet 100K+
 #G 6

G# 1
Guarda 100K+

#
0

Pillar 100K+
ZenGo 100K+

#
Go
#
ogle

 4

allet 100K+
 10

Zerion W
1inch Wallet 50K+

#
Go
#
ogle

#G 4
0

Loopring Wallet 50K+

Gap Wallet 10K+
 # # 1

Air
Bridge Wallet 10K+

0
G# # # 2

FoxWallet 10K+ # # # 5
Gnosis Safe 10K+

G
2

Numio 10K+ Google 3
Rainbow 10K+

Unstoppable 10K+
Google 3
0

Aktionariat 1K+ 1
 Security risk exists; G# Security risk

maybe

#
exist;

No security

risk.

Table 6: Crypto wallets requiring account registration (SR#1).

Dataset ERC20 ERC721 ERC1155 Non-token Total
ET 351 8,575 2,827 N/A 11,753
EM 42,801 20,947 1,334 33,671 98,753
Overall 43,152 29,522 4,161 33,671 110,506

Detectors. According to Section 4.2.1 and Table 1, we implemented
the detectors for SR#6 with four sub-issues (SR#6.a to SR#6.d) and
SR#7. We can easily add more detectors to extend the detection
capabilities of Naga. Appendix A.2 gives the details of all detectors.

5 MEASUREMENT AND FINDINGS

5.1 Experiment Setup

Crypto Wallet Dataset. We downloaded 30 Android crypto wallet
apps recommended by Ethereum from Google Play. Since two wal-
lets (Ledger and Keystone) require additional hardware, the rest 28
wallets were used for the experiment. These 28 wallets have over
131 million downloads, including one wallet with over 100 million
downloads and two wallets with over 10 million downloads.
Smart Contract Dataset. Table 4 lists the detected contracts in two
datasets2, with a total of 110,506 contracts, including 43,152 ERC20s,
29,522 ERC721s, 4,161 ERC1155s, and 33,671 non-tokens. The frst
dataset Etherscan token (ET) comes from Etherscan’s token tracker
[10]. Etherscan identifed some ERC20s, ERC721s, and ERC1155s.
We crawled the source codes of those tokens and made up the
dataset ET. It is a high-value dataset where ERC20s have 30 million
holders and a total market cap of over $310 billion. The second
dataset Ethereum mainnet (EM) comes from SCS [24], a project that
collects the source code of contracts. Since half of the contracts
failed to compile in SCS, we requested from scratch all 143,900
contracts from Etherscan, which covers a period until July 1, 2022.
We removed duplicate contracts between two datasets and did not
detect contracts with Solidity versions lower than 0.5.0 because
they do not support the require keyword. We identify tokens in
the EM dataset by matching function signatures, a method widely
used by crypto wallets and websites, including Etherscan.
Setup. We performed D#1 on a Lenovo Lemeng K12 phone with
Android 10. D#2 and Naga were run on a machine with two Intel(R)
Xeon(R) Gold 6226R CPUs @ 2.90GHz and 256 GB of memory.
The running environment is Ubuntu 20.04 and Python 3.8.10. The
timeout of contract compilation and Naga analysis are both 60
seconds. We detected all risks (SR#6, SR#6.a~d, and SR#7) for token
contracts and detected SR#6 and SR#7 only for non-token contracts.

5.2 Experiment Results
This section presents our detection results. Table 5 lists the security
risks (SR#1 to SR#5) of crypto wallets, and Table 7 lists SR#6 to SR#7
of smart contracts. The results are almost overwhelming. That is,
96.4% (27/28) of wallets and 83.5% (92,254/110,506) of contracts have
at least one security risk, including 11,419 high-value contracts and
260 famous tokens with a total market cap of over $98 billion.

2Both datasets are available at https://doi.org/10.5281/zenodo.7620479

Required Personal Identifable Information
Crypto Wallet Email Phone Number Face√ √
Argent
ZenGo
Loopring Wallet
Numio
Aktionariat

√ √
√

√
√ √

Performance Analysis. Naga cost 2.11 seconds per contract on av-
erage. Except for 1,834 contract source fle errors, only one contract
failed due to IR conversion failure, and no contract was timeout.
To SR#1: Anonymity Loss. Table 6 lists the wallets requiring
registration. Among them, four wallets require an Email address,
while Argent and Aktionariat also require a phone number. ZenGo
and Numio even require face verifcation, and ZenGo requires users
to link Google accounts and back up their private keys to Google
Drive before use. Aktionariat requires users to provide personal
information such as name and address. In addition, the registration
steps of three wallets are optional (marked as G# in Table 5), and
the user only needs to provide an Email address. Almost all wallets
with SR#1 ofer extra services like online backup (SR#2), exchange
(SR#3), so they tend to make users sign up.

2279

https://doi.org/10.5281/zenodo.7620479

Bad Apples: Understanding the Centralized Security Risks in Decentralized Ecosystems WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Table 7: Security risks of smart contracts (num. of state variables / num. of contracts).

Contracts SR#6 (OO) SR#6.a (LL) SR#6.b (VS) SR#6.c (MM) SR#6.d (MP) SR#7 (ME)
ERC20 61,170 / 34,812 19,746 / 16,543 2,968 / 2,968 552 / 268 74,381 / 18,552 167,292 / 29,467
ERC721 41,062 / 28,866 2,564 / 2,489 N/A 20,911 / 20,698 N/A 157,280 / 25,862
ERC1155 6,286 / 3,967 561 / 549 76 / 76 2,074 / 2,025 N/A 10,769 / 3,269
Non-token 32,545 / 20,814 N/A N/A N/A N/A 62,114 / 16,198
Total 141,063 / 88,459 22,871 / 19,581 3,044 / 3,044 23,537 / 22,991 74,381 / 18,552 397,455 / 74,796

Table 8: Categories of third-party SDKs (SR#5).

Categories # of SDKs # / DLs of APKs
C#1
C#2
C#3
C#4
C#5

Notifcation, SMS, Email
Data Analysis, Customer Analysis
ID Verifcation, Fraud Protection
Bug Reporting, Error tracking
Business Messenger

11
12
13
5
4

10 / 6,740K+
10 / 11,430K+
9 / 11,321K+
11 / 26,330K+
7 / 6,310K+

One SDK may belong to multiple categories, and one app may use multiple SDKs.

To SR#2: Private Key Leakage. Usually, wallets remind users to
write down mnemonic words of private keys. However, seven wal-
lets recommend users use online backups for convenience, which
leads to SR#2. Bitcoin.com Wallet and Coin98 Wallet, with 5M and
1M downloads, respectively, remind users to back up private keys
to their servers, and fve wallets (including ZenGo) recommend
users to back up private keys to Google Drive.
To SR#3: Built-in Centralized Services. Two wallets have built-in
exchanges, and 19 wallets provide cryptocurrency purchase func-
tions. None of the wallets alert users that those services are central-
ized, and only nine wallets showed providers of services (marked
as G# in Table 5). No wallets apply for Android permissions, except
for Numio. Numio requires users to provide location permission to
check whether users can purchase cryptocurrencies. In fact, blur-
ring the centralization of these services will help attract users.
To SR#4: RPC Services. In our dataset, 20 crypto wallets do not
disclose their RPC providers and cannot modify RPCs. The remain-
ing eight wallets support users adding new RPCs, and six of them
reveal RPC providers. Five of these six disclosed RPC providers
are centralized, including infura.io, nodereal.io, and ankr.com. Only
imToken wallet uses its own RPC service token.im.
To SR#5: Third-Party SDKs. Our heuristic detection (D#2) recog-
nized 72 candidate SDKs. We conducted manual analysis and found
29 risky third-party SDKs. We further investigated these SDKs and
found that wallets use them mainly for the fve reasons, as listed in
Table 8. In C#1, SDK providers hold the wallet user’s contact infor-
mation, which could incur phishing attacks. The SDK providers of
C#2 to C#5 may obtain the user’s PII, which destroys anonymity. In
C#3, we also found a face recognition SDK com.facetec, which was
confrmed to be used in Numio and ZenGo. Based on the number of
APKs, the most infuential SDK is io.sentry (Sentry), a bug-reporting
SDK used by eight well-known crypto wallets with over 11 million
total downloads. Sentry supports customization, and the aforemen-
tioned Slope incident is caused by misconfguration. Appendix A.3
lists the detail of these 29 SDKs.
To SR#6: Overpowered Owner. As demonstrated in Table 7, Naga
found 141,063 owners in 88,459 contracts, i.e., 80.1% (88,459/110,506)
of contracts and 88.0% (67,645/76,835) of tokens have the risk of

Table 9: Percentages of token contracts with security risks.

Contracts SR#6 SR#6.a SR#6.b SR#6.c SR#6.d SR#7
ERC20 (FT) 80.7% 38.3% 6.9% 0.6% 43.0% 68.3%
ERC721 (NFT) 97.8% 8.4% N/A 70.1% N/A 87.6%
ERC1155 (NFT) 95.3% 13.2% 1.8% 48.7% N/A 78.6%
NFTs 97.5% 9.0% N/A 67.5% N/A 86.5%
Overall (Token) 88.0% 25.5% N/A 29.9% N/A 76.3%

overpowered owner. The main reason for such high percentages is
that, since contracts are immutable once deployed, most creators
(owners) want to retain the ability to change contracts. For example,
70.4% (47,635/67,645) of tokens with overpowered owners have at
least one risk of SR#6.a~d. Table 9 shows that the percentage of SR#6
in NFTs (97.5%) is signifcantly more than that in FTs (80.7%) because
NFTs usually require owner-controlled functions. For example, to
attract potential users, NFT contracts could distribute some NFTs for
free, called airdrop. Those contracts contain a function airdrop()
that the owner only controls.
To SR#6.a: Limited Liquidity. Naga found 21,464 contracts with
limited liquidity. Table 9 shows that 25.5% of tokens and 38.3% of
ERC20s have this risk. As mentioned before, owners use blacklist
and paused to limit liquidity for security. Since paused can ofer
the additional ability to switch transfers, NFTs prefer to use it to
delay opening transactions. In our dataset, 79.6% of FTs with limited
liquidity have blacklist, and 96.8% of NFTs have paused.
To SR#6.b: Vulnerable Scarcity. We only detected vulnerable
scarcity for ERC20s and ERC1155s because ERC721s do not have
totalSupply. Since most investors (users) tend to select tokens
according to their scarcity, the total supplies of most contracts are
limited. However, there are still 3,044 contracts have the risk of
vulnerable scarcity, as shown in Table 7, including 2,968 ERC20s
and 76 ERC1155s. In other words, these tokens are more likely to
depreciate due to additional issuance.
To SR#6.c: Mutable Metadata. Table 9 shows that 67.5% of NFTs
have mutable metadata, while only 0.6% of ERC20s. Since most NFTs
store users’ digital assets on centralized servers, deployers (owners)
need to retain the ability to change baseURI, and NFTs with blind
boxes need owners to reveal baseURI. Therefore, there are more
NFTs with this risk. However, excluding baseURI, there are still 392
contracts with 782 metadata that owners can modify. We further
investigated these contracts and found that they intentionally retain
the ability to modify metadata for upgrading contracts in the future.
To SR#6.d: Mutable Parameters. About 43.0% of ERC20s support
owners in changing transfer parameters. Only 19 contracts (5.4%)
have the risk of mutable parameters in the ET dataset. However,
18,533 contracts (43.3%) have this risk in the EM dataset. The large

2280

https://token.im
https://ankr.com
https://nodereal.io
https://infura.io
https://Bitcoin.com

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Kailun Yan, Jilian Zhang, Xiangyu Liu, Wenrui Diao, and Shanqing Guo

Table 10: Num. of functions with missing events (SR#7).

Total User Owner
Token 335,341 13,063 (3.9%) 322,278 (96.1%)
Overall 397,455 31,826 (8.0%) 365,629 (92.0%)

Table 11: FP & FN analysis – num. of state variables.

SR#6 SR#6.a SR#6.b SR#6.c SR#6.d SR#7
TP 136 24 54 274 227 444
FP 5 0 0 0 1 0
FN 2 7 3 14 0 0

discrepancy between the two datasets refects the constraints of
valuable (ET) contracts in changing parameters. It indicates that
owners of ordinary (EM) contracts abuse their power.
To SR#7: Missing Events. The risk of missing events (ME) in
contracts is widespread, with 74,796 contracts (67.7%) missing at
least one event, indicating that most contracts are not compliant.
Table 10 shows the number of functions with ME. The owner-
related ME accounts for 92.0% of all contracts and 96.1% of tokens.
We further investigated the functions with ME called by owners:
owners update parameters (SR#6.d) account for the most signifcant
proportion (35.6%), and other infuential ones are SR#6 (18.4%),
SR#6.a (18.3%), and SR#6.c (16.2%). The above results show that
owners tend not to emit events when manipulating contracts.
FP & FN Analysis. We randomly selected 100 token contracts to
test the efectiveness of Naga. Table 11 shows the number of correct
(TP), incorrect (FP), and missed (FN) state variables detected by
Naga compared to the results obtained manually. Overall, Naga is
a tool with high accuracy and low false positives. It found 96.5%
(715/741) of variables about overpowered owner (SR#6, 6.a~d) and
only had six errors. The errors of Naga are mainly generated by
D#6, e.g., whitelisted users can call some special functions. Naga
erroneously recognized them as variables of SR#6. D#4 and D#5
miss some variables because their names are uncommon, and some
contracts violate the specifcation, such as using if statement in-
stead of require statement, which lead to D#6 missing them. Naga
directly identifes events by IRs of contract code. Hence, FP and FN
are not present in SR#7.

6 MITIGATION
To fundamentally eliminate centralized security risks, we need
to make revolutionary changes to the current ecosystems repre-
sented by Ethereum. However, these changes will inevitably lead
to blockchain forks. This section proposes immediate and practical
mitigation from the perspective of users and developers.
For Users. Users can evaluate crypto wallets according to D#1 in
section 4.1, and use Naga to evaluate contracts. We recommend
that users choose wallets with large downloads because the mea-
surement shows that these wallets have fewer risks. Also, users
should not provide any information to wallets (SR#1, 2). Users can
use onion routing to hide the actual IP addresses and, if possible,
run their own blockchain node instead of the RPC service provided
by the wallet (SR#4).

For Developers. Developers should use decentralized services to
replace traditional centralized services, such as remote storage with
zero-knowledge encryption, and fulfll their obligation to inform
users (SR#3, 5, 7). We suggest that developers allow wallets to
connect to multiple RPC services simultaneously, which is easy to
implement and can avoid malicious or failure of a single RPC service
(SR#4). If a contract adopts access control, developers can adopt a
multi-signature contract as the owner, which can decentralize the
owner’s privileges and prevent the risk of the leakage of a single
private key (SR#6).

7 RELATED WORK
Previous works on decentralized ecosystems were limited in secu-
rity and anonymity, but our work focuses more on security risks
caused by centralization. Horus [38] is a semi-automated security
assessment framework designed to analyze crypto wallet apps. Ho-
rus reveals several severe vulnerabilities that can lead to the loss
of ownership and anonymization of users. Winter et al. [40] mea-
sure the privacy and security properties of DeFi applications. They
fnd that many trackers on DeFi sites can trivially link a user’s
Ethereum address with PII (e.g., name) or phish users. Li et al. [17]
frst noticed centralized issues of RPC services and presented the
DoERS attack, a Denial of Ethereum RPC service that incurs zero
Ether cost to the attacker. TokenScope [8] is an automatic tool that
detects inconsistent behaviors resulting from tokens deployed in
Ethereum. TokenScope can fnd inconsistencies in standard events,
while our tool Naga is to detect if a function is missing an event.

Static analysis tools mainly use formal verifcation and symbolic
execution to detect contracts, such as ZEUS [14], VERISMART
[28], OSIRIS [34], Securify [36]. Dynamic analysis tools rely on
fuzzers and SMT solvers, such as ContractFuzzer [13], ReGuard
[18], Sereum [26], Oyente [21], CONFUZZIUS [33]. However, these
existing tools all focus on contract vulnerabilities, and none of them
directly support detecting overpowered owner.

8 CONCLUSION
The original intention of users to use decentralized services is to
avoid centralized security risks. This work takes the frst step in
investigating the centralized security risks in decentralized ecosys-
tems and lists seven previously unnoticed security risks. We propose
six detection methods and implement an automated tool. The mea-
surement results are not optimistic, with 96.4% of crypto wallets
and 83.5% of on-chain contracts having security risks. We hope
centralized risks can draw the community’s attention.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful comments.
This work was partially supported by Taishan Young Scholar Pro-
gram of Shandong Province, China. Jilian Zhang was supported by
NSFC (Grant No. 62020106013 and 61972177).

REFERENCES
[1] Oct. 5, 2022. Find a wallet. Retrieved Oct. 5, 2022 from https://ethereum.org/en/

wallets/fnd-wallet/
[2] Lawrence Abrams. Apr. 3, 2022. Fake Trezor data breach emails

used to steal cryptocurrency wallets. Retrieved Oct. 5, 2022 from

2281

https://ethereum.org/en/wallets/find-wallet/
https://ethereum.org/en/wallets/find-wallet/

Bad Apples: Understanding the Centralized Security Risks in Decentralized Ecosystems WWW ’23, April 30–May 04, 2023, Austin, TX, USA

https://www.bleepingcomputer.com/news/security/fake-trezor-data-breach-
emails-used-to-steal-cryptocurrency-wallets/

[3] Aleks-blockchaincap, Banteg, Dudesahn, Ekrenzke, Lehnberg, Ryanwatkins, Srs-
paraf, Tracheopteryx, Vooncer, Yf-cent, and Milkyklim. Jan. 21, 2021. YIP-57:
Funding Yearn’s Future. Retrieved Oct. 5, 2022 from https://gov.yearn.fnance/t/
yip-57-funding-yearns-future/9319

[4] Maria Apostolaki, Aviv Zohar, and Laurent Vanbever. 2017. Hijacking Bitcoin:
Routing Attacks on Cryptocurrencies. In Proceedings of the 2017 IEEE Symposium
on Security and Privacy (S&P), San Jose, CA, USA, May 22-26, 2017.

[5] Jef Benson. Mar. 4, 2022. Ethereum’s Infura Cuts Of Users to Separatist
Areas in Ukraine, Accidentally Blocks Venezuela. Retrieved Oct. 5, 2022
from https://decrypt.co/94315/ethereum-infura-cuts-of-users-separatist-areas-
ukraine-accidentally-blocks-venezuela

[6] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A.
Kroll, and Edward W. Felten. 2015. SoK: Research Perspectives and Challenges
for Bitcoin and Cryptocurrencies. In Proceedings of the 2015 IEEE Symposium on
Security and Privacy (S&P), San Jose, CA, USA, May 17-21, 2015.

[7] Vitalik Buterin. Oct. 4, 2022. A Next-Generation Smart Contract and Decentralized
Application Platform. Retrieved Oct. 5, 2022 from https://ethereum.org/en/
whitepaper/

[8] Ting Chen, Yufei Zhang, Zihao Li, Xiapu Luo, Ting Wang, Rong Cao, Xiuzhuo
Xiao, and Xiaosong Zhang. 2019. TokenScope: Automatically Detecting Incon-
sistent Behaviors of Cryptocurrency Tokens in Ethereum. In Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security (CCS),
London, UK, November 11-15, 2019.

[9] Ethereum. Oct. 5, 2022. Solidity Lang. Retrieved Oct. 5, 2022 from https://github.
com/ethereum/solidity

[10] Etherscan. Oct. 5, 2022. Etherscan. Retrieved Oct. 5, 2022 from http://etherscan.io/
[11] Josselin Feist, Gustavo Grieco, and Alex Groce. 2019. Slither: a static analysis

framework for smart contracts. In Proceedings of the 2nd International Workshop
on Emerging Trends in Software Engineering for Blockchain (WETSEB@ICSE),
Montreal, QC, Canada, May 27, 2019.

[12] Asem Ghaleb and Karthik Pattabiraman. 2020. How efective are smart contract
analysis tools? evaluating smart contract static analysis tools using bug injection.
In Proceedings of the 29th ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA), Virtual Event, USA, July 18-22, 2020.

[13] Bo Jiang, Ye Liu, and W. K. Chan. 2018. ContractFuzzer: Fuzzing Smart Contracts
for Vulnerability Detection. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering (ASE), Montpellier, France, Septem-
ber 3-7, 2018.

[14] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts. In Proceedings of the 25th Annual Network
and Distributed System Security Symposium (NDSS), San Diego, California, USA,
February 18-21, 2018.

[15] Yogita Khatri. Nov. 11, 2020. Ethereum infrastructure provider Infura is down,
crypto exchanges begin to disable ETH withdrawals. Retrieved Oct. 5, 2022
from https://www.theblock.co/post/84232/ethereum-infrastructure-provider-
infura-is-down

[16] Johannes Krupp and Christian Rossow. 2018. teEther: Gnawing at Ethereum to
Automatically Exploit Smart Contracts. In Proceedings of the 27th USENIX Security
Symposium (USENIX-Sec), Baltimore, MD, USA, August 15-17, 2018.

[17] Kai Li, Jiaqi Chen, Xianghong Liu, Yuzhe Richard Tang, XiaoFeng Wang, and
Xiapu Luo. 2021. As Strong As Its Weakest Link: How to Break Blockchain DApps
at RPC Service. In Proceedings of the 28th Annual Network and Distributed System
Security Symposium (NDSS), virtually, February 21-25, 2021.

[18] Chao Liu, Han Liu, Zhao Cao, Zhong Chen, Bangdao Chen, and Bill Roscoe. 2018.
ReGuard: Finding Reentrancy Bugs in Smart Contracts. In Proceedings of the
40th International Conference on Software Engineering: Companion Proceeedings
(ICSE-Companion), Gothenburg, Sweden, May 27 - June 03, 2018.

[19] Zhuotao Liu, Yangxi Xiang, Jian Shi, Peng Gao, Haoyu Wang, Xusheng Xiao,
Bihan Wen, Qi Li, and Yih-Chun Hu. 2022. Make Web3.0 Connected. IEEE
Transactions on Dependable and Secure Computing 19, 5 (2022), 2965–2981.

[20] Sishan Long, Soumya Basu, and Emin Gün Sirer. 2022. Measuring Miner
Decentralization in Proof-of-Work Blockchains. CoRR abs/2203.16058 (2022).
arXiv:2203.16058

[21] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS), Vienna, Austria,
October 24-28, 2016.

[22] Kartik Nayak, Srijan Kumar, Andrew Miller, and Elaine Shi. 2016. Stubborn
Mining: Generalizing Selfsh Mining and Combining with an Eclipse Attack. In
Proceedings of the 1st IEEE European Symposium on Security and Privacy (EuroS&P),
Saarbrücken, Germany, March 21-24, 2016.

[23] OpenZeppelin. Oct. 5, 2022. Openzeppelin Contracts. Retrieved Oct. 5, 2022 from
https://github.com/OpenZeppelin/openzeppelin-contracts

[24] Martin Ortner, Eskandari, and Shayan. Jul. 1, 2022. Smart Contract Sanctuary. Re-
trieved Oct. 5, 2022 from https://github.com/tintinweb/smart-contract-sanctuary

[25] Pierluigi Paganini. Jul. 30, 2018. KICKICO security breach – hackers stole over $7.7
million worth of KICK tokens. Retrieved Oct. 5, 2022 from https://securityafairs.
co/wordpress/74910/hacking/kickico-hack.html

[26] Michael Rodler, Wenting Li, Ghassan O. Karame, and Lucas Davi. 2019. Sereum:
Protecting Existing Smart Contracts Against Re-Entrancy Attacks. In Proceedings
of the 26th Annual Network and Distributed System Security Symposium (NDSS),
San Diego, California, USA, February 24-27, 2019.

[27] Sunbeom So, Seongjoon Hong, and Hakjoo Oh. 2021. SmarTest: Efectively
Hunting Vulnerable Transaction Sequences in Smart Contracts through Language
Model-Guided Symbolic Execution. In Proceedings of the 30th USENIX Security
Symposium (USENIX-Sec), August 11-13, 2021.

[28] Sunbeom So, Myungho Lee, Jisu Park, Heejo Lee, and Hakjoo Oh. 2020. VERIS-
MART: A Highly Precise Safety Verifer for Ethereum Smart Contracts. In Pro-
ceedings of the 2020 IEEE Symposium on Security and Privacy (S&P), San Francisco,
CA, USA, May 18-21, 2020.

[29] Cryptopedia Staf. Mar. 17, 2022. What Was The DAO? Retrieved Oct. 5, 2022
from https://www.gemini.com/cryptopedia/the-dao-hack-makerdao

[30] Gilad Stern and Ittai Abraham. 2022. New Dolev-Reischuk Lower Bounds Meet
Blockchain Eclipse Attacks. IACR Cryptol. ePrint Arch. (2022), 730.

[31] Liya Su, Xinyue Shen, Xiangyu Du, Xiaojing Liao, XiaoFeng Wang, Luyi Xing, and
Baoxu Liu. 2021. Evil Under the Sun: Understanding and Discovering Attacks on
Ethereum Decentralized Applications. In Proceedings of the 30th USENIX Security
Symposium (USENIX-Sec), August 11-13, 2021.

[32] Eli Tan. Aug. 4, 2022. Solana’s $6M Exploit Likely Tied to Slope Wallet, Developers
Say. Retrieved Oct. 5, 2022 from https://www.coindesk.com/business/2022/08/
03/solanas-latest-6m-exploit-likely-tied-to-slope-wallet-devs-say/

[33] Christof Ferreira Torres, Antonio Ken Iannillo, Arthur Gervais, and Radu State.
2021. ConFuzzius: A Data Dependency-Aware Hybrid Fuzzer for Smart Contracts.
In Proceedings of the 6th IEEE European Symposium on Security and Privacy
(EuroS&P), Vienna, Austria, September 6-10, 2021.

[34] Christof Ferreira Torres, Julian Schütte, and Radu State. 2018. Osiris: Hunting
for Integer Bugs in Ethereum Smart Contracts. In Proceedings of the 34th Annual
Computer Security Applications Conference (ACSAC), San Juan, PR, USA, December
03-07, 2018.

[35] Muoi Tran, Inho Choi, Gi Jun Moon, Anh V. Vu, and Min Suk Kang. 2020. A
Stealthier Partitioning Attack against Bitcoin Peer-to-Peer Network. In Proceed-
ings of the 2020 IEEE Symposium on Security and Privacy (S&P), San Francisco, CA,
USA, May 18-21, 2020. IEEE, 894–909.

[36] Petar Tsankov, Andrei Marian Dan, Dana Drachsler-Cohen, Arthur Gervais,
Florian Bünzli, and Martin T. Vechev. 2018. Securify: Practical Security Analysis of
Smart Contracts. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security (CCS), Toronto, ON, Canada, October 15-19, 2018.

[37] Connor Tumbleson. Sept. 20, 2022. Apktool. Retrieved Oct. 5, 2022 from https:
//ibotpeaches.github.io/Apktool/

[38] Md Shahab Uddin, Mohammad Mannan, and Amr M. Youssef. 2021. Horus: A
Security Assessment Framework for Android Crypto Wallets. In Proceedings of
the 17th EAI International Conference on Security and Privacy in Communication
Networks (SecureComm), Virtual Event, September 6-9, 2021.

[39] Samuel Wan. Jul. 7, 2022. Celsius Network continues to make moves,
prompting calls to resume withdrawals. Retrieved Oct. 5, 2022 from
https://cryptoslate.com/celsius-network-continues-to-make-moves-
prompting-calls-to-resume-withdrawals/

[40] Philipp Winter, Anna Harbluk Lorimer, Peter Snyder, and Benjamin Livshits.
2021. What’s in Your Wallet? Privacy and Security Issues in Web 3.0. CoRR
abs/2109.06836 (2021). arXiv:2109.06836

[41] Martin Young. Oct. 7, 2020. 75 crypto exchanges have closed down so far in
2020. Retrieved Oct. 5, 2022 from https://cointelegraph.com/news/75-crypto-
exchanges-have-closed-down-so-far-in-2020

A APPENDIX

A.1 Data-dependency Analysis Engine (DAE)
Here we give the technical details and algorithms of DAE. DAE
includes a dependency tracker (DepTracker, Algorithm 1) and a call
tracker (CallTracker, Algorithm 2). DepTracker analyzes dominators
(statements) of the tainted variable or statement from the bottom
up. CallTracker traces Return statements in internal or external
calls and feeds results to DepTracker. DAE records visited functions
to prevent infnite loops caused by recursion.

A.2 Smart Contract Detectors
We elaborate on the implementation details of detectors below.

2282

https://www.bleepingcomputer.com/news/security/fake-trezor-data-breach-emails-used-to-steal-cryptocurrency-wallets/
https://www.bleepingcomputer.com/news/security/fake-trezor-data-breach-emails-used-to-steal-cryptocurrency-wallets/
https://gov.yearn.finance/t/yip-57-funding-yearns-future/9319
https://gov.yearn.finance/t/yip-57-funding-yearns-future/9319
https://decrypt.co/94315/ethereum-infura-cuts-off-users-separatist-areas-ukraine-accidentally-blocks-venezuela
https://decrypt.co/94315/ethereum-infura-cuts-off-users-separatist-areas-ukraine-accidentally-blocks-venezuela
https://ethereum.org/en/whitepaper/
https://ethereum.org/en/whitepaper/
https://github.com/ethereum/solidity
https://github.com/ethereum/solidity
http://etherscan.io/
https://www.theblock.co/post/84232/ethereum-infrastructure-provider-infura-is-down
https://www.theblock.co/post/84232/ethereum-infrastructure-provider-infura-is-down
https://arxiv.org/abs/2203.16058
https://github.com/OpenZeppelin/openzeppelin-contracts
https://github.com/tintinweb/smart-contract-sanctuary
https://securityaffairs.co/wordpress/74910/hacking/kickico-hack.html
https://securityaffairs.co/wordpress/74910/hacking/kickico-hack.html
https://www.gemini.com/cryptopedia/the-dao-hack-makerdao
https://www.coindesk.com/business/2022/08/03/solanas-latest-6m-exploit-likely-tied-to-slope-wallet-devs-say/
https://www.coindesk.com/business/2022/08/03/solanas-latest-6m-exploit-likely-tied-to-slope-wallet-devs-say/
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://cryptoslate.com/celsius-network-continues-to-make-moves-prompting-calls-to-resume-withdrawals/
https://cryptoslate.com/celsius-network-continues-to-make-moves-prompting-calls-to-resume-withdrawals/
https://arxiv.org/abs/2109.06836
https://cointelegraph.com/news/75-crypto-exchanges-have-closed-down-so-far-in-2020
https://cointelegraph.com/news/75-crypto-exchanges-have-closed-down-so-far-in-2020

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Kailun Yan, Jilian Zhang, Xiangyu Liu, Wenrui Diao, and Shanqing Guo

Algorithm 1: DepTracker
Input: tainted_vars: array of tainted values;

dom_irs: dominators of tainted values;
walked_funs: array of functions already visited.

Output: dep_vars: dependent variables.
1 dep_vars = tainted_vars
2 while dom_irs do
3 ir = dom_irs.pop()
4 // The lvalue of the expression is not in the dep_vars.
5 if ir.lval not in dep_vars then
6 continue
7 dep_vars.remove(ir.lval) // Remove the old value.
8 dep_vars += ir.rvals // Add rvalues to the dep_vars.
9 if isinstance(ir, (InternalCall, HighLevelCall)) then
10 if ir.function in walked_funs then
11 continue
12 walked_funs.append(ir.function)
13 // Call the InternalCall Tracker
14 dep_vars += CallTracker(ir, walked_funs)
15 end
16 return dep_vars

Algorithm 2: CallTracker
Input: call_ir: ir that calls the internal function;

walked_funs: functions already visited.
Output: Dependencies

1 dep_vars = []
2 dom_irs = call_ir.dom_irs // Dominators of call_ir
3 while dom_irs do
4 ir = dom_irs.pop()
5 if isinstance(ir, Return) then // Return statement.
6 dep_vars += DepTracker(ir.rvals, dom_irs,

walked_funs)
7 end
8 return dep_vars

SR#6: Overpowered Owner. First, we match the three access in-
heritances of Table 3 in D#3 and the two modifers (onlyOwner()
and onlyRole()) in D#4. Then, we recognize the remaining vari-
ables in D#6. The rules for D#6 are as follows: (1) The owner should
compare with msg.sender in the require; (2) The owner must be
protected by himself or other owners. Finally, if we fnd owner
variables, we say this contract has overpowered owner.
SR#6.a:Limited Liquidity. The paused variable has a Pausable
inheritance and a popular modifer whenNotPaused(). We check
the two properties in D#3 and D#4. In D#6, we check the state
variables of require statements in user-writable functions. If the
type of a state variable is bool or mapping(address⇒bool) and
the variable is protected by owners, we believe that the variable is
a LL variable, so this contract is limited liquidity.
SR#6.b: Vulnerable Scarcity. Since there is no totalSupply in
ERC721, we only detect two inheritances (ERC20 and ERC1155)
in D#3. totalSupply also has a getter totalSupply() for D#4.

We check the name keyword totalSupply and type (uint) in
D#5. For totalSupply, if (1) the variable is protected by owners,
(2) owners can increase the variable, and (3) totalSupply is not
bound by an immutable uint variable or a constant, we believe that
totalSupply is mutable, so this contract is vulnerable scarcity.
SR#6.c: Mutable Metadata. We frst detect token inheritances and
getters in D#3 and D#4, and then we check the name keywords and
types of the remaining variables in D#5. Finally, we check if there
are functions owners can modify these metadata.
SR#6.d: Mutable Parameters. Since contracts have various pa-
rameters, it is difcult to match them directly. In D#6, for every
mutable parameter: (1) uint type; (2) presenting in user-writable
functions; (3) have a write function that only owners call.
SR#7: Missing Events. After identifying state variables, we per-
form missing event detection. If a function writes to a state variable
without emitting any events, we look up the state variable’s identity
and report that the function is Missing Events.

A.3 Valuable Third-party SDKs
Table 12 lists 29 third-party SDKs in crypto wallets. C#1 is Notifca-
tion, SMS, Email , C#2 is Data Analysis, Customer Analysis, C#3 is
Identity Verifcation, Fraud Protection, C#4 is Bug Reporting, Error
tracking, and C#5 is Business Messenger.

Table 12: Valuable Third-party SDKs

SDK (SR#5) C#1 C#2 C#3 C#4√
C#5 APKs

io.sentry √ √ √ √
8

io.invertase √ √
6

com.appsfyer √ √
5

io.intercom √ √
5

com.intercom √
5

com.onesignal √
3

com.bugsnag √
3

com.segment √
3

com.amplitude √
3

com.zendesk √
2

com.mixpanel √ √
2

com.geetest √
2

com.facetec √
2

com.pusher √ √ √
2

cn.jiguang √ √ √
1

cn.asus.push √ √ √
1

cn.jpush √
1

com.instabug √
1

com.crashlytics √
1

com.onfdo √ √
1

com.adjust √
1

com.microblink √
1

com.sensorsdata √
1

com.helpscout √
1

com.passbase √ √
1

com.braze √ √
1

com.appboy √
1

com.tozny √
1

org.iban4j 1

2283

	Abstract
	1 Introduction
	2 Decentralized Ecosystems
	3 Centralized Security Risks
	3.1 Overview
	3.2 Security Risks

	4 Risk Detection Approaches
	4.1 Detection on Crypto Wallets
	4.2 Detection on Smart Contracts

	5 Measurement and Findings
	5.1 Experiment Setup
	5.2 Experiment Results

	6 Mitigation
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Data-dependency Analysis Engine (DAE)
	A.2 Smart Contract Detectors
	A.3 Valuable Third-party SDKs

